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Quadrupolar interactions between acceptor pairs in p-doped semiconductors
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We consider the interaction between acceptor pairs in doped semiconductors in the limit of large interac-
ceptor separation relevant for low doping densities. Modeling individual acceptors via the spherical model of
Baldereschi and Lipari, we calculate matrix elements of the quadrupole tensor between the four degenerate
ground states and show that the acceptor has a nonzero quadrupole moment. As a result, the dominant
contribution to the large-separation acceptor-acceptor interaction comes from direct (charge-density) terms rather
than exchange terms. The quadrupole is the leading nonzero moment, so the electric quadrupole-quadrupole
interaction dominates for large separation. We calculate the matrix elements of the quadrupole-quadrupole
interaction Hamiltonian in a product-state basis and diagonalize, obtaining a closed-form expression for the
energies and degeneracies of the sixteen-state energy spectrum. All dependence on material parameters enters
via an overall prefactor, resulting in surprisingly simple and universal results. This simplicity is due, in part,

to a mathematical happenstance, the nontrivial vanishing of a particular Wigner 6- j symbol, { 2 2 2
3
2

3
2

3
2
} = 0.

Results are relevant to the control of two-qubit interactions in quantum computing implementations based on
acceptor spins, as well as calculations of the thermodynamic properties of insulating p-type semiconductors.

DOI: 10.1103/PhysRevB.101.035202

I. INTRODUCTION

A leading candidate for implementing qubits for quantum
computation is the use of dopant spins in silicon and other
semiconductors [1–21]. In such implementations, controlling
two-qubit interactions requires a detailed understanding of the
dopant-dopant interaction and its dependence on the separa-
tion between dopants. One of the difficulties associated with
donor-based qubits in multivalley semiconductors like Si, Ge,
and AlAs is that the donor-donor interaction has a significant
oscillatory component as a function of interdonor separation.
Since the oscillation occurs on atomic length scales, control
of donor-donor interactions often requires precise placement
of dopant atoms, which can be problematic [7]. Acceptor-
based qubits [14–21] lack such multivalley complications, so
variation in the acceptor-acceptor interaction occurs on the
much longer length scale of the effective Bohr radius (tens
to hundreds of angstroms).

However, while donors are well modeled as effective
hydrogen atoms and donor pairs as effective hydrogen
molecules, acceptors in tetrahedrally-coordinated semicon-
ductors are somewhat more complex, due to a degenerate
valence band maximum and the effects of spin-orbit coupling,
as described by the Luttinger Hamiltonian [22,23]. Acceptor
models that account for these effects were studied a long time
ago [24–27]. One particularly useful formulation is due to
Baldereschi and Lipari [26], who showed that the acceptor
problem based on the Luttinger Hamiltonian can be refor-
mulated so as to split it into two parts. These parts, which
correspond to different behavior in angular momentum space,
consist of a “spherical” term, which can be solved quite
accurately, yielding much better acceptor ground states than
earlier variational estimates, plus a “cubic” correction, which

can be treated perturbatively [27]. In what follows, we refer to
the model based on the first term alone, valid when cubic cor-
rections can be neglected, as the Baldereschi-Lipari spherical
model. Note that this model is “spherical” in the sense that its
Hamiltonian is spherically symmetric, like an atomic system.
However, this does not preclude the eigenfunctions from
having nontrivial spatial angular structure, which they do. In
fact, the fourfold degenerate Baldereschi-Lipari ground-state
acceptor wave functions consist of two terms, an s-wave term,
reminiscent of the ground state of hydrogen, as well as a
d-wave term, which exists due to strong spin-orbit coupling.

In prior work [28], we used the Baldereschi-Lipari single-
acceptor wave functions to develop a Heitler-London model
for the acceptor pair. This numerical calculation provided the
acceptor-pair energy spectrum for input values of material
parameters and interacceptor separation, but due to com-
putational constraints, its results were limited to acceptors
separated by less than a few effective Bohr radii.

In the present work, we perform a complementary cal-
culation of acceptor-pair energy spectra, valid in the large-
separation limit, and yielding closed-form solutions. Doing so
was necessary, as many applications require an understanding
of acceptor-pair interactions over a wide range of interac-
ceptor separations. In particular, this large-separation limit is
directly relevant to quantum computing applications, where
dopant concentrations are typically dilute. It is also relevant
to calculations of the thermodynamic properties of p-type
semiconductors, which involve a system of many randomly-
distributed acceptors, separated from each other by distances
that vary by large factors.

The fact that the Baldereschi-Lipari single-acceptor wave
functions contain both s-wave and d-wave terms means that
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the charge distribution of a ground-state acceptor has a
nonzero quadrupole moment, in contrast to the spherically
symmetric charge distribution of a hydrogenic ground-state
donor. As a result, while the dominant contribution to the
large-separation donor-donor interaction comes from an ex-
change term and therefore decays exponentially with inter-
donor separation, the dominant contribution to the large-
separation acceptor-acceptor interaction comes from a direct
(charge-density) term [29] and therefore decays as a power
law with interacceptor separation. Since the first nonzero mul-
tipole moment of the acceptor is the quadrupole moment, we
calculate, in this paper, the quadrupole-quadrupole interaction
between well-separated acceptors.

We formulate our model in Sec. II, calculate matrix el-
ements of the quadrupole tensor in Sec. III, and use those
matrix elements to calculate the quadrupole-quadrupole en-
ergy spectrum in Sec. IV. Details of our matrix element
calculations are presented in the appendices. Due, in part, to
a mathematical happenstance, the nontrivial vanishing of a
particular Wigner 6- j symbol, our results turn out to be far
simpler than would generically be expected. Aside from the
variational coefficients of the Baldereschi-Lipari wave func-
tions, which are computed numerically, all other calculations
are performed analytically with results presented in closed
form. Conclusions are discussed in Sec. V.

II. MODEL

A. Single acceptor model

We model each acceptor via the spherical model developed
by Baldereschi and Lipari [26], which treats the acceptor-
ion-plus-hole system as a hydrogenic atom modified to ac-
count for valence band degeneracy and spin-orbit coupling.
In tetrahedrally-coordinated semiconductors, the low-energy
band structure consists of a nondegenerate (aside from spin)
conduction band minimum and a degenerate valence band
maximum. Spin-orbit coupling breaks a threefold degeneracy
down to twofold, with a split-off bottom band that can be
safely neglected in the large coupling limit, which we will
assume. (Large coupling is a good approximation for most
semiconductors, though less so for Si.) Including spin, this
leaves a fourfold degeneracy at the top of the valence band,
compared to the twofold spin degeneracy at the bottom of the
conduction band. Baldereschi and Lipari model the fourfold
degenerate holes via an effective spin J = 3/2, with Jz =
{−3/2,−1/2, 1/2, 3/2} labeling the four degenerate states.
Thus, the acceptor problem becomes that of a spin-3/2
particle in the presence of a Coulomb potential and spin-
orbit coupling. Within the effective mass approximation, the
Hamiltonian can be written as [22,23,26]

H =
(

γ1 + 5

2
γ2

)
p2

2m0
− γ2

m0

(
p2

xJ2
x + p2

yJ2
y + p2

z J2
z

) − e2

ε0r

− 2γ3

m0
({px, py}{Jx, Jy} + {py, pz}{Jy, Jz}

+ {pz, px}{Jz, Jx}) (1)

which is known as the Luttinger Hamiltonian [22]. Here
{a, b} ≡ (ab + ba)/2, J is the hole angular momentum op-
erator corresponding to spin-3/2, p is the hole momentum

operator, m0 is the free electron mass, ε0 is the crystal dielec-
tric constant, and γ1, γ2, and γ3 are the Luttinger constants
describing hole dispersion near the top of the valence band.
This expression has the cubic symmetry of the semiconductor
crystal. The innovation of Baldereschi and Lipari [26] was
to rewrite it in such a way that the terms with full spherical
symmetry are separated from those with only cubic symmetry.
Expressing energies in units of the effective Rydberg, Ryd ≡
e4m0/2h̄2ε2

0γ1, and lengths in units of the effective Bohr
radius, aB ≡ h̄2ε0γ1/e2m0, they showed that

H = −∇2 − 2

r
− μ

9h̄2 (P(2) · J (2) ) + δ

9h̄2

(
[P(2) × J (2)](4)

4

+
√

70

5
[P(2) × J (2)](4)

0 + [P(2) × J (2)](4)
−4

)
(2)

where P(2) and J (2) are rank-2 spherical tensor operators for
momentum and effective spin (see Refs. [26,30] for details
regarding the irreducible tensor notation). The third term,
proportional to μ ≡ (6γ3 + 4γ2)/5γ1, is the spherical con-
tribution to the spin-orbit interaction, and the fourth term,
proportional to δ ≡ (γ3 − γ2)/γ1, is the cubic contribution.
In nearly all semiconductors (with the important exception
of Si), δ is much smaller than μ, so the cubic term can be
safely neglected. Doing so yields the Baldereschi-Lipari [26]
spherical Hamiltonian

H = −∇2 − 2

r
− μ

9h̄2 (P(2) · J (2) ) (3)

which depends on material parameters only through its units,
the effective Rydberg and Bohr radius, as well as μ, a dimen-
sionless parameter between 0 and 1 that indicates the strength
of spin-orbit coupling in the material.

Since this Hamiltonian is spherically symmetric by con-
struction, total angular momentum, F = L + J, is conserved,
as in an atomic system, where L is the orbital angular momen-
tum and J is the effective spin angular momentum of the hole.
Since the spin-orbit term couples states of �L = 0,±2, the
most general expression for the acceptor ground-state wave
function is [26]:∣∣�Fz

〉 = f0(r)
∣∣L = 0, J = 3

2 , F = 3
2 , Fz

〉
+ g0(r)

∣∣L = 2, J = 3
2 , F = 3

2 , Fz
〉

(4)

where the |LJFFz〉 kets are eigenfunctions of total angular
momentum and f0(r) and g0(r) are radial functions.

It is important to note that while the Baldereschi-Lipari
Hamiltonian [Eq. (3)] is spherically symmetric, individual
eigenfunctions of the Hamiltonian, and their associated charge
density distributions, are not necessarily spherically symmet-
ric (as is the case for the hydrogen atom, where all eigen-
functions except the s orbitals lack the spherical symmetry of
the hydrogenic Hamiltonian). A key difference between the
hydrogen atom and the Baldereschi-Lipari acceptor, however,
is in the symmetry of their ground states. While the two
degenerate ground states of the hydrogen atom are indeed
spherically symmetric, the four degenerate ground states of
the Baldereschi-Lipari acceptor are not spherically symmet-
ric, due to the L = 2 term in Eq. (4).
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FIG. 1. Baldereschi-Lipari ground-state acceptor radial func-
tions, f0 and g0, as a function of distance r from the acceptor center,
for various values of the spin-orbit coupling parameter μ. With
increasing μ, g0 grows and both f0 and g0 become more localized.
These numerical results reproduce those of Ref. [26], Fig. 4.

Following Baldereschi and Lipari, we use a variational
approach to estimate the radial functions, employing trial
radial functions of the form

f0(r) =
21∑

i=1

Aie
−αir2

g0(r) = r
21∑

i=1

Bie
−αir2

(5)

where the constants αi are chosen in geometric progression
(αi+1 = gαi ) from α1 = 10−2 to α21 = 5 × 105. We numer-
ically compute the ground-state energy, as well as the 42
variational parameters Ai and Bi, as a function of spin-orbit
coupling parameter μ, by minimizing the expectation value of
the Hamiltonian with respect to all 42 parameters. The details
of this procedure are provided in Appendix B of Ref. [28]. The
resulting radial functions are plotted in Fig. 1 and reproduce
the results of Ref. [26]. For μ = 0, f0 is the ground-state radial
wave function of hydrogen and g0 is zero. As μ increases
toward one, g0 grows and both f0 and g0 become more
localized.

The ground-state energy and radial functions are inde-
pendent of the magnetic quantum number Fz. Thus, Eq. (4)
represents four degenerate ground states, labeled by Fz =
{−3/2,−1/2, 1/2, 3/2}. In what follows, we restrict our
Hilbert space to this ground-state manifold and use these four
Baldereschi-Lipari ground-state wave functions as a basis for
evaluating matrix elements at low energies.

B. Acceptor interaction model

To model the interaction between two acceptors, we con-
struct acceptor-pair basis functions from the Baldereschi-
Lipari ground-state acceptor wave functions of Eq. (4). Since
the acceptor-pair basis functions must be antisymmetric upon

exchange of identical holes, they take the form

|Fz1Fz2〉 = 1√
2

(∣∣�A
Fz1

〉∣∣�B
Fz2

〉 − ∣∣�B
Fz1

〉∣∣�A
Fz2

〉)
(6)

where |�Fz1〉 and |�Fz2〉 are the single-acceptor states for
acceptor 1 and acceptor 2, respectively, and the superscripts
indicate which hole (A or B) is in which state. When evalu-
ating matrix elements in this two-term basis, we obtain two
direct (charge-density) terms where each state is occupied by
the same hole in both the bra and the ket, and two exchange
(cross) terms where the states are occupied by different holes
in the bra versus the ket. Since the single-acceptor states
are localized to their acceptor locations on the scale of the
effective Bohr radius, aB, exchange terms decay exponentially
with interacceptor separation, R, and can be neglected in
comparison to direct terms (which decay as a power law) in
the large-separation (R � aB) limit that we consider herein.
Neglecting exchange terms is equivalent to treating the holes
as distinguishable, which they effectively become for R �
aB. Thus, the acceptor-pair basis functions reduce to simple
product states

|Fz1Fz2〉 ≈ ∣∣�Fz1

〉∣∣�Fz2

〉
(7)

where one hole is localized about acceptor 1 and the other is
localized about acceptor 2.

In this product state basis, the Coulomb interaction be-
tween the two acceptors can be expressed in terms of a
multipole expansion [31] of the acceptor charge distribution.
The monopole moment vanishes because acceptors are neutral
(total hole charge cancels the charge of the acceptor ion).
The dipole moment vanishes because electric dipole selection
rules [32] require bra and ket to differ by one in azimuthal
quantum number, �L = ±1, while the Baldereschi-Lipari
ground-state wave functions [Eq. (4)] consist of only L = 0
and L = 2 terms. Since electric quadrupole selection rules al-
low �L = {0,±2}, we expect a nonzero quadrupole moment.
The leading term in the multipole expansion of our interaction
Hamiltonian is therefore the quadrupole-quadrupole term.
Hence, in the large-separation limit, we can model the in-
teraction between two acceptors by their electric quadrupole-
quadrupole interaction.

III. MATRIX ELEMENTS OF THE
QUADRUPOLE TENSOR

A. Quadrupole tensor

The quadrupole tensor,
↔
Q, is a traceless, symmetric, Carte-

sian tensor of rank 2. In Cartesian coordinates, measured from
the center of the acceptor, it takes the form [31]

↔
Q =

⎡
⎢⎣

3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz

3zx 3zy 3z2 − r2

⎤
⎥⎦. (8)

Rewriting the above in spherical coordinates, each compo-
nent can be expressed as a linear combination of spherical
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harmonics [32], Y m
� (θ, φ), with � = 2.

↔
Q =

√
2π

5
r2

⎧⎨
⎩

√
2Y 0

2

⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦

+
√

3Y 1
2

⎡
⎣ 0 0 −1

0 0 i
−1 i 0

⎤
⎦ +

√
3Y −1

2

⎡
⎣0 0 1

0 0 i
1 i 0

⎤
⎦

+
√

3Y 2
2

⎡
⎣ 1 −i 0

−i −1 0
0 0 0

⎤
⎦ +

√
3Y −2

2

⎡
⎣1 i 0

i −1 0
0 0 0

⎤
⎦
⎫⎬
⎭
(9)

Since the Baldereschi-Lipari ground-state acceptor wave
functions [Eq. (4)] are linear combinations of coupled angular
momentum eigenstates, |LJFFz〉, and the components of the
quadrupole tensor are linear combinations of � = 2 spherical
harmonics, Y m

2 , the evaluation of the matrix elements of the
quadrupole tensor between Baldereschi-Lipari wave functions
reduces to the evaluation of the matrix elements of the � = 2
spherical harmonics between such angular momentum eigen-
states.

B. Matrix elements

The matrix elements of r2Y m
2 (θ, φ) between the

Baldereschi-Lipari ground-state acceptor wave functions
[Eq. (4)] take the form〈

�F ′
z

∣∣r2Y m
2

∣∣�Fz

〉 = 〈
0 3

2
3
2 F ′

z

∣∣Y m
2

∣∣0 3
2

3
2 Fz

〉
R f f

+ 〈
2 3

2
3
2 F ′

z

∣∣Y m
2

∣∣0 3
2

3
2 Fz

〉
R f g

+ 〈
0 3

2
3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉
R f g

+ 〈
2 3

2
3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉
Rgg (10)

where |0 3
2

3
2 Fz〉 is shorthand for |L = 0, J = 3

2 , F = 3
2 , Fz〉 and

R f f ≡
∫ ∞

0
r4[ f0(r)]2dr

R f g ≡
∫ ∞

0
r4 f0(r)g0(r)dr (11)

Rgg ≡
∫ ∞

0
r4[g0(r)]2dr.

are radial integrals that depend on material parameters via the
dependence of f0 and g0 on the spin-orbit coupling parameter
μ. For simplicity, we refer to the four coupled-state matrix
elements of � = 2 spherical harmonics that appear in Eq. (10)
as the 0-0, 2-0, 0-2, and 2-2 terms, respectively. We calculate
these in Appendix B by making use of the Wigner-Eckart
theorem (see Appendix A) and show that the 0-0 term is
trivially zero, the 2-2 term is nontrivially zero (more about
this in Sec. III C), and the 2-0 and 0-2 terms are equal and
nonzero. Thus, Eq. (10) simplifies to〈

�F ′
z

∣∣r2Y m
2

∣∣�Fz

〉 = 2
〈
2 3

2
3
2 F ′

z

∣∣Y m
2

∣∣0 3
2

3
2 Fz

〉
R f g. (12)

This result, combined with Eq. (B5), allows us to calculate
the matrix elements of the five terms of the quadrupole tensor
in Eq. (9) between all combinations of the four degenerate

FIG. 2. Matrix elements of the quadruple tensor between
Baldereschi-Lipari ground-state acceptor wave functions,
〈�F ′

z
|↔Q|�Fz 〉, are obtained by multiplying this 4 × 4 matrix of

3 × 3 tensors by a common factor of Q0/2 = − 2
5 Rf g. F ′

z and Fz label
the rows and columns of the matrix respectively.

ground states of the acceptor. Doing so, we obtain a 4 × 4
matrix (row F ′

z versus column Fz) of 3 × 3 quadrupole tensors,
given by an overall factor of − 2

5 R f g multiplying the matrix of
tensors shown in Fig. 2.〈

�F ′
z

∣∣↔Q∣∣�Fz

〉 = − 2
5 R f g × [Fig. 2] (13)

These quadrupole-tensor matrix elements will be used in
Sec. IV to calculate the quadrupole-quadrupole interaction
between Baldereschi-Lipari acceptors.

It is convenient to name the μ-dependent prefactor Q0/2
and thereby define

Q0(μ) ≡ −4

5
R f g = −4

5

∫ ∞

0
r4 f0(r)g0(r)dr

= −4

5

∑
i j

AiB j

(αi + α j )3

= ∣∣〈�Fz

∣∣Qzz

∣∣�Fz

〉∣∣ (14)

where the third equality results from expanding the radial
functions via Eq. (5) and evaluating the Gaussian integrals,
and the fourth equality is obtained by inspection of the
diagonal Qzz components in Fig. 2. Since Q0 is equal to
the absolute value of the expectation value of Qzz in any of
the four acceptor ground states, we hereafter refer to it as
the quadrupole moment of the acceptor. In Fig. 3, we plot
Q0 as a function of μ. Note that the acceptor quadrupole
moment vanishes at both μ = 0 and μ = 1. At μ = 0, it
vanishes trivially because g0 = 0. Without the d-wave (L = 2)
term in Eq. (4), the Baldereschi-Lipari wave function is pure
s-wave and therefore lacks a quadrupole moment. As μ → 1,
f0 and g0 become sharply peaked about r = 0 (see Fig. 1),
so the r4 factor in the integrand drives the integral to zero.
Essentially, the quadrupole moment vanishes as the angular
structure of the wave function is squeezed to the origin. Thus,
the quadrupole moment of Baldereschi-Lipari acceptors is
maximized when μ is large enough that the wave function has
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FIG. 3. Acceptor quadrupole moment, Q0 = − 4
5 Rf g =

|〈�Fz |Qzz|�Fz 〉|, as a function of spin-orbit coupling parameter
μ. Note that Q0 is maximized for intermediate μ, vanishing as
μ → 0, since the wave function becomes pure s wave, and as
μ → 1, since the wave function becomes localized to the origin.

a significant d-wave component but μ is not so large that the
wave function becomes too localized.

C. Vanishing 2-2 term

As shown above (and in Appendix B), the matrix elements
of the quadrupole tensor between Baldereschi-Lipari acceptor
ground states have a particularly simple form. Note that all
dependence on material parameters (the Luttinger constants
and the spin-orbit parameter μ derived therefrom) enter only
via our units of length and energy (the effective Bohr radius
and effective Rydberg) and an overall multiplicative factor,
R f g. This simplicity is due, in part, to the vanishing of the
〈0 3

2
3
2 F ′

z |Y m
2 |0 3

2
3
2 Fz〉 and 〈2 3

2
3
2 F ′

z |Y m
2 |2 3

2
3
2 Fz〉 terms in Eq. (10),

which multiply R f f and Rgg, respectively. If these 0-0 and 2-2
terms did not vanish, then material parameters would enter via
R f f and Rgg, in addition to R f g.

There are a number of trivial ways that such Y m
� matrix

elements between |LJFFz〉 coupled states can vanish: (1) vi-
olation of the orbital-state triangle rule |� − L| < L′ < � + L,
(2) orbital-state parity violation, which occurs when � + L +
L′ is odd, and (3) violation of the coupled-state triangle rule
|� − F | < F ′ < � + F . In atomic physics, these define the
selection rules that govern transitions between atomic states.
Viewed through the lens of the Wigner-Eckart theorem (see
Appendix A), it is clear that all three of these cases result
from the vanishing of Clebsch-Gordan coefficients, the ones
in Eq. (A2), Eq. (A3), and Eq. (A4), respectively.

The vanishing of our 0-0 term is, in this sense, trivial, due
to a trivial zero of type (1), as per the classification in the prior
paragraph. However, the vanishing of our 2-2 term is not due
to any of the trivial zero types enumerated above. It is not due
to the vanishing of a Clebsch-Gordan coefficient at all. Rather,
in this case, it is the coupled-state reduced matrix element
from Eq. (A4) that is itself zero. As shown in Eqs. (B8)
through (B12), it vanishes because up to three nonzero terms,

each the product of three Clebsch-Gordan coefficients, happen
to sum to zero.

To better understand this happenstance, it is helpful to
notice that the sum of triple-products of Clebsch-Gordan
coefficients that appears in Eq. (B8) has precisely the form in-
dicated in Eq. (6.2.7) of Ref. [30] and is therefore proportional
to the product of a single Clebsch-Gordan coefficient and a 6- j
symbol (Racah coefficient). Edmonds [30] shows this to be
true by making use of the definition of the 6- j symbol and the
orthogonality properties of the Clebsch-Gordan coefficients.
For the case at hand, we see that Eq. (B8) becomes〈

2 3
2

3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉
= −2

√
5C2

22

〈
mFz

∣∣ 3
2 F ′

z

〉
2

3
2

{
2 2 2
3
2

3
2

3
2

}
(15)

where notational details are defined in Appendix A and the
last factor is a 6- j symbol. That such matrix elements are
proportional to a single 6- j symbol turns out to be a general
property of the matrix elements of spherical tensor opera-
tors between coupled angular momentum states where the
spherical tensor commutes with one of the coupled angular
momentum operators (here, the spin one) but not the other
(here, the orbital one). This is shown by Biedenharn and
Louck (see Eq. (3.246) of Ref. [33]).

The happenstance that results in the vanishing of our 2-2
term is that the particular 6- j symbol that appears in Eq. (15)
is equal to zero. {

2 2 2
3
2

3
2

3
2

}
= 0 (16)

The 6- j symbols and the zeros thereof have been studied
extensively in the mathematical physics literature [34–46].
Their values are provided by the following general expression
[33,35,45]:{

j1 j2 j3
�1 �2 �3

}
= N

βmin∑
P=αmax

(−1)P(P + 1)!∏4
i=1(P − αi )!

∏3
k=1(βk − P)!

(17)

where αmax is the largest of the four αi, βmin is the smallest of
the three βi,

α1 = j1 + j2 + j3 β1 = j1 + �1 + j2 + �2

α2 = �1 + �2 + j3 β2 = j1 + �1 + j3 + �3
(18)

α3 = j1 + �2 + �3 β3 = j2 + �2 + j3 + �3

α4 = �1 + j2 + �3

and

N = �( j1 j2 j3)�(�1�2 j3)�( j1�2�3)�(�1 j2�3) (19)

�(pqr) =
√

(p + q − r)!(p − q + r)!(−p + q + r)!

(p + q + r + 1)!
(20)

where �(pqr) is zero if p, q, and r fail to satisfy the triangle
rule.

The literature distinguishes between trivial and nontrivial
zeros of the 6- j symbol. Trivial zeros are zero because N
is zero, which occurs whenever one or more of the triples
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{( j1 j2 j3), (�1�2 j3), ( j1�2�3), (�1 j2�3)} fails to satisfy the tri-
angle rule. In other words, trivial zeros correspond to matrix
elements that vanish as prescribed by known selection rules.
Nontrivial zeros are zero despite N being nonzero, because the
terms in the summation sum to zero. This is possible because
the terms in the summation have alternating sign. Nontrivial
zeros are classified by the number of terms in the summation,
with the weight defined as the number of terms minus one.

The 6- j symbol zero that is relevant to the case at hand,

{ 2 2 2
3
2

3
2

3
2
} = 0, is a nontrivial zero, since N is nonzero, and

is of weight 1, since αmax = 6 and βmin = 7. It turns out to
be the canonical nontrivial zero, because it is the simplest
one. (They are enumerated in the literature and ours appears
first in such lists [34] as it involves the smallest input param-
eters.) Plugging in j1 = j2 = j3 = 2 and �1 = �2 = �3 = 3

2 ,
Eqs. (17) through (20) yield{

2 2 2
3
2

3
2

3
2

}
= 25

√
14(6!)2

[
7! − 8!

(2!)3

]
= 0. (21)

Thus, the happenstance responsible for the vanishing of the
2-2 term boils down to the fact that 23 = 8.

IV. QUADRUPOLE-QUADRUPOLE ENERGY SPECTRUM

A. Quadrupole-quadrupole interaction

As noted in Sec. II B, the large-R acceptor-acceptor in-
teraction reduces to the electrostatic interaction between
two quadrupoles separated in space by vector R. Placing
quadrupole 1 at the origin, it is straightforward to show [31]
that its electrostatic potential at position R = x1x̂ + x2ŷ +
x3ẑ = RR̂ is, in Gaussian units,

V1(R) = e

2ε0R5

∑
kl

Q1
kl xkxl (22)

where Q1
kl are the components of the quadrupole tensor of

quadrupole 1 and indices k and l run from 1 to 3. It is also
straightforward to show [31] that the potential energy cost
of placing quadrupole 2 at position R in the presence of an
arbitrary electrostatic potential V (R) is

U2(R) = e

6

∑
i j

Q2
i j

∂2V

∂xi∂x j
(23)

where Q2
i j are the components of the quadrupole tensor of

quadrupole 2 and indices i and j run from 1 to 3. Plugging V1

in for V yields (in agreement with Ref. [47]) the interaction
energy of two quadrupoles separated by vector R:

U12(R) = e2

6ε0R5

[∑
i j

Q1
i jQ

2
i j − 10

∑
i jk

niQ
1
i jQ

2
jknk

+ 35

2

∑
i j

niQ
1
i jn j

∑
kl

nkQ2
kl nl

]
(24)

where ni ≡ xi/R and we have made use of the fact that the
quadrupole tensors are symmetric and traceless. Converting
to the units we have used throughout the rest of this paper
(energies in effective Rydbergs, lengths in effective Bohr

radii), rewriting in matrix form, and noting that the above is
precisely our interaction Hamiltonian, we obtain

Hint = 1

3R5
[
↔
Q1 :

↔
Q2 − 10R̂T↔

Q1↔
Q2R̂

+ 35

2
(R̂T↔

Q1R̂)(R̂T↔
Q2R̂)] (25)

where R̂ is the unit (column) vector pointing from quadrupole
1 to quadrupole 2, R̂T is its transpose, and

↔
Q1 :

↔
Q2 ≡∑

i j Q1
i jQ

2
i j is the Frobenius product of the two quadrupole

tensors.

B. Matrix elements of the interaction Hamiltonian

Evaluating the interaction Hamiltonian, Hint, in our basis of
sixteen product states, |Fz1Fz2〉 = |�Fz1〉|�Fz2〉, yields a 16 ×
16 Hamiltonian matrix. Since all terms in Hint are proportional
to the product of a component of

↔
Q1 times a component of

↔
Q2,

and since each quadrupole tensor acts only on its own single-
acceptor states (in the large-separation limit), evaluation of
matrix elements in the product-state basis is straightforward.
Matrix element 〈F ′

z1F ′
z2|Hint|Fz1Fz2〉 is obtained by substituting

〈�F ′
z1
|↔Q1|�Fz1〉 and 〈�F ′

z2
|↔Q2|�Fz2〉 for

↔
Q1 and

↔
Q2 in Eq. (25).

The spherical symmetry of the Baldereschi-Lipari single-
acceptor Hamiltonian [Eq. (3)] means that we are free to
define the quantization axis (z axis) along any direction in
coordinate space. The simplest choice is to define it along
the line joining the two acceptors. Doing so sets R̂ = ẑ in
Eq. (25), makes explicit the cylindrical symmetry of the
acceptor-pair problem, and therefore requires the conservation
of F tot

z ≡ Fz1 + Fz2. Thus, with this choice, product states of
different F tot

z cannot couple to each other, which sets all but
44 of the 256 matrix elements of Hint to zero. Judicious or-
dering of the product-state basis yields a Hamiltonian matrix
with the block diagonal form shown in Fig. 4. Additional
symmetries (swapping up for down, swapping acceptor 1 for
acceptor 2, and the hermiticity of the Hamiltonian) reduce the
remaining 44 matrix elements to 13 unique ones that need to
be calculated. We calculate them by plugging the appropriate
quadrupole tensors from Fig. 2 into Eq. (25) and thereby
obtain the Hamiltonian matrix, which is given by an overall
factor of Q2

0/R5 times the matrix in Fig. 4. Thus,

〈F ′
z1F ′

z2|Hint|Fz1Fz2〉 = Q2
0

R5
× [Fig. 4] (26)

where Q0 is the μ-dependent quadrupole moment defined in
Eq. (14) that is equal to the absolute value of the expectation
value of Qzz in any of the four single-acceptor ground
states. Due to the simple form of the matrix elements of the
quadrupole tensor (see Sec. III), all dependence on spin-orbit
parameter (via Q0(μ)) and interacceptor separation R resides
in the prefactor above, which simply multiplies a matrix of
numbers.

C. Energy spectrum

The seven blocks of the Hamiltonian matrix in Fig. 4
are each labeled by a different value of F tot

z : 3, 2, 1, 0,
−1, −2, and −3, from top left to bottom right. Due to the
up-down symmetry of the acceptor pair, blocks labeled by
F tot

z and −F tot
z are equivalent. Thus, we can solve for the
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FIG. 4. Matrix elements of the quadrupole-quadrupole
interaction Hamiltonian between acceptor-pair product states,
〈F ′

z1F ′
z2|Hint|Fz1Fz2〉, are obtained by multiplying this 16 × 16 matrix

by a common factor of Q2
0/R5. All empty boxes contain zeros.

Defining ẑ along R̂ and arranging the product state basis in order of
decreasing F tot

z yields the block diagonal structure, with each block
labeled by a distinct value of F tot

z : 3, 2, 1, 0, −1, −2, −3, from top
left to bottom right.

sixteen energy eigenvalues by diagonalizing the 1 × 1, 2 × 2,
3 × 3, and 4 × 4 submatrices corresponding to F tot

z = ±3, ±2,
±1, and 0, noting that energies obtained from the first three
submatrices are doubly degenerate. Doing so, we obtain the
following eight-level energy spectrum

Eint = Q2
0

R5
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 {0} (1)
6 {0} (1)
3 {−3,−1, 1, 3} (4)
1 {−2, 2} (2)
0 {0} (1)

−2 {−1, 0, 1} (3)
−4 {−1, 1} (2)
−7 {−2, 2} (2)

(27)

where F tot
z labels are provided within curly brackets and

energy level degeneracies are listed in parentheses. Note that
while symmetry limits the number of distinct energy levels to
ten, two additional, accidental degeneracies (the equivalence
of a 0-level and a ±1-level at E = −2Q2

0/R5 and the equiv-
alence of a ±1-level and a ±3-level at E = 3Q2

0/R5) have
reduced the number of distinct energy levels from ten down
to eight.

This is clearly a far richer energy spectrum than the singlet-
triplet spectrum of the hydrogen molecule, with eight levels
instead of two. And the ground state is twofold degener-
ate, with F tot

z = ±2, in contrast to the nondegenerate singlet
ground state of the hydrogen molecule. That said, the structure
of this energy spectrum is surprisingly universal, with only
the prefactor depending on the spin-orbit parameter μ or
interacceptor separation R. We plot the energy spectrum as
a function of μ in Fig. 5 and as a function of R in Fig. 6. Since
all μ and R dependence enters through the prefactor, there
is no level crossing as a function of these parameters. Due
to the spherical symmetry of the Baldereschi-Lipari single

µ
0 0.2 0.4 0.6 0.8 1

E
in

t R
5  [R

yd
 a

B5
]

-3

-2

-1

0

1

2

3

4

(2)

(2)

(3)

(1)
(2)

(4)

(1)

(1) F
z
tot = ±3

F
z
tot = ±2

F
z
tot = ±1

F
z
tot = 0

FIG. 5. Quadrupole-quadrupole interaction energy spectrum as a
function of spin-orbit coupling parameter μ. We have plotted EintR5

in order to remove the 1/R5 dependence on interacceptor separation
R. Line colors denote different F tot

z quantum number labels. Two-
color dashed lines are labeled by both colors. Level degeneracy
is indicated in parentheses. All μ dependence derives from a Q2

0

prefactor, so there is no level crossing as a function of μ.

acceptor Hamiltonian, this spectrum is also independent of
R̂, the direction from one acceptor to the other. If one sets
R̂ 
= ẑ in Eq. (25), the Hamiltonian matrix is different and
more complicated, but its eigenvalues are the same.

We can therefore characterize the quadrupole-quadrupole
interaction by a single interaction parameter

J (R, μ) ≡ Q0(μ)2

R5
(28)

R [a
B
]

5 6 7 8 9 10

E
in

t [R
yd

]

×10-4

-1.5

-1

-0.5

0

0.5

1

1.5

2
F

z
tot = ±3

F
z
tot = ±2

F
z
tot = ±1

F
z
tot = 0

µ = 0.77

FIG. 6. Quadrupole-quadrupole interaction energy spectrum as a
function of interacceptor separation R, for μ = 0.77, which is the
spin-orbit coupling parameter for GaAs. Line colors denote different
F tot

z quantum number labels. Two-color dashed lines are labeled by
both colors. All R dependence derives from a 1/R5 prefactor, so there
is no level crossing as a function of R.
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with the seven excited-state energy levels separated from the
ground state by 3J , 5J , 7J , 8J , 10J , 13J , and 15J , respectively.
Since Q0 is a function of μ, J is in units of effective Rydbergs,
and R is in units of effective Bohr radii, the interaction
strength, measured via the splitting between the ground state
and the first excited state, 3J , is material dependent. In Ge, for
example, a splitting of 1 μeV is obtained for R = 42 nm. The
same 1 μeV splitting is obtained in GaAs for R = 24 nm, in Si
for R=20 nm, in InP for R = 19 nm, and in ZnTe for R = 12
nm (based on parameter values from Table I of Ref. [26]).
(Note that our assumptions of large spin-orbit coupling and
small cubic corrections are less valid for Si than the other
materials.) The dependence of the splitting on interacceptor
separation, in each material, then follows from the 1/R5 factor
in Eq. (28).

V. CONCLUSIONS

We have developed a quadrupole-quadrupole model to
describe the interaction between well-separated acceptors
in doped semiconductors. We modeled individual acceptors
via the four-fold degenerate ground-state wave functions
of the Baldereschi-Lipari spherical model [26]. Since such
acceptors lack monopole or dipole moments but have
nonzero quadrupole moments, the dominant interaction,
for large interacceptor separation R, is the electric
quadrupole-quadrupole interaction. We calculated the matrix
elements of the quadrupole tensor as a function of spin-orbit
coupling parameter μ. Results were far simpler than expected,
with all μ dependence entering via a single prefactor,
Q0(μ), that multiplies all tensor components for all matrix
elements. The form of this prefactor is further simplified by
a mathematical happenstance, the nontrivial vanishing of a

particular Wigner 6- j symbol, { 2 2 2
3
2

3
2

3
2
} = 0. Deriving

the quadrupole-quadrupole interaction Hamiltonian as a
function of the two quadrupole tensors, we calculated its
matrix elements between acceptor-pair product states and
diagonalized to find the sixteen-state energy spectrum, with
eigenstates labeled by F tot

z quantum numbers. Due to the
simplicity of the quadrupole-tensor matrix elements, we were
able to calculate this acceptor-pair energy spectrum in closed
form. It is an eight-level spectrum [see Eq. (27)] controlled
by a single interaction parameter, J (R, μ) = Q0(μ)2/R5,
where the seven excited-state energy levels are separated
from the ground state by 3J , 5J , 7J , 8J , 10J , 13J , and 15J ,
respectively. From low energy to high, the degeneracy of these
eight levels is 2, 2, 3, 1, 2, 4, 1, and 1. In contrast to the singlet
ground state of the hydrogen molecule, the ground state here
is twofold degenerate, corresponding to F tot

z = ±2. Since all
R and μ dependence enters via J , there are no level crossings
as a function of either parameter. The acceptor-acceptor
interaction is strongest for intermediate spin-orbit coupling,
vanishing in both the μ → 0 and μ → 1 limits where the
acceptor quadrupole moment vanishes. It decays as a 1/R5

power law with increasing interacceptor separation and,
within the spherical acceptor model, it is independent of the
direction, R̂, from one acceptor to the other.

In the future, we plan to improve upon these results by
including cubic corrections to the Baldereschi-Lipari spher-
ical acceptor model [due to the previously neglected δ terms

in Eq. (2)]. Though such corrections are typically small, they
are larger than typical in silicon and therefore of interest. The
effect of small cubic corrections on the single-acceptor eigen-
states was studied perturbatively, by Baldereschi and Lipari, in
Ref. [27]. While some single-acceptor excited-state degenera-
cies are split by cubic corrections, the single-acceptor ground
states (on which we have based the present calculation) re-
main fourfold degenerate, shifting together in energy. The
single-acceptor ground-state wave functions, however, can be-
come more complex in the presence of cubic corrections, with
angular momentum states of all even L contributing, not just
the L = 0 and L = 2 states of Eq. (4). These additional terms
have the potential to modify the acceptor quadrupole moment
and to alter the acceptor-pair energy spectrum by shifting
energy levels and lifting the accidental degeneracies discussed
in Sec. IV C. And we expect their inclusion to introduce some
anisotropy to the acceptor-acceptor interaction, making the
interaction dependent on the direction, R̂, from one acceptor
to the other. It will therefore be instructive to study such
effects, both perturbatively in δ/μ, as should be sufficient for
most semiconductors since δ/μ � 1, and nonperturbatively if
possible, as may be necessary for Si where δ/μ ≈ 1/2.

We also intend to apply our results to the develop-
ment of a strong disorder renormalization group [48–51]
(SDRG) scheme for studying the thermodynamic properties
of acceptor-doped semiconductors [52]. The Bhatt-Lee SDRG
technique [49,50], developed to study donor-doped semicon-
ductors, assumes a two-level interaction spectrum where the
singlet-triplet splitting decays exponentially with interdonor
separation. We plan to generalize their technique to the eight-
level spectrum derived herein, with J decaying as a 1/R5

power law, in order to apply it to acceptor-doped semicon-
ductors.

We are hopeful that the surprisingly simple, closed-form
results derived herein will serve as a guide for experimenters
who are working to control two-qubit interactions in quantum
computing implementations based on acceptor spins. The
large interacceptor separation limit that we have considered
should be directly relevant to the dilute dopant concentrations
typical in such experiments.
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APPENDIX A: WIGNER-ECKART THEOREM

The Wigner-Eckart theorem [30,33,53–56] states that for
any spherical tensor operator T q

k of rank k

〈α′ j′m′|T q
k |α jm〉 = 〈mq| j′m′〉 jk〈α′ j′||Tk||α j〉 (A1)

where |α jm〉 is an angular momentum eigenstate of azimuthal
quantum number j, magnetic quantum number m, and addi-

035202-8



QUADRUPOLAR INTERACTIONS BETWEEN ACCEPTOR … PHYSICAL REVIEW B 101, 035202 (2020)

tional quantum numbers collectively labeled α, 〈mq| j′m′〉 jk

is the Clebsch-Gordan coefficient from the j × k Clebsch-
Gordan table connecting the | jm〉|kq〉 uncoupled state to
the | j′m′〉 coupled state, and 〈α′ j′||Tk||α j〉 is known as the
reduced matrix element, which is notably independent of m,
m′, and q. Since the five � = 2 spherical harmonics define
a rank-2 spherical tensor, this applies directly to the case at
hand.

For purely orbital angular momentum states, |α jm〉 =
|LLz〉 = Y Lz

L (θ, φ), the matrix elements of spherical harmon-
ics are the solid-angle integrals of the product of three spheri-
cal harmonics

〈L′L′
z|Y m

� |LLz〉 =
∫

Y
L′

z

L′
∗
Y m

� Y Lz
L d�

= 〈mLz|L′L′
z〉�L〈L′||Y�||L〉 (A2)

where the second equality is due to the Wigner-Eckart the-
orem. Since such integrals have known solutions [56], the
values of the reduced matrix elements in this special (purely
orbital) case are known to be

〈L′||Y�||L〉 =
√

(2� + 1)(2L + 1)

4π (2L′ + 1)
〈00|L′0〉�L ≡ CL′

�L (A3)

where CL′
�L is a shorthand notation that we will use herein and

we note that CL′
�L = 0 if � + L + L′ is an odd integer.

For coupled (not purely orbital) angular momentum states,
the Wigner-Eckart theorem still holds, though reduced matrix
elements are not simply given by Eq. (A3). For the |LJFFz〉
states that appear in the Baldereschi-Lipari wave functions, F
is the azimuthal quantum number, Fz is the magnetic quantum
number, and L and J are the additional quantum numbers
represented by α in Eq. (A1). Thus, for these coupled states,
the Wigner-Eckart theorem tells us that

〈L′JFF ′
z |Y m

� |LJFFz〉 = 〈mFz|FF ′
z 〉�F 〈L′JF ||Y�||LJF 〉 (A4)

where 〈L′JF ||Y�||LJF 〉 is the reduced matrix element which,
very importantly, does not depend on Fz, F ′

z , or m. In the ma-
trix element calculations of Appendix B, we take advantage of
both of the above applications of the Wigner-Eckart theorem.

APPENDIX B: MATRIX ELEMENT CALCULATION

In this Appendix, we calculate the four coupled-state ma-
trix elements of � = 2 spherical harmonics that appear in
Eq. (10), referred to as the 0-0, 2-0, 0-2, and 2-2 terms.
Using Clebsch-Gordan coefficients, we expand the coupled
eigenstates |LJFFz〉 in the uncoupled basis of product states
|LLz〉|JJz〉 ∣∣0 3

2
3
2 Fz

〉 ≡ |0 0〉L

∣∣ 3
2 Fz

〉
J (B1)

∣∣2 3
2

3
2 Fz

〉 ≡
2∑

Lz=−2

〈
Lz Fz-Lz

∣∣ 3
2 Fz

〉
2

3
2

× |2 Lz〉L

∣∣ 3
2 Fz-Lz

〉
J (B2)

where the subscripts L and J clarify orbital angular mo-
mentum kets versus spin angular momentum kets and
〈Lz Fz-Lz| 3

2 Fz〉2
3
2

is the Clebsch-Gordan coefficient found in

the 2 × 3
2 Clebsch-Gordan table that links the uncoupled state

|2 Lz〉| 3
2 Fz-Lz〉 to the coupled state | 3

2 Fz〉.
The 0-0 term is easily shown to be zero.〈

0 3
2

3
2 F ′

z

∣∣Y m
2

∣∣0 3
2

3
2 Fz

〉 = 〈0 0|Y m
2 |0 0〉L

〈
3
2 F ′

z

∣∣ 3
2 Fz

〉
J

= C0
20 〈m 0|0 0〉20 δF ′

z ,Fz

= 0 (B3)

Here, the second equality is due to the Wigner-Eckart theo-
rem, via Eq. (A2), as well as the orthonormality of the spin
eigenstates. The result is zero because the Clebsch-Gordan
coefficient is zero, since the triple (2,0,0) violates the triangle
rule (one cannot add spin-2 to spin-0 and get spin-0).

Expanding the 2-0 term, we find that

〈
2 3

2
3
2 F ′

z

∣∣Y m
2

∣∣0 3
2

3
2 Fz

〉

=
2∑

L′
z=−2

〈
L′

z F ′
z -L′

z

∣∣ 3
2 F ′

z

〉
2

3
2
〈2 L′

z|Y m
2 |0 0〉L

× 〈
3
2 F ′

z -L′
z

∣∣ 3
2 Fz

〉
J

=
2∑

L′
z=−2

〈
L′

z F ′
z -L′

z

∣∣ 3
2 F ′

z

〉
2

3
2

[
C2

20〈m 0|2 L′
z〉20

]
δL′

z,F
′

z -Fz

= C2
20

〈
F ′

z -Fz Fz

∣∣ 3
2 F ′

z

〉
2

3
2
〈m 0|2 F ′

z -Fz〉20

= 1√
4π

〈
m Fz

∣∣ 3
2 F ′

z

〉
2

3
2

(B4)

where, once again, the second equality makes use of the
Wigner-Eckart theorem [Eq. (A2)] and the orthonormality
of the spin eigenstates. The fourth equality follows from
using Eq. (A3) to compute C2

20 = 1/
√

4π and from noting
that 〈m 0|2 F ′

z -Fz〉20 = δm,F ′
z −Fz and 〈m Fz| 3

2 F ′
z 〉2

3
2

∝ δm,F ′
z −Fz .

The matrix element is therefore only nonzero if F ′
z = Fz + m.

Plugging in the Clebsch-Gordan coefficients from the 2 × 3
2

table [57] yields matrix element values for all m, Fz, and
F ′

z . For each m, resulting values of 〈2 3
2

3
2 F ′

z |Y m
2 |0 3

2
3
2 Fz〉 are

given in row F ′
z = {−3/2,−1/2, 1/2, 3/2} and column Fz =

{−3/2,−1/2, 1/2, 3/2} of the following 4 × 4 matrices:

m = −2 → 1
5

√
5

2π

⎡
⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎦

m = −1 → 1
5

√
5

2π

⎡
⎢⎣

0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦

m = 0 → 1
5

√
5

2π

⎡
⎢⎢⎢⎣

1√
2

0 0 0

0 −1√
2

0 0

0 0 −1√
2

0

0 0 0 1√
2

⎤
⎥⎥⎥⎦
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m = 1 → 1
5

√
5

2π

⎡
⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎤
⎥⎦

m = 2 → 1
5

√
5

2π

⎡
⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎦ (B5)

Expanding the 0-2 term, we see that〈
0 3

2
3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉
=

2∑
Lz=−2

〈
Lz Fz-Lz
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[
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z

〉
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3
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where the final equality is obtained by taking advantage
of the symmetries of the Clebsch-Gordan coefficients
(see Eqs. (3.5.14) to (3.5.16) of Ref. [30]) to note that
C0

22 = √
5C2

20, 〈m -m|0 0〉22 = (−1)m√
5

〈m 0|2 m〉20, and

〈-m F ′
z | 3

2 Fz〉2
3
2

= (−1)−m〈m Fz| 3
2 F ′

z 〉2
3
2

. Comparing with

Eq. (B4), we see that the 0-2 term and the 2-0 term are equal:〈
0 3

2
3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉 = 〈
2 3

2
3
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z

∣∣Y m
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∣∣0 3
2

3
2 Fz

〉
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Expanding the 2-2 term yields〈
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where, first, we expressed the coupled |2 3
2

3
2 Fz〉 states in

the uncoupled product state basis via Eq. (B2). Next, we

used the Wigner-Eckart theorem, via Eq. (A2), to write
the orbital matrix element 〈2L′

z|Y m
2 |2Lz〉L as the product of

the reduced matrix element C2
22 = −

√
5

14π
and the Clebsch-

Gordan coefficient 〈mLz|2L′
z〉22. Finally, we used the spin-

state-orthonormality Kronecker delta to eliminate one of the
sums, and we made use of the fact that the first Clebsch-
Gordan coefficient vanishes unless F ′

z = Fz + m. What re-
mains is the sum of products of three Clebsch-Gordan coeffi-
cients. It is straightforward to calculate these matrix elements
for any m, Fz, and F ′

z by looking up the coefficients in the
2 × 3

2 and 2 × 2 tables and plugging in to the above. But it
turns out that, thanks to the Wigner-Eckart theorem, we need
only calculate one of them. Consider the F ′

z = Fz = 1
2 case.

We know from the start that this can only be nonzero for
m = 1

2 − 1
2 = 0. Plugging in from the Clebsch-Gordan tables

[57], we find that this particular matrix element is zero.〈
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]
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= 0 (B9)

Recall from Appendix A that the Wigner-Eckart theorem can
also be applied directly to matrix elements between coupled
angular momentum states. Thus, via Eq. (A4), we can write〈

2 3
2

3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉 = 〈
mFz

∣∣ 3
2 F ′

z

〉
2

3
2

〈
2 3

2
3
2

∣∣∣∣Y2

∣∣∣∣2 3
2

3
2

〉
. (B10)

Since the last factor above, the reduced matrix element, is
independent of m, Fz, and F ′

z , it is the same for all cases and
can be calculated from any case for which the Clebsch-Gordan
coefficient is nonzero. For the case we considered above,
where F ′

z = Fz = 1
2 and m = 0, the Clebsch-Gordan coeffi-

cient is 〈0 1
2 | 3

2
1
2 〉

2
3
2

= −1/
√

5 
= 0. Thus, since we found that

the matrix element is zero, the reduced matrix element must
itself be zero.

〈
2 3

2
3
2

∣∣∣∣Y2
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3
2

〉 =
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2

〉
〈
0 1
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〉
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= 0
−1√

5

= 0 (B11)

Plugging into Eq. (B10), we see that〈
2 3

2
3
2 F ′

z

∣∣Y m
2

∣∣2 3
2

3
2 Fz

〉 = 0 (B12)

for all m, Fz, and F ′
z . This is a surprising and remarkable result,

which we make use of in Sec. III B and discuss further in
Sec. III C.
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