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Adiabatic electron charge transfer between two quantum dots in presence of 1/ f noise

Jan A. Krzywda * and Łukasz Cywiński †
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Controlled adiabatic transfer of a single electron through a chain of quantum dots has been recently achieved
in GaAs and Si/SiGe based quantum dots, opening prospects for turning stationary spin qubits into mobile ones
and solving in this way the problem of long-distance communication between quantum registers in a scalable
quantum computing architecture based on quantum dots. We consider theoretically the process of such an
electron transfer between two tunnel-coupled quantum dots, focusing on control by slowly varying the detuning
of energy levels in the dots. We take into account the fluctuations in detuning caused by 1/ f -type noise that is
ubiquitous in semiconductor nanostructures and analyze their influence on probability of successful transfer of
an electron in a spin eigenstate. With numerical and analytical calculations we show that probability of electron
not being transferred due to 1/ f β noise in detuning is ∝ σ 2tβ−1/v, where σ characterizes the noise amplitude, t
is the interdot tunnel coupling, and v is the detuning sweep rate. Interestingly, this means that the noise-induced
errors in charge transfer are independent of t for 1/ f noise. For realistic parameters taken from experiments on
silicon-based quantum dots, we obtain the minimal probability of charge transfer failure between a pair of dots
is limited by 1/ f noise in detuning to be the on the order of 0.01. This means that in order to reliably transfer
charges across many quantum dots, charge noise in the devices should be further suppressed, or tunnel couplings
should be increased, in order to allow for faster transfer (and less exposure to noise), while not triggering the
deterministic Landau-Zener excitation.
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I. INTRODUCTION

Spin qubit based on quantum dots (QDs) have achieved
the level of single- and two-qubit gate performance [1–8]
that makes them viable building blocks of a scalable quantum
computer. However, scaling up to large quantum circuits in
architecture based on QDs will require mastering of long-
distance quantum communication between registers of a few
qubits [9–12]. While applying multiple SWAP gates [13–15]
to subsequent spin qubits in a chain of quantum dots is the
most conceptually straightforward proposal, the two most
recently successful avenues for achieving this goal are either
coherently coupling stationary spin qubits to flying qubits,
specifically to microwave photons [16–18], or simply making
electron spin qubits mobile in a controlled way. The latter
can be achieved in polar materials such as GaAs with surface
acoustic waves [19–21] making a single electron travel for up
to 100 μm [20] distance, or by gate voltage controlled transfer
of an electron along a chain of quantum dots. This method was
shown to allow for coherent spin transfer across three and four
quantum dots in GaAs [22–25] and for charge transfer across
nine quantum dots in Si/SiGe heterostructure [26]. We focus
here on this long-distance electron transfer, since it works
also for nonpolar semiconductors, such as silicon. Electron
spin localized in a silicon-based structure experiences much
less nuclear noise than in GaAs and creation of coherently
controlled silicon-based quantum dot spin qubits has recently
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achieved a high degree of success both in Si/SiO2 [6,7] and
Si/SiGe structures [4,5,27].

The process of electron transfer along a chain of quantum
dots [26] naturally decomposes into basic building blocks
of charge transfer between pairs of neighboring dots. Each
such transition can be considered separately, as a process,
in which charge transfer is caused by a change of detuning
of energy levels of electrons localized in the two dots. The
basic physics is that of Landau-Zener problem [28]: detuning
controls the alignment of two energy levels, while interdot
tunneling couples them, and successful transfer of electron
from one dot to another corresponds to adiabatic evolution
of the system driven by a detuning sweep [29,30]. When one
considers a system with only a single low-energy level (i.e.,
when spin and valley splittings of the electron are very large,
and we approximately deal with a “spinless electron”), the
only limitation for the charge transfer time is provided by
the above requirement of approximate adiabaticity of Landau-
Zener transition. However, in an often practically relevant
situation of a few low-energy levels of the electron playing a
role (i.e., finite spin and/or valley splittings), the system goes
through more than one energy level anticrossing during the
charge transfer [31–34], and the conditions for high probabil-
ity of dot-to-dot electron transfer become more involved.

However, the description of charge transfer problem be-
comes truly interesting, and experimentally realistic, after
the effects of noise, inevitably present in a semiconductor
nanostructure, are included. As we discuss below, fluctuations
of electron spin splitting due to interaction with nuclei of the
host material, are relevant only for very slow detuning sweeps,
when even deterministic dynamics of a multilevel system
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leads to unwanted features in charge transfer probability.
Furthermore, these effects can be essentially completely re-
moved by isotopic purification of silicon [5,35,36]. The main
expected source of problems in the electron transfer process
is thus charge noise, that has been widely recognized as an
important driver of spin dephasing [27,36] and relaxation [37]
for silicon-based spin qubits, and it is also known to affect the
coherence of GaAs based spin qubits [38,39].

In this paper, we investigate the fidelity of adiabatic elec-
tron transfer between two neighboring quantum dots in pres-
ence of realistic 1/ f β noise in energy detuning between the
two dots. Such coupling to charge noise has been recognized
as the dominant one for electrons in coupled quantum dots
[2,38], with fluctuations of tunnel coupling between the dots
being widely assumed to be much weaker and thus less
relevant (for discussion of possible exception to this point
of view see Ref. [40]). Using the common terminology for
the Landau-Zener problem, we are dealing with influence of
1/ f -type longitudinal noise on transition probability. It should
be noted that most of the research on effects of noise on
the Landau-Zener problem was focused on transverse noise
[41,42] having white [41] or Lorentzian spectrum [42], with
longitudinal noise achieving much less attention [42], and
the case of 1/ f β spectrum (highly relevant for charge noise
in nanostructures used in solid state quantum information
processing [43,44]) even less. We focus our attention here
mostly on silicon-based quantum dots (as coherence times
in Si are longer than in GaAs, and silicon architectures have
better prospects for scalability [45], once it becomes possible
to create spin qubits with industrial Si technology), but the
presented theory is applicable also to GaAs-based spin qubits.
We stress that we focus on transfer errors induced by charge
noise, with less attention devoted to other sources of transfer
imperfection. For a more detailed recent discussion of those
see Refs. [29,31].

We consider the electron being initialized in its lowest
orbital energy state energy state in one of the dots, its spin
being in an eigenstate of the Zeeman Hamiltonian. Note that
for concreteness, and due to high level of development of
quantum dot spin qubits, we focus here on electron spin as
the relevant lowest-energy degree of freedom, but it should be
noted that the theory presented below can be easily applied to
the case of a valley qubit [46,47]. After delineating the range
of sweep rates that allow for low-error transfer of electron
(being in one of two spin states) in the noiseless case, we focus
on influence that 1/ f noise in detuning has on probability of
successful transport of charge from one dot to another. Such a
noise has a strong low-frequency component that is irrelevant
for charge transfer probability, but its high-frequency tail leads
to occurrence of event in which a noise-induced fluctuation in
rate of change of detuning leads to excitation to the higher-
energy state, and consequently to the failure of electron charge
transfer. We parametrize the latter by probability pL of the
electron staying behind in the left QD, when the intention was
to transfer it to the left dot. Using analytical and numerical
calculations we show that pL has a simple dependence on
rms of the noise, σ , the detuning sweep velocity, v, the
interdot tunnel coupling, t , and parameter β characterizing
the noise spectral density S(ω)∝1/ωβ . We have pL ∝ σ 2

v
tβ−1,

which means that for β =1, that is most often encountered
in Si quantum dots [5,36], the noise-induced error in charge
transfer procedure is to a very good accuracy independent
of t .

The paper is organized in the following way. In Sec. II we
describe our model of the double dot system and describe
the basic physics of electron transfer via adiabatic sweep
of detuning. In Sec. III we discuss nonideal transfer of the
higher-energy spin eigenstate caused by presence of finite
spin-flip tunneling t ′ and show how this effect is modified
by quasistatic noise in spin splitting. Section IV contains the
central results of the paper concerning the influence of 1/ f
noise on electron transfer probability. We describe there our
analytical and numerical calculations and present results for
realistic silicon-based quantum dots.

II. THE MODEL

We consider two lowest energy spin states, labeled by
s=± index, in each of two adjacent quantum dots: left
(L) and right (R) one with dot-dependent Zeeman splittings,
�L and �R. We assume that interdot energy detuning ε(τ )
can be controlled by gate voltages. The Hamiltonian in this
four-dimensional subspace, written in basis of diabatic states
|L−〉, |L+〉, |R−〉, |R+〉, is given as a sum of the following
terms:

Hε (τ ) = ε(τ )

2

∑
s=±

(|Ls〉〈Ls| − |Rs〉〈Rs|)

Ht = t

2

(|L+〉〈R+| + |L−〉〈R−|)
+ t ′

2

(|L+〉〈R−| + |R+〉〈L−|) + H.c.

H� = �L

2

(|L+〉〈L+| − |L−〉〈L−|)
+ �R

2

(|R+〉〈R+| − |R−〉〈R−|), (1)

where t is the spin-conserving interdot tunneling, while t ′
describes tunneling event accompanied by a spin flip, allowed
by spin-orbit interaction. We expect t ′ � t , due to weakness
of spin-orbit interaction in semiconductors from which gated
quantum dots are made (this applies even more strongly to Si
compared to GaAs). Let us stress that we are ignoring here the
existence of the valley degree of freedom [48] in silicon. This
is motivated partly by the desire to simplify the problem, so
that the basic physics that we discuss here is not obscured,
and partly by the fact that recent experiments on Si/SiGe
dots show large valley splittings [49]. When valley splitting
is larger than the Zeeman splitting, the complications due to
valley-orbit mixing in Si can be ignored, and one can focus on
the two lowest-energy states: the spin-split states of the lower
energy valley. Let us however note that in the case in which
the valley splitting is much smaller than the spin splitting, the
theory discussed here applies to the transfer of the electron
initialized in one of two lowest-energy valley states (each
having the same spin projection on the spin quantization axis),
and t ′ corresponds then to intervalley tunneling. The key
difference with respect to the case of two spin eigenstates
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FIG. 1. Schematic graph of detuning dependence of four lowest
energy levels of a spin-split electron tunneling between the two
quantum dots. On the far left side, the order of states, from the
lowest-energy one, is |L−〉, |L+〉, |R−〉, and |R+〉, where L/R de-
notes the state localized in left/right dot, and s=± denotes the
lower/higher energy spin state. The tunnel coupling t corresponds to
spin-conserving transition between the dots, while t ′ � t coupling is
the spin-flip transition allowed by finite spin-orbit interaction. �L/R

are spin splittings in the left/right dot. Their difference, which leads
to spin + and − anticrossing occurring at distinct values of ε, is
exaggerated compared to realistic situation in order to show its role.
The colors and symbols ∩−, m, w, and ∪+ mark the energy levels
that would be followed by a state initialized in one of eigenstates
at negative ε, if the change to positive ε was done very slowly,
so that the electron is dragged adiabatically through all the level
anticrossings. The ∩+ path (dashed line) corresponds to evolution
of the state initialized in the |L+〉 state when detuning is changes at
such a rate that the t ′ transitions are diabatic, while t anticrossing
is traversed adiabatically. Interference angle φ is given by the area
between lines corresponding to energies w and m states.

is that t ′ is then not necessarily much smaller than t , and
the relation between them depends on the roughness of the
quantum well interface [31,50].

Electron initialized in the left dot is now transferred to the
right dot due to either spin preserving tunneling t or tunneling
with a spin-flip t ′ combined with slow variation of detuning
ε(τ ). We consider here the electron initialized in one of two
|L±〉 states. If the rate of change of ε(τ ) is slow enough, the
adiabatic theorem applies, and |L−〉 state should transform
at long times into |R−〉 state following the energy branch
marked by ∩− in Fig. 1, while |L+〉 should transform into |R+〉
following the energy branch marked there by m.

We assume that the time dependence of ε(τ ) can be ap-
proximated by a linear one in the range of detuning shown
in Fig. 1. We can use then the classical Landau-Zener result
for probability of nonadiabatic excitation during the sweep of
detuning through an anticrossing of energy levels. When such
an anticrossing opens due to coupling of the two levels by t
matrix element (t ′ in case of spin-flip transitions), the proba-
bility of such an excitation (equivalent to electron remaining
in the left dot after the detuning sweep) is given by

pL = exp

(
−π

t2

2v

)
, (2)

where v is the sweep velocity, i.e., ε(τ )=const + vτ in the
vicinity of the anticrossing, and we are using units in which
h̄=1. Obtaining pL �1 for evolution of |L−〉 state along the

∩− branch simply requires keeping v below a certain value.
For m branch, on the other hand, we encounter three anticross-
ings, and it is the t ′ � t splitting that limits the velocity v if we
want to follow this energy branch adiabatically. This might
not be practical (especially in presence of noise, as we discuss
in detail in this paper), and consequently the |L+〉 → |R+〉
transfer should rather be effected by a detuning sweep that
leads to almost diabatic transition through t ′ anticrossings (so
that they effectively become level crossings), and to adiabatic
transition through |L+〉-|R+〉 anticrossing—in other words, the
state should follow the path marked by ∩+ in Fig. 1. We will
return to this problem in the next section, and now we will
focus on the last, and most important, element of our model:
the noisy character of detuning.

We set Zeeman splitting �
 t large enough to consider
two sets of anticrossings between |L−〉/|R−〉 and |L+〉/|R+〉
separately. Electron initialized in one of spin eigenstates is
now transferred to the right dot due to spin-conserving tun-
neling term t combined with slow variation of interdot energy
detuning given by ε(τ ) = EL− (τ ) − ER− (τ ). This detuning
is modified by the fluctuations of electric field ε(τ ) + ξ (τ ),
where ξ (τ ) = ξL(τ ) − ξR(τ ). We stress here that although the
fluctuations of the electric field in the vicinity of the dots
lead to fluctuations of both ε(τ ) and interdot tunneling, the
latter is widely considered to be less important (see although
Ref. [40]). Altogether the Hamiltonian reads

Ĥ (τ ) = ε(τ ) + ξ (τ )

2
σ̂z + t

2
σ̂x ≡ 1

2
rs(τ ) · �σ (3)

where we have introduced Pauli operators corresponding to
dot degree of freedom, i.e., σ̂z = |L〉〈L| − |R〉〈R|. Evolution
can be described in terms of effective field vector r(τ ),
defined using its time-dependent magnitude and orientation
angle θ (τ ):

|r(τ )| =
√

[ε(τ ) + ξ (τ )]2 + t2 , (4)

cot θ (τ ) = −ε(τ ) + ξ (τ )

t
. (5)

At any instant of time Hamiltonian Ĥ (τ ) can be diagonal-
ized using time-dependent rotation R̂(τ )Ĥ (τ )R̂†(τ ) = Ĥ(τ ),
which produces eigenenergies E± = ± 1

2 |r(τ )| corresponding
to the instantaneous eigenstates, denoted as ground state
|g(τ )〉 = cos θ (τ )

2 |L〉 − sin θ (τ )
2 |R〉, and excited state |e(τ )〉 =

sin θ (τ )
2 |L〉 + cos θ (τ )

2 |R〉. Angle θ (τ ) allows us to find the
composition of the ground state, with probability of occupy-
ing left and right dot defined as |〈L|g(τ )〉|2 = cos2(θ (τ )/2)
and |〈R|g(τ )〉|2 = sin2(θ (τ )/2), respectively. We consider
now weak noise, specifically ξ (τ )/r0(τ )�1, where r0(τ ) =√

ε2(τ ) + t2� t is the noiseless splitting between the adia-
batic energy levels. Then we linearize Eqs. (4) and (5) in ξ/r0,

|r(τ )| ≈ r0(τ ) − cos ϑ (τ ) ξ (τ ) (6)

θ (τ ) ≈ ϑ (τ ) + sin ϑ (τ )
ξ (τ )

r0(τ )
. (7)

Noise independent angle ϑ (τ ) = arccot(−ε(τ )/t ), which de-
fines relation between noiseless detuning and interdot tunnel-
ing, while ϑ (−∞) = 0 and ϑ (∞) = π . The time-dependent
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Hamiltonian, written using Pauli operators in the adiabatic
basis, τ̂z(τ )=|e(τ )〉〈e(τ )| − |g(τ )〉〈g(τ )| etc., is given by

Ĥ ad(τ ) = r0(τ ) + ξ‖(τ )

2
τ̂z(τ ) + ϑ̇ (τ ) + ξ⊥(τ )

2
τ̂y(τ ), (8)

in which the longitudinal and transverse components of the
noise are given by

ξ‖(τ ) = cos ϑ (τ )ξ (τ ) , (9)

ξ⊥(τ ) = d

dτ

[
sin ϑ (τ )

ξ (τ )

r(τ )

]
. (10)

Equation (8) shows that transition between the state following
an adiabatic trajectory from the initial one, to the other adia-
batic state, can occur due to deterministic term ∝ ϑ̇ τ̂y (where
ϑ̇ (τ )=dϑ (τ )/dτ ), or due to noise-induced terms obtained by
taking the derivative in Eq. (10). The calculation of transfer
probability due to the deterministic term leads to the Landau-
Zener formula, while the calculation of corrections to the
transfer probability due to the noise-induced terms, which is
the main topic of this paper, is considered in Sec. IV.

III. CHARGE TRANSFER IN ABSENCE OF
FLUCTUATIONS OF DETUNING

The probability of successful interdot transfer of an elec-
tron initialized in the lowest-energy state |L−〉 is given in the
absence of noise by Eq. (2). However, as we mentioned in
the previous section, even such a noiseless transfer becomes
more interesting if we consider an initial spin state of higher
energy, |L+〉.

In this case, there are two possible paths corresponding
to successful transfer, marked in Fig. 1 as m and ∩+, and
probability is affected by their interference:

p(L+ → R+) = |am + a∩+|2 . (11)

In this equation am is the probability amplitude of staying in
the m state for the whole experiment, while a∩+ is the prob-
ability amplitude of temporal excitation to w state between
two minor anticrossings t ′. For sufficiently large �L/R each
transition can be regarded as independent thus the amplitudes
read

am = (1 − p′
LZ)

√
1 − pLZ eiϕm

a∩+ = p′
LZ

√
1 − pLZ eiϕm eiφ, (12)

where p′
LZ = e−πt ′2/2v and pLZ was defined in Eq. (2).

Path difference, denoted in Fig. 1 as φ is given by φ =∫ τ ′

−τ ′ dτ (Em(τ ) − E∩+ (τ )), while τ ′ corresponds to a time at
which first t ′ anticrossing occurs. For experimentally rele-
vant parameters φ is expected to be very large, and can be
estimated as the area of rhombus bounded by dashed ∩+
and green m line in Fig. 1, φ ∼ � × �/v = �

2
/v, where

we introduced � = �L+�R
2 . For illustration, if � is caused

by magnetic field of magnitude 1 T at the sweep rate v ≈
10 μeV/ns, acquired phase is strongly oscillating and its
value can be estimated as φ ∼ 700π . In particular if φ = π

mod (2π ), destructive interference predicts lower bound of

FIG. 2. Transition probability in the noiseless case as a function
of sweep rate for t =5, 10 μeV, t ′ =0.05, 0.1 μeV, and B=1 T. The
oscillations of the probability are too fast to be discerned.

transfer probability

pmin(L+ → R+) = (|am| − |a∩+|)2
. (13)

These effects are illustrated in Fig. 2, in which the transfer
probability for the excited state is seen to oscillate very
rapidly, with amplitude larger than 0.01 for v≈10 μeV/ns.
For value of t ′ =0.1 recently reported for Si MOS quantum
dots [51,52], the lower envelope of these oscillations reaches
0.9 for v≈1 μeV/ns, showing that path-interference effects
can have strong influence on transfer of higher-energy spin
state in such dots.

In presence of fluctuating �, coherence between two paths
can easily be lost, which eventually prevents any interference
from happening. Fully decohered result in this case is given
by a classical sum of probabilities of traversing two paths:

pcl(L+ → R+) = |am|2 + |a∩+|2 . (14)

Such dephasing can occur due to quasistatic fluctuations δL/R

of spin splitting in each dot, resulting in �L/R = �0
L/R + δL/R.

A common cause of such fluctuations is the presence of
nuclear spins [54–56]. If we assume φ ∼ �R�L/v and omit
the term quadratic in noise (as �0 
 δ), the noise correction
yields φ − 〈φ〉 ≈ (�LδR + �RδL )/v. Now, since such fluctu-
ations in each dot can be considered independent, quasistatic,
and Gaussian [57] with variance given by 〈δ2

L〉 = 〈δ2
R〉 = 〈δ2〉

(assuming equal size of the two dots), we can write for average
transfer probability:

〈p(L+ → R+)〉 = |am|2 + |a∩+|2 + 2|am||a∩+|〈cos(φ)〉
= pcl + 2|am||a∩+| cos(〈φ〉) e−〈δ2〉(�2

L+�2
R )/2v. (15)

Above we used Gaussian averaging 〈cos(φ)〉 =
cos(〈φ〉)e− 1

2 〈(φ−〈φ〉)2〉. In Fig. 3, we depict how the envelope
of transfer probability oscillations is shrunk towards the
classical result from Eq. (14) (dashed line) as the rms

√
〈δ2〉

of shifts of �L/R is increased. The calculations are performed
for silicon quantum dots with three different fractions of Si
being the spinful 29Si isotope.
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FIG. 3. Envelope of transfer probability oscillations as a function
of sweep velocity v in a presence of quasistatic fluctuations of �L/R,
for three different concentration of nuclear spins in silicon, with

√
δ2

from [53], t ′ = 0.1 μeV and B=1 T. Dashed line corresponds to
completely decohered result given by Eq. (14).

IV. CHARGE TRANSFER IN PRESENCE
OF DYNAMIC NOISE

We focus now on the effect of fluctuations of detuning
that occur on the timescale of electron transfer on adiabatic
passage through the anticrossing between |Ls〉-|Rs〉 states,
characterized by t coupling. As we could see in Eqs. (8) and
(10), nonzero time derivative of ξ (τ ) couples the two adiabatic
energy levels and allows for finite probability of transition
between them.

A. Model of 1/ f charge noise

A commonly accepted microscopic model of 1/ f β charge
noise in solid state nanostructures assumes that then noise is
caused by multiple fluctuating dipoles, each of them treated
as a two-level fluctuator (TLF): a system randomly switching
with rate γ between two states, each having a different dipole
moment [43,58]. A microscopic nature of these TLFs in
semiconductor devices hosting quantum dot spin qubits is not
settled [59], but it is widely assumed that each such a TLF
is a source of random telegraph noise (RTN), a non-Gaussian
stochastic process characterized by correlation time τc, and a
Lorentzian power spectral density

STLF(ω) = 2σ 2
0 γ

γ 2 + ω2
, (16)

where σ0 is the rms of the noise, and γ =1/τc is the switching
rate of the TLF. Assuming then that the probability of finding
a fluctuator with given γ is given by Nβ/γ β in a wide
range of frequencies, one obtains the 1/ f β power spectrum
of noise caused by an ensemble of TLFs [58]. In this expres-
sion Nβ is a normalization constant, determined by equating∫

dγ Nβ/γ β to the total number of fluctuators, or alternatively
(and more practically, when making contact with experiment),
by adjusting the spectrum of noise to the observed one at a
reference frequency. For the spectrum of noise generated by

an ensemble of TLFs we obtain then

Sβ (ω) =
∫ γmax

γmin

Nβ

γ β

2σ 2
0 γ

γ 2 + ω2
dγ (17)

= 2σ 2
0 Nβ

ωβ

∫ γmax/ω

γmin/ω

dx

xβ−1(1 + x2)
, (18)

≈ g(β )
2σ 2

0 Nβ

ωβ
, (19)

where the dimensionless function g(β ) is given by the integral
over dx in Eq. (18), with lower limit set to 0, and upper limit
set to ∞, which is applicable when the frequencies of interest
fulfill γmin �ω�γmax. It can be written as

g(β ) ≈
∫ π/2

0
tan1−β (α) dα , (20)

from which it is easy to see that in the range of β of interest
here this function takes values of the order of unity, as g(1)=
π/2 and g(3/2) = π/

√
2.

For noise with β =1, the 1/ f character of spectrum typ-
ically extends to very low frequencies, and it is common to
parametrize the noise by giving the value of

√
S(ω1)≡√

S1

at ω1 =2π rad
s corresponding to 1 Hz. We have then σ 2

0 N1 =
S1ω1/π . On the other hand, for 1/ f β form of noise with β >1
holding at rather high frequencies of interest (ω of the order
of t , as we will see in the next section), such a power-law
behavior typically does not extend to very low frequencies.
It is more convenient then to parametrize the noise by giving
the value of

√
S(ωh) at some ωh 
ω1 that is in the range of

frequencies that have the strongest influence on the observable
of interest. We have then 2σ 2

0 Nβ = S(ωh)ωβ

h /g(β ).
The non-Gaussian nature of the RTN (i.e., the fact that

its higher-order correlation functions are not expressed by
products of its autocorrelation functions, or equivalently that
its power spectral density does not uniquely determine the
properties of the noise [60]) becomes however relevant only
when one considers strong coupling of TLFs to a system that
is perturbed by them [44,61,62]. Only then one has to go
beyond the second order perturbation theory in calculation of
influence of noise on the system of interest, and non-Gaussian
features of RTN becomes apparent. While non-Gaussian fea-
tures of 1/ f β charge noise affecting qubits have been a subject
of theoretical attention [43,60,62], their features observable
in qubit coherence experiments are usually rather weak, with
exception of the situations in which a single TLF is very
strongly coupled to the qubit [61,63,64]. When this scenario
is ruled out, it is reasonable to assume that the 1/ f noise
could be treated as Gaussian to a good approximation. In the
following we make this assumption, and by doing so we can
replace RTNs by a Gaussian process, which share exactly the
same power spectral density—an Ornstein-Uhlenbeck process
characterized by rms of σ0 and correlation time τc.

B. Analytical approach to calculation of
noise-induced transitions

Let us consider the contribution of a single fluctuator, mod-
eled as a source of Ornstein-Uhlenbeck noise ξ⊥ characterized
by σ 2

0 and τc =1/γ , to probability of transition to the other
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adiabatic energy level. We start by writing equations of motion
for wave function of the form |ψ (τ )〉 = c+(τ )eiϕ(τ )/2|+〉+
c−(τ )e−iϕ(τ )/2|−〉, where dynamical phase is denoted as
ϕ(τ ) = ∫ τ

−T r0(τ ′)dτ ′ = ∫ τ

−T

√
v2τ ′2 + t2dτ ′. The evolution

is described by the adiabatic Hamiltonian given by Eq. (8).
We consider now the electron initialized in the lowest energy
state (i.e., c−(−∞)=1, c+(−∞)=0), but the calculation for
the electron initialized in the excited state is analogous.

For amplitude of electron being in excited adiabatic state,
equation of motion reads:

ċ+(τ ) = i
ξ‖(τ )c+(τ )

2
+ ϑ̇ (τ ) + ξ⊥(τ )

2
e−i

∫ τ

−∞ r0(τ ′ )dτ ′
c−(τ ) .

(21)
We seek now corrections to the adiabatic evolution, for which
the influence of ϑ̇ (τ ) is by definition negligible. We thus
omit ϑ̇ (τ ) and look for the solution in a perturbative way,
by writing c±(τ ) = c0

±(τ ) + λc1
±(τ ) + λ2c2

±(τ ) + . . ., where
λ counts the powers of noise, i.e., we replace ξ⊥/‖(τ ) by
λξ⊥/‖(τ ). In the zeroth order we have a perfectly adiabatic
solution, for which c(0)

+ (τ ) = 0 and c(0)
− (τ ) = 1, while the first

order correction is given by

c(1)
+ (∞) = 1

2

∫ ∞

−∞
dτ ξ⊥(τ )e−i

∫ τ

−∞ r0(τ ′ )dτ ′
.

From this result we obtain the result for |c(1)
+ (∞)|2 in the

lowest order in ξ⊥, and then we average it over realizations
of noise, with averaging denoted by 〈. . .〉:

〈|c(1)
+ (∞)|2〉 = 1

4

∫ ∞

−∞
dτ1dτ2〈ξ⊥(τ1)ξ⊥(τ2)〉e−i

∫ τ1
τ2

dτ ′ r0(τ ′ )

≈ t2

4

∫ ∞

−∞
dτ1dτ2

〈ξ̇ (τ1)ξ̇ (τ2)〉
[r0(τ1)r0(τ2)]2

e−i
∫ τ1
τ2

dτ ′ r0(τ ′ )
.

(22)

In the second part we kept purely dynamical term proportional
to noise derivative ξ⊥(τ ) ∼ sin ϑ

r ξ̇ (τ ) and neglected possibly
static contributions ∝ ξ (τ ), since slow noise is not expected
to cause any excitation. The correlator of derivatives of noise
is calculated in Appendix A, while the integral in Eq. (22) is
done in Appendix B. The final result (which was also obtained
using a different method in Ref. [42]) reads

|c(1)
+ (∞)|2 ≈ σ 2

0

v
R(tτc) , (23)

where the function

R(tτc) = π

2
tτc

⎛⎝1 − 1√
1 + 1

t2τ 2
c

⎞⎠ (24)

behaves as R(tτc)≈ π
2 tτc for tτc �1, while for tτc 
1 we

have R(tτc)≈ π
4 tτc , and R(tτc) has a maximum for τc =

π
2 0.78/t ≈ 1/t . We see then that fluctuators having their
switching rate γ =1/τc close to the tunneling energy t could
be expected to have the strongest influence on nonzero value
of |c+(∞)|2, but for power-law noise spectral density, the
cumulative contribution of fluctuators with much lower and
higher switching rates is also significant.

We use now the model of 1/ f β noise from Sec. IV A to cal-
culate |c(1)

+ (∞)|2 due to many fluctuators. Assuming that the

influence of each fluctuator is so small that
∑

k |c+(∞)|2k �1,
we can still use the second order perturbation expansion in
coupling to noise, and

〈|c(1)
+ (∞)|2〉β ≈ σ 2

0

v

∫ γmax

γmin

Nβ

γ β
R(t/γ )dγ ,

= t2

2v

∫ ∞

t

Sβ (ω)

ω2
√

1 − t2/ω2
dω, (25)

= σ 2
0 Nβ

v
t1−βg(β )h(β ), (26)

where Sβ (ω) is given by Eq. (19) and h(β ) function is given
by

h(β ) ≡
∫ ∞

1

dx

xβ+1
√

x2 − 1
=

∫ π/2

0
cosβ (α) dα ,

=
√

π

2

�
(

β+1
2

)
�

(
β

2 + 1
) , (27)

which is of the order of unity and decreases monotonically in
the range of interest for β, as h(1)=1 and h(3/2)≈0.87. In
Eq. (26) we see that for β =1 the transition probability (i.e.,
the error of the electron transfer process) is predicted to be
independent of the tunnel coupling t .

Equation (26) is the main analytical result of this paper:
It shows the scaling of the error probability of dot-to-dot
transition probability with the noise power ∝σ 2

0 Nβ , detuning
sweep rate v, and tunnel coupling t . Such a scaling law can be
shown in a more straightforward way. The excitation here is
caused by a transverse noise ξ⊥ ∼ 1/t ξ̇ (τ ), and hence their
rate should be directly related to its noise spectrum at the
energy gap between the ground and the excited state. As
derived in Appendix A, the spectrum of time derivative of
each TLF is given by Sξ̇ (ω) = ω2STLF(ω). Using the model
of 1/ f β noise described in Sec. IV A we arrive at spectrum of
derivative of such noise

Sβ,ξ̇ (ω) =
∫

Nβ

γ β
ω2STLF(ω)dγ ∼ |ω|2−β. (28)

The probability of excitation is significant only near the
anticrossing, which corresponds to a time interval τ ∈
(−t/v, t/v) during which at least |〈L|ϑ (t/v)〉|2 ∼ 0.15 of the
electron is delocalized between two dots. In these range of
detunings, the energy gap can be approximated by its minimal
value, the tunnel coupling t . As a result the excitation rate
reads

� ∝ 1

t2
Sβ,ξ̇ (ω = t ). (29)

From above one can reconstruct the probability of leaving the
electron behind: It is given by a product of the above rate by
time ∼t/v that the state spends close to the anticrossing:

〈|c(1)
+ (∞)|2〉 ∝ �

t

v
= A

σ 2

v
t1−β, (30)

where proportionality factor Aσ 2 related to the noise ampli-
tude is obtained by comparing the above qualitative formula
with Eq. (26).
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For 1/ f noise characterized by power S1 at frequency of
ω1 =2π rad/s (i.e., 1 Hz), we have then

〈|c+(∞)|2〉β=1 = S1ω1

2v
. (31)

Let us notice now that typical order of magnitude of
√

S1 is
1 μeV/Hz1/2 [33,36,65–67], while maximal detuning sweep
velocities allowing for fast and high-probability noiseless
transfer for typical t ≈ 10 μeV in Si QDs are of the order
of 10–100 μeV/ns. Using these natural units for S1 and v we
have

〈|c+(∞)|2〉β=1 ≈ 4.8
S1[μeV2/Hz]

v[μeV/ns]
, (32)

which gives the error of about 5% for S1 =1 μeV/Hz1/2 and
v=100 μeV/ns. The realistic 1/ f charge noise in detuning
is thus expected to be detrimental for high-fidelity electron
transfer.

C. Results

In this section we describe the results of numerical simula-
tions, in which we averaged the solutions of time-dependent
Schrödinger’s equation in the four-dimensional subspace of
interest over N ∼104 realizations of 1/ f β noise. The latter
was constructed from 1000 sources of Ornstein-Uhlenbeck
noise (individual fluctuators), with switching rates distributed
according to distributions discussed in Sec. IV A. These cal-
culations will be compared with analytical formulas obtained
in Sec. IV B.

Recently reported values of
√

S1 for charge noise affecting
Si/SiGe quantum dots falls into range

√
S1 = √

S(1 Hz) ≈
0.2–2 μeV/Hz1/2 [33,36,65–67], with 1/ω behavior of the
power spectral density in frequency range ω∼ t . As we have
estimated in the previous section, such noise is already suffi-
cient to significantly limit the adiabatic transition probability
at low and moderate sweep speed. On the other hand, the
noiseless Landau-Zener process of nonadiabatic transition
becomes relevant at high sweep speed. Consequently, in pres-
ence of charge noise we expect a finite window of sweep rates
at which the transfer probability is larger than a certain value.

This situation in case of β =1 and transfer of an electron
initialized in the lowest energy state, is depicted in Fig. 4,
where numerical simulations (points) are compared with pre-
dictions of Eq. (26) plotted as dashed lines. Solid lines corre-
spond to the result in which we re-exponentiate the short-time
behavior of transfer probability, i.e., we replace a difference
in occupation |c−(∞)|2 − |c+(∞)|2 by exp(−2|c(1)

+ (∞)|2),

and |c+(∞)|2 = 1
2 (1 − e−2|c(1)

+ |2 ) as a consequence. In the
noise dominated regime (left part of the figure), decay of
probability is insensitive to the value of tunnel coupling t ,
which follows from scaling of transfer error with tβ−1 in
Eq. (26). For the highest considered amplitude of noise,
corresponding to

√
S1 = 1μeV/

√
Hz, as v decreases below

∼10 μeV/ns, the probability of successful transfer tends to
1/2, which means that during time the electron spends in the
energy level anticrossing region (i.e., when the electron is
delocalized between the two dots), the influence of classical
(i.e., effectively infinite temperature) noise is strong enough

FIG. 4. Top: probability of successful electron transfer pR =
1 − pL (i.e., electron ending in right dot); bottom: probability of
nonadiabatic excitation, the error pL (i.e., the probability of leaving
the electron in the left dot). Results of simulations for 1/ f noise in
detuning characterized by

√
S(1 Hz)=0.2, 0.5, and 1 μeV/Hz1/2 are

marked by symbols, which are compared with Eq. (26), shown as
dashed line, and a re-exponentiation of this result (see text), shown
as solid lines, which agrees very well with numerical simulations in
the whole range of results. Bottom panel corresponds to the region
marked by a black rectangle on top. The results for tunneling t =5,
15, and 25 μeV converge at low v, when the value of pR <1 is
determined only by noise, and it is independent of t . For larger v, the
transition to Landau-Zener dependence due to deterministic nonadi-
abatic effects described by Eq. (2) occurs at v∝ t2. For considered
noise power the error always exceeds 10−3.

to equalize the occupations of the two adiabatic energy levels.
Higher values of t of course allow for increasing v to larger
values without entering the regime in which the error is
dominated by the Landau-Zener process. For instance, for√

S1 = 0.5 μeV/
√

Hz measured recently in Si/SiGe quantum
dot [36], achievable transfer probability may vary from 90%
to 99% monotonically depending on the tunnel coupling t =
5–25 μeV.

In Fig. 5 we show analogous results for the case of β =1.5,
i.e., noise with relatively larger low-frequency component. In
order to make a meaningful comparison to the β =1 case, we
chose the noise amplitudes in such a way that they agree at
frequency ωh corresponding to tunnel coupling of 15 μeV.
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FIG. 5. Simulated probability of nonadiabatic excitation (i.e.,
leaving the electron behind in the left dot) for 1/ f β noise with
β =1.5, characterized by

√
S(1 Hz)=0.5 μeV/Hz1/2. The simulated

results (symbols) for tunneling t =5, 15, and 25 μeV do not converge
to the same dependence at low v and fit the exponential curve (solid
lines).

We have then the spectral density of noise with β �=1

Sβ (ω) = S1ω1

ωh

(
ωh

ω

)β

,

in which S1 are the previously used parameters characterizing
the power of 1/ f noise. In Fig. 5 we show results for

√
S1 =

0.5 μeV/Hz1/2 and three values of tunnel coupling t . Contrary
to the previously discussed case of β = 1 (shown in Fig. 5 as
black solid lines corresponding to three values of t), now the
probability of transfer diminishes with decreasing t also on
the low-speed side of the plot, according to scaling ∝ t1−β =
t−0.5.

Let us note now that if we focus on the regime of v

lower than the optimal one (the left side of the plot), transfer
probability is increased relatively to β =1 result when we
consider noise with stronger low-frequency component. For
cleanest comparison let us focus on results for both values
of β for t =15 μeV, corresponding to frequency ωh at which
both spectra take on the same value. The ratio of numeri-
cally calculated probabilities is in fact well approximated by
h(1.5)/h(1) ≈ 0.88. This follows from the fact that when we
plug in the parameters of 1/ f β noise considered here into
Eq. (26) we obtain

〈|c+(∞)|2〉β �=1 = 〈|c+(∞)|2〉β=1

(
t

ωh

)1−β

h(β ) , (33)

and h(β ) is a monotonically decreasing function of β.
Finally, let us analyze the effect of dynamic noise on the

transfer of the electron initialized in the excited state. As we
have discussed in Sec. III, the transfer in this case differs
from the previously considered case only when additional an-
ticrossings, characterized by t ′ �=0, are affecting the evolution
of this state. As shown in Fig. 3, for t ′ =0.1 μeV, measured
recently in Si/SiO2 quantum dots [51,52], the probability
of transfer is lowered to ≈ 0.95 at v ≈ 1 μeV/ns when the
oscillations caused by interference of two transfer paths are
dephased. While in Sec. III we have discussed quasistatic

FIG. 6. Probability of successful electron transfer calculated for
electron initialized in higher energy state (spin up) for t ′ =0, 0.1 μeV
and 1/ f noise (with parameters as in Fig. 4). Symbols correspond to
numerical simulation of influence of noise for t ′ =0.1 μeV. Solid
lines are analytical result for t ′ =0, which are the same as results
for the ground state shown in Fig. 4). Dashed line is a product of
Eqs. (14) and 1 − |c−(∞)|2 where |c−(∞)|2 is given by Eq. (26),
i.e., it corresponds to analytical formula accounting approximately
for all the effects of noise in presence of t ′ �=0.

Overhauser field noise as the source of this dephasing, one
should expect an analogous effect to be caused by the slow-
est dynamic fluctuations of detuning that induce even small
random changes in the electron transfer time. In Fig. 6 we
show that this effect is indeed present for 1/ f noise, as the
numerically calculated transfer probabilities do not exhibit
any oscillations for t ′ =0.1 μeV. There are now two effects
of noise on transfer: the previously discussed excitation to
the other adiabatic state by high-frequency noise, and the
dephasing of interference of state propagation along two paths
(due to t ′ �=0) due to lower-frequency noise. The latter effect is
irrelevant at higher v, for which the results for t ′ �=0 and t ′ =0
are indistinguishable (and of course the same as the result for
ground state transfer). Due to this in Fig. 6 we focus on the low

TABLE I. Maximal probability of ground (upper table) and
excited (lower table) state transfer with corresponding optimum of
sweep velocity pmax @ vopt[μeV/ns] for different value of tunneling t
and noise power at 1 Hz for S(ω) ∝ 1/ω. We have used t ′ =0.1 μeV
which is of the order of maximal value observed in SiMOS devices.

Ground state Tunneling t [μeV]
√

S(1 Hz) [ μeV√
Hz

] 5 15 25

0.2 0.978 @ 10.9 0.997 @ 67.2 0.999 @ 174.2
0.5 0.905 @ 14.6 0.983 @ 85.3 0.993 @ 206.6
1.0 0.780 @ 21.9 0.950 @ 106.4 0.978 @ 237.0

Excited state Tunneling t [μeV]
√

S(1Hz) [ μeV√
Hz

] 5 15 25

0.2 0.973 @ 10.3 0.996 @ 67.2 0.999 @ 174.2
0.5 0.904 @ 14.5 0.983 @ 85.3 0.993 @ 196.85
1.0 0.780 @ 20.1 0.950 @ 113.9 0.978 @ 250.0
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v range. The numerical simulations for t ′ =0.1 μeV are shown
as symbols, solid lines are t ′ =0 results, and the dashed lines
represent the product of Eqs. (14) and 1 − |c− + (∞)|2 where
|c− + (∞)|2 is given by Eq. (26). The main result is that for
the considered value of t ′, transfer error at low v is limited
by path interference and its dephasing due to slow noise for
S1�0.1 μeV/Hz1/2.

The minimal probabilities of successful electron transfer
and corresponding optimal velocities for all the sets of param-
eters used in all the figures are gathered in Table I. We see that
in order for error rate to be lower than 1%, the tunneling must
be at least 25 μeV, or

√
S1 should be below 0.5 μeV/Hz1/2.

V. DISCUSSION AND CONCLUSION

We have considered the influence of 1/ f β noise in detuning
on the process of adiabatic electron charge transfer between
two quantum dots. The probability of noise-induced excitation
that leads to the electron being left behind is proportional to
σ 2t1−β/v, where σ 2 characterizes the total noise power, t is
the tunnel coupling, and v is the detuning sweep speed. Our
main result is that for a realistic set of parameters—1/ f noise
with amplitude of ∼1 μeV/Hz1/2 at f =1 Hz, t ≈10 μeV,
v∼ 10–200 μeV/ns corresponding to real space speed of
2–40 m/s assuming interdot distance of 50 nm and maximum
detuning swing of 250 μeV—this probability is at best ∼1 %.
Consequently, scaling up the “electron conveyer belts” to
systems of N ∼100 quantum dots from recently demonstrated
N =9 case [26] will require lowering of the charge noise
amplitude, or using higher tunnel couplings, for which the
transfer can be done more quickly without triggering the
noiseless nonadiabatic Landau-Zener excitation process.

The fact that the charge transfer error probability scales
with t1−β has an additional practical consequence. For a
many-dot chain with inhomogeneous values of t , and for 1/ f
charge noise (β = 1), assuming that the rms amplitudes of
charge noise on each dot are similar, the noise-induced errors
in charge transfer are independent of values of t , so when
considering the upper limit on v that can be tolerated given a
spread of values of t , one only needs to consider the Landau-
Zener formula for probability of nonadiabatic transition in the
noiseless case, i.e., pL =exp(−πt2/2v). The lower limit on v

is on the other hand determined by maximal noise amplitude
encountered along the chain of dots.

We have also analyzed the noiseless situation for the case
of transfer of an electron in an excited state (higher-energy
spin state), for which there are two additional energy level
anticrossings due to t ′ � t tunnel couplings corresponding to
tunneling with a spin flip due allowed by spin orbit interaction.
For relatively fast electron transfer the electron should traverse
these anticrossing nonadiabatically (so that they are in fact
effectively level crossings). However, when t ′ is ≈ 0.01t ,
the sweep rate is bounded from below by finite probability
of adiabatic transition through t ′ anticrossings. Below this
rate, the state can go through two paths, and the interference
of these processes leads to very rapid (as function of v)
oscillations of transfer probability. In presence of quasistatic
noise (due to fluctuations of Overhauser splittings in the two
dots) or the slowest components of 1/ f noise that still lead to
finite fluctuation of detuning during the transfer process, these
oscillations become dephased, but the transfer probability is
lowered compared to t ′ =0 case. This could make the window
of v allowing for high-fidelity electron transfer quite narrow
in SiMOS devices, where such values of t ′ were measured
[51,52], unless one chooses the magnetic field direction and
geometry of the structure that makes t ′ smaller.
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APPENDIX A: CORRELATION FUNCTION OF TIME
DERIVATIVE OF ORNSTEIN-UHLENBECK PROCESS

We calculate time integral involving correlation func-
tion of derivative of Ornstein-Uhlenbeck process fulfill-

ing Langevin equation ξ̇ (τ ) = − 1
τc

ξ (τ ) +
√

2σ 2

τc
w(τ ), where

w(τ ) is derivative of the Wiener process w(τ ) = dWτ /dτ ,
known as the white noise with correlation function
〈w(τ1)w(τ2)〉 = δ(τ1 − τ2). We would be particularly inter-
ested in the integral of a form:

∫ T

−T
dτ1dτ2 f (τ1) f ∗(τ2)〈ξ̇ (τ1)ξ̇ (τ2)〉 =

∫ T

−T
dτ1

∫ T

−T
dτ2

2σ 2

τc
〈w(τ1)w(τ2)〉 f (τ1) f ∗(τ2)

+ 2
∫ T

−T
dτ1

∫ τ1

−T
dτ2

( 〈ξ (τ1)ξ (τ2)〉
τ 2

c

−
√

2σ 2

τ
3/2
c

(〈ξ (τ1)w(τ2)〉 + 〈ξ (τ2)w(τ1)〉︸ ︷︷ ︸
0

)

)
( f1(τ1) f ∗

2 (τ2) + f ∗
1 (τ1) f2(τ2)). (A1)

One can use solution to the Langevin equation ξ (τ ) =
√

2σ 2

τc

∫ τ

−T ds e−γ (τ−s)w(s) to simplify the second term, which can be
written as: ∫ T

−T
dτ1

∫ τ1

−T
dτ2

(
σ 2

τ 2
c

e− τ1−τ2
τc −

√
2σ 2

τ
3/2
c

√
2σ 2

τc

∫ τ1

−T
dse− τ1−s

τc 〈w(s)w(τ2)〉
)

( f (τ1) f ∗(τ2) + f ∗(τ1) f (τ2))

=
∫ T

−T
dτ1

∫ τ1

−T
dτ2

(
σ 2

τ 2
c

e− τ1−τ2
τc −

√
2σ 2

τ
3/2
c

√
2σ 2

τc
e− τ1−τ2

τc

)
( f (τ1) f ∗(τ2) + f ∗(τ1) f (τ2)) (A2)
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Connecting two equations above, one can finally write∫ T

−T

∫ T

−T
dτ1dτ2〈ξ̇ (τ1)ξ̇ (τ2)〉 f (τ1) f ∗(τ2) = 2σ 2

τc

∫ T

−T
dτ1

∫ T

−T
dτ2 f (τ1) f ∗(τ2)

(
δ(τ1 − τ2) − 1

2τc
e−|τ1−τ2|/τc

)
. (A3)

In Appendix B we will use the derived result for f (τ ) = t
r2

0 (τ )
exp {−i

∫ τ

−T r0(τ ′)}.

APPENDIX B: TRANSITION PROBABILITY DUE TO ORNSTEIN-UHLENBECK NOISE

We calculate here the integral in Eq. (22),

〈|c(1)
+ (∞)|2〉 = t2

4

∫ ∞

−∞
dτ1dτ2

〈ξ̇ (τ1)ξ̇ (τ2)〉
[r0(τ1)r0(τ2)]2

exp

{
−i

∫
τ2

τ

1

r0(τ ′)
}

(B1)

for an Ornstein-Uhlenbeck process, for which 〈ξ̇ (τ1)ξ̇ (τ2)〉 = σ 2
0

τc
(2δ(τ1 − τ2) − 1

τc
e−|τ1−τ2|/τc ) as derived in Appendix A. In

Fourier space it can be written in terms of spectrum of the noise derivative,

2δ(τ1 − τ2) − 1
τc

e−|τ1−τ2|/τc = 2
∫ ∞

−∞

dω

2π

(
eiω(τ1−τ2 ) − 1

1 + ω2τ 2
c

eiω(τ1−τ2 )

)
=

∫ ∞

−∞

dω

2π

2ω2τ 2
c

1 + ω2τ 2
c

eiω(τ1−τ2 ), (B2)

and then substituted into (B1),

σ 2
0 t2

4τc

∫ ∞

−∞

dω

2π

2ω2τ 2
c

1 + ω2τ 2
c

(∫ ∞

−∞
dτ1

1

r2
0 (τ1)

exp

{
iωτ1 − i

∫ τ1

0
r0(τ ′)

})(∫ ∞

−∞
dτ2

1

r2
0 (τ2)

exp

{
−iωτ1 + i

∫ τ2

0
r0(τ ′)

})
(B3)

We calculate time integrals using stationary phase method, within which in the leading order we have
∫

g(τ )eih(τ )dτ ≈∑
τ̃ g(τ̃ )ei f (τ̃ )

∫
ei f ′′ (τ̃ ) (x−τ̃ )2

2 dx, where τ̃ denotes stationary time, which fulfills equation f ′ (̃τ ) = 0. Here τ̃ is found from equation

∂τ (ωτ − ∫ τ

0 r0(τ ′)) = 0 ⇒ ω = r0 (̃τ ) and reads τ̃ = ±
√

ω2−t2

v
, while f ′′(±τ̃ ) = ∂2

τ (ωτ − ∫ τ

0 r0(τ ′))|τ=±τ̃ = ∓ v
ω

√
ω2 − t2. As

a result we have:∫ ∞

−∞
dτ1

eiωτ1−iϕ(τ1 )

r2
0 (τ1)

≈ eiωτ̃−iϕ (̃τ ))

r2
0 (̃τ )
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We denoted dynamical phase as ϕ (̃τ ) = ∫ τ̃

−∞ r0(τ ′)dτ ′. Since second integral is the same, as a complex conjugate of the first,
we write

4πσ 2
0 t2

vτc

∫ ∞

t

dω

2π

2ω2τ 2
c

1 + ω2τ 2
c

1

ω4
√
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ω2

cos2

(
ωτ̃ − ϕ (̃τ ) − π

4

)
= σ 2

0 t2
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∫ ∞

t
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2ω2τ 2
c

1 + ω2τ 2
c

1 + sin(2ωτ̃ − 2ϕ (̃τ ))

ω4
√

1 − t2

ω2

. (B5)

Now quickly oscillating term ∝ sin(2ωτ̃ − 2
∫

r0(τ ′)) can be neglected which leads to final result:

〈|c(1)
+ (∞)|2〉 ≈ σ 2

0 t2

2vτc

∫ ∞
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√
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2v

∫ ∞

t

dω

ω2
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v
R(tτc) . (B6)

In the above we have defined function

R(tτc) = (tτc)2
∫ ∞

tτc

dx

x2 + x4

(
1 − t2τ 2
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x2

)− 1
2

= π

2
tτc

⎛⎝1 − 1√
1 + 1

t2τ 2
c

⎞⎠. (B7)
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