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Topological and conventional phases of a three-dimensional electronic glass
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We investigate a symmetry-protected Z2 topological electron glass, a glassy equivalent of the Z2 topological
band insulator in crystalline systems, and uncover associated quantum phase transitions in this three-dimensional
amorphous network of atoms. Through explicit numerical calculations of the Witten effect, we show that the Z2

glass is characterized by an anomalous electromagnetic response, i.e., it can host dyons with 1
2 electronic charge.

We further study, using a variety of numerical diagnostics including such electromagnetic responses, the phase
transitions of the Z2 glass into a metallic and/or a trivial insulating phase. We find that the phase transitions
here are governed by subtle features of mobility edges and “spectral inversion” which are possibly unique to
structurally amorphous systems. Our results provide a concrete setting to understand the general underpinnings
of such phases, where strong structural disorder interplays with symmetry-protected topological order.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases [1–8] of
electrons, even in the weak coupling limit, in amorphous
and structurally glassy systems provide for the interplay of
structural disorder, residual global symmetries, and patterns
of quantum entanglement on the many-body electronic states
[9,10]. A particularly interesting and recent setting to explore
such physics occurs in the three-dimensional Z2 free-fermion
SPTs [e.g., the topological band insulators (TBI)], protected
by time-reversal symmetry (TRS) and particle-number con-
servation, in simple hopping models of spin 1/2 electrons on
a structurally amorphous network [9].

Starting with an underlying crystal, the role of potential
disorder in three-dimensional Z2 TBI and associated disorder-
driven quantum phase transitions have been investigated using
a variety of methods [11–19]. Interestingly, in this context
Ref. [20] pointed out that even a clean metallic system can
be driven by potential disorder to show topological physics,
albeit in a narrow parameter regime. However, possibilities
of realizing such topological phases [9] in three-dimensional
electron glass, i.e., in a completely random network, provide
a distinct new setting to access the underlying issues related
to the characterization of such SPTs which are intrinsically
beyond band theory [21–43]. This, in turn, allows one to
explore questions related to novel quantum phase transitions
driven by structural disorder [44–48] in these amorphous
systems. Indeed, recent extensive numerical calculations [49]
show various features, mostly related to the nature of quantum
phase transitions, in a number of two-dimensional topological
phases in structurally disordered systems that are distinct from
conventional crystalline systems with potential disorder.
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This calls for a comprehensive characterization of elec-
tronic topological phases and phase transitions in three-
dimensional amorphous networks, which is presently missing.
In particular, we pose the question, given a random set of
atomic sites, with no semblance of a lattice: What generic
(topological) phases can exist in three dimensions and what
can be said about the nature of associated phase transitions
out of such a phase ? Indeed, the possibility of realizing
such electronic phases in structurally glassy systems opens
up a plethora of new questions related to their stability to
interactions and slow relaxation dynamics of the underlying
network.

In this paper, we take important steps to address both these
questions in context of a three-dimensional Z2 topological
glass (TG) using a combination of extensive numerical diag-
onalization of the Hamiltonian (see below) and ideas from lo-
calization physics. We perform extensive characterization of a
three-dimensional amorphous Z2 free-fermionic SPT through
its characteristic quantized electromagnetic response, the so-
called Witten effect [50–52], which serves as an effective
diagnostic of the nontrivial electronic state. While such an
effect is present in crystalline three-dimensional TBIs where
it has been analyzed [52] and corroborates with band topology
based calculation of Z2 invariants; in absence of the latter
for, e.g., in case of TG, the detection of Witten effect and
its stability as well as its annihilation becomes central to
characterizing the phase. We further study the complete phase
diagram to understand the possible phase transitions out of
this SPT phase. Our central result is shown in Fig. 1 where our
numerical calculations show that by varying the microscopic
parameters (discussed below) we can access two generic
classes of transitions out of the TG: (1) to a metallic phase
which subsequently becomes an Anderson insulator with or
without a spectral gap, and (2) direct transition to an Anderson
insulator with a spectral gap which we refer to as a trivial spec-
tral insulator (SI) in the rest of this paper. Interestingly, the SI
of this work is the same state as the extensively studied struc-
tural glass with electronic spectral gaps [53–58]. We provide a
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FIG. 1. Model and Phase Diagram: (a) A model of amorphous
glass is shown with a random distribution of sites in three dimensions
as introduced in [9]. While ro characterizes the “Bohr’s radius” of
the atoms, M is proportional to the atomic spectral gap between the
two atomic orbitals per site (see text). (b) Phase diagram for a half-
filled system in the ro − M parameter space. A–C are parameter cuts
discussed later in the text.

descriptive understanding of such transitions via the behavior
of mobility edges and relating to ideas of “spectral” inversion.

II. MODEL FOR AMORPHOUS Z2 INSULATOR IN THREE
SPATIAL DIMENSIONS

Our starting point is the the hopping Hamiltonian intro-
duced in Ref. [9]:

H =
∑
Iασ

∑
Jβσ ′

tσσ ′
αβ (rIJ )C†

I,α,σCJ,β,σ ′ , (1)

where CI,α,σ is the annihilation operator for a pair (orbitals
α, β = s, p) of spin- 1

2 (σ, σ ′ =↑,↓) fermionic Kramers dou-
blets at every site (labeled by I, J) of a random network of
“atoms” embedded in three spatial dimensions, as is schemat-
ically shown in Fig. 1(a). rIJ is the vector from site I to
site J . Centrally, for I �= J , the hopping amplitude has the
form tσσ ′

αβ (r) = t (r)T σσ ′
αβ (r̂) where T σσ ′

αβ (r̂) captures the an-
gular dependence of hopping (see Appendix A) and t (r) =
�(R − r)e−(r−ro)/ro determines the distance dependence. Fur-
ther, given number of sites N , embedded in a spatial volume

V = L3 (L is the linear dimension), the essential length scale
of average distance between sites a0 = ( V

N )1/3 is set to 1
in the rest of the paper. Finally, we consider the system at
half-filling, i.e., the number of total electrons are 2N .

In the above units, t (r) encodes two comparative length
scales ro and R. The former, a “Bohr’s radius,” quantifies the
essential size of the atomic orbitals while the latter enforces a
hard cutoff that keeps the hopping short ranged even when
ro is tuned. Note that it is important to keep R � L in
order to treat the system as three-dimensional all the way up
to r0 ∼ R. Indeed, for r0 ∼ R ∼ L the system reduces to a
zero-dimensional “quantum dot” with many internal states.
The structure of tσσ ′

αβ (0) ≡ εαβ dictates the onsite energy of
the system which is tuned by a single “mass” parameter M
(see Appendix A). Thus, for a given R, both r0 and M
determine the phase of the system which can then be varied
to yield the phase diagram (Fig. 1). Broadly, M controls the
spectral gap while ro governs the strength of hopping between
randomly placed atoms within a sphere of radius R, hence si-
multaneously controlling the physics of delocalization as well
as effective disorder. Indeed, Ref. [9] showed the existence of
delocalized surface states for a particular set of parameters in
this system, suggesting a Z2 topological glass phase.

III. WITTEN EFFECT

A comprehensive characterization of the Z2 insulator
in three dimensions can be obtained by the Witten effect.
This can be understood from the effective low-energy
Lagrangian of a time-reversal symmetric insulator which
contains an axion contribution of �L = α

4π2 θE.B (α being
the fine-structure constant) in addition to the usual Maxwell
action. Here, the axion angle θ is 0[mod(2π )] (trivial SI)
or π [mod(2π )] (TG) due to TRS. Due to the nonzero axion
angle, when a magnetic monopole (m) is placed inside a Z2

insulator, it binds a half-odd integer electric charge (e) with
it to form a dyon [50,51,59]. Indeed, properties of such dyons
can lead to identification of new SPT phases in presence of
interactions [60–66].

To investigate this effect in a topological glass, we intro-
duce a unit magnetic monopole (see Appendix B) which cou-
ples to the electrons through minimal coupling tσσ ′

αβ (rIJ ) →
eiAIJ tσσ ′

αβ (rIJ ) where AIJ is the total Peierls phase between
sites I and J . This leads to a shift in the electronic charge
density at every site [see Figs. 2(a) and 2(b)]. The cumulative
electronic charge difference (compared to the case without the
monopole) inside a sphere of radius r measured from the lo-
cation of the monopole ≡QD(r) is also shown in Fig. 2(c) for
a half-filled system. Noticeably, QD(r) saturates to a value of
1
2 within numerical accuracy, illustrating realization of Witten
effect in an amorphous glass. That this half of the charge had
distributed from the boundary is evident by the fall of QD to
zero as r approaches L, showing that the compensating half of
the charge lives in the boundary. Fitting the region of r < L
to a functional form of ∼eD(1 − e−(r−a)/ξ ) estimates the dyon
charge eD and corresponding “size” of the dyon ≡lD = ξ + a
[see Fig. 2(c)]. However, the value of dyon length and the way
eD transits from 0 to 0.5 (modulo 1) is configuration sensitive
[see Appendix B and Fig. 5(a)].
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FIG. 2. Witten effect: (a), (b) Inclusion of a magnetic monopole
leads to a redistribution of the charge throughout the amorphous
network. (c) For M = 0.0 and r0 = 1.0 the value of the accumulated
charge is plotted as a function of distance r showing that the charge
saturates to a value of eD ∼ 1

2 . (d) Variation of the dyon charge eD as
a function of ro showing a transition from a trivial spectral insulator
to a topological glass phase. The corresponding spectral gap (�g)
for both the amorphous sphere (star with solid lines) and for an
amorphous cubic system with periodic boundary condition (dotted
lines) is shown signaling a bulk gap closing.

IV. PHASE DIAGRAM

The Witten effect not only characterizes the TG, but as
shown in Fig. 2(d), the quantized electric charge QD = 1/2
of the dyon disappears across transition to a trivial spectral
insulator. Not surprisingly, the disappearance of the Witten
effect coincides with the closing of the bulk spectral gap
for a system with periodic boundary conditions as is evident
from Fig. 2(d). Such a bulk gap closing is essential for
the axion angle to change and thereby signaling the phase
transition. This immediately raises the general question of the
characterization of nature of the phases and associated transi-
tions out of the TG in the whole (r0, M ) plane. We perform
exact diagonalizations over ∼200 configuration realizations
for system sizes L = 8–14 to calculate, in addition to the
Witten effect, the spectral gap, the inverse participation ratio
(IPR), and the orbital nature of the states close to the Fermi
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FIG. 3. Intermediate phases: (a) Configuration-averaged spectral
gap �g as a function of M for L = 14 and number of configura-
tions Nc = 200 (cut A in Fig. 1). Also shown is the behavior of
β, defined as the fraction of configurations which have an energy
state within a small window δ(E ) near the Fermi energy (see text).
(b) Configuration-averaged IPR is shown for different system sizes.
Fitting these values to a form of 1/Lα , behavior of α is shown as
a function of M. In the metallic regime α ∼ 3. The rare-region-
dominated Anderson localization shows anomalous scaling with α <

0 (Nc = 200).

level to obtain the phase diagram plotted in Fig. 1(b). To
implement periodic boundary condition in any direction, we
allow fermionic hopping in a “repeated” configuration with
distances modulo L in all directions and identify equivalent
sites.

To this end, let us concentrate on a typical cut shown as
line A in Fig. 1 at a constant r0 = 0.5 as a function of M
and consider states within a small window of states [δ(E ) =
10 × Ebw/(4N ) also shown in Fig. 3(a)] around the Fermi
level, where Ebw is the bandwidth of the spectrum. In Fig. 3(a),
we plot the configuration-averaged spectral gap as a function
of M. The finite spectral gap region for M � 3.2 is the Z2

topological glass phase with axion angle θ = π leading to
half-quantized Witten effect discussed above while for the
regime 3.2 � M � 3.8 where the spectral gap is zero (within
standard deviation) represents a gapless phase. Beyond
M � 3.8, the spectral gap reopens and this is a trivial spectral
insulator with axion angle θ = 0 (not shown).

At this point, it is important to note that for a finite
Nc = 100–400 number of independent configurations, we can
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calculate the subset of configurations NI that lead to at least
one state within the above energy window of δ(E ). The frac-
tion of such states β = NI/Nc is also plotted in Fig. 3(a) and
we find that while for the transition from the Z2 topological
glass to gapless phase, the fraction quickly goes to one from
zero, the change is much more gradual for the transition from
gapless phase to the trivial spectral insulator on the other side.
In parallel, our data suggest stark asymmetry of the magnitude
of the standard deviation on the value of the spectral gap on
either side of the gapless window. While the magnitude of
the standard deviation is much smaller on the Z2 topological
glass side or on the gapless region, it is much bigger on
the other end, suggesting that the spectral gap has a wider
distribution near the transition between the gapless state and
the trivial spectral insulator (see Appendix C). This observa-
tion is further reinforced by the analysis of the configuration-
averaged IPR in the gapless regime (3.2 � M � 3.8) as shown
in Fig. 3(b). We find that configuration-averaged typical states
in the parameter range 3.2 � M � 3.6 have an IPR that scales
with system as ∼1/Lα where α ∼ 3 (see Fig. 3), characteristic
of a metallic phase. However, in the narrow window 3.6 �
M � 3.8, the IPR behavior is consistent with a negative α

when fitted to the above form with M = 3.6 being the point
where α = 0 and changes sign and becomes negative! Indeed,
it is interesting to note the prominent crossing of IPRs of
the different system sizes at M = 3.6. Again, there are large
values of standard deviation in the regime M � 3.6 where
α is close to zero. This is typical of formation of localized
states near a metal Anderson insulator transition suggesting
the onset of Anderson localization [44,47].

In the light of possible localization physics at play, the
negative α finds a natural explanation. That with increasing
system size, probability of finding more dominantly localized
states increases, is a feature attributed to rare regions that are
known to occur in the Liftshitz tails of a disordered band.
Given the two-band character of our energy spectrum, the
states near the Fermi energy are indeed these rare regions
belonging to both the upper and lower band, thereby providing
for the surprising feature in the IPR as mentioned above. With
further increase in M, even the Lifshitz tails move beyond the
band spectrum, leading to a trivial spectral insulator as seen in
Fig. 3.

In order to further understand the general phases and their
transitions, we now investigate the orbital behavior and the
energy spectrum of a single amorphous configuration as a
function of ro for two cuts (B and C) as shown in Fig. 1(b).
Both these vertical cuts have a simple trivial atomic insulator
limit when r0 = 0 where the network degenerates to discon-
nected atoms with the onsite atomic orbitals leading to two
isolated spin-degenerate states on each atom separated by
an onsite energy |3 − M| in the present parametrization. At
half-filling, this gives a trivial atomic insulator (unless M = 3
where it is a highly degenerate state susceptible to perturba-
tions leading to the breakdown of our numerical accuracy as
mentioned in Fig. 1). For a fixed finite R, tuning ro > 0 (at
a constant M) modulates the strength of the connectivity of
the electronic orbitals on different atoms of the disordered
network (see Appendix D). While the trivial atomic insulator
is stable to small r0 > 0, the energy eigenstates are no longer
strictly onsite, leading to the formation of two bands of

FIG. 4. Phase transitions: (a) Schematic showing that the tran-
sition across the cut B (M = 2.2) and (b) across cut C (M = 3.24)
of the phase diagram as shown in Fig. 1. The schematic shows
the various intermediate phases which are encountered. (c), (d) The
behavior of the energy spectrum as a function of ro for a particular
periodic configuration (R = 2, L = 14). The color bar shows the s
orbital character of each of the state. While in cut B it is the highest
occupied orbital which contributes to shifting of the spectral weight,
in cut C many low-energy states contribute to this feature due to an
intervening metallic phase.

fully localized states around energies ±|3 − M|. On further
increasing r0, the states in the middle of each of these bands
become delocalized, giving rise to two pairs of mobility
edges which approach the Fermi level with increasing r0

and eventually leading to the closing of the spectral gap
at a critical r0 = r0B(C) for the cut B(C). This is shown in
Fig. 4(b). The extent of the delocalization of the states near the
Fermi level is characterized by their IPR, which is shown in
Appendix C.

For cut B, the spectral gap immediately (within our nu-
merical resolution) reopens on cross r0B. However, the orbital
nature of the occupied orbitals close to Fermi energy changes
across the bulk gap closing transition, but the bulk does
not change significantly. In this sense, we have an inverted
spectral gap for r0 > r0B (compared to the atomic insulator)
which is accompanied by winding of the axion angle from
0 to π , leading to the half-quantized Witten effect observed
before. This is nothing but the Z2 topological glass. For the
cut C, on the other hand, the situation is more interesting
and involved. While, not surprisingly, again the trivial atomic
insulator is stable to very small r0 > 0, the spectral gap closes
as r0 is increased. However, the IPR calculations show that the
states are not extended (see Appendix. D). This therefore is a
gapless localized phase similar to an Anderson insulator. On
increasing r0 further, the mobility edges which had developed
inside the two “bands” meet at the Fermi level, leading to
a metallic state with delocalized bulk states at the Fermi
level as confirmed by our IPR results. This metallic phase
thus has finite conductance. It is interesting to note that the
orbital-resolved spectral weights change their character inside
the metal (Fig. 4) such that when the spectral gap opens up on
further increase of r0 we get the inverted gap and we are back
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FIG. 5. Dyon length: (a) Variation of dyon length (lD) for a
sphere of amorphous TI and the corresponding spectral gap �g when
it is embedded as the periodic cubic amorphous TI for different
choice of configurations (denoted by different point types) for var-
ious choices of {M, ro}, broadly showing that dyon length falls with
increasing band gap (L = 16). Note that lD � L. (b) Variation of
the dyon charge eD as a function of ro showing a transition from
a trivial spectral insulator to a topological glass phase for another
configuration of atoms at M = 2.3 [also see Fig. 2(d)].

in the Z2 topological glass. It is pertinent to note that while
undergoing a transition from a trivial to a topological phase
does open a metallic phase in this later parameter regime (cut
C), similar to the effect of disorder observed in the clean
lattice systems that, however, is not always necessary (e.g.,
in cut B of Fig. 4).

V. ASSOCIATED PHASE TRANSITIONS

We now briefly discuss the nature of phase transitions in
this system for cuts B and C, where ro is smoothly increased.
Note that this does not change the connectivity or the co-
ordination number of the sites in a particular configuration.
However, increasing r0 leads to the increase in the strength of
hopping compared to the mass scale M and this destabilizes
the trivial spectral insulator when the hopping energy scale
becomes comparable to the mass scale [see the schematic
Fig. 4(a)]. A naive estimate of the scaling relation is obtained
by comparing the hopping amplitude integrated over a sphere
of radius R with the mass scale |3 − M|. This therefore opens
up a fan around M = 3 such that below the scale ro ∼ |3 −
M|1/3 (for R 
 r0, see dashed line in Fig. 1) such that below
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FIG. 6. Metal-insulator transitions: Configuration-averaged
spectral gap �g and δ(E ) (see text) as a function of (a) ro at M = 3.1
and (c) M for ro = 0.4. IPR and their scaling exponent with system
size (α) for the states near the Fermi energy are correspondingly
given in (b) and (d) (Nc = 200).

this scale, trivial spectral insulator survives as a stable phase
and gives way to other phases above it.

Moving out of the Z2 insulator, our numerical calculations
reveal that the bulk gap closing leads to either a metal or a
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FIG. 7. Distribution of spectral gap: Regions in the parameter
space have different distribution of spectral gaps. (a) For ro =
0.5, M = 3.1, 3.4, 3.8 are shown. In the metallic phase, i.e., at M =
3.4, the distribution is narrow which is zoomed in (b) (R = 2, L =
10, Nc = 600).

trivial spectral insulator. For M < 3 we find a direct transition
between the trivial and topological phases without an inter-
mediate metallic phase (up to our numerical accuracy). As
shown in Fig. 4, this occurs due to immediate opening up
of the spectral gap along with the concomitant inversion of
the orbital nature of the highest occupied state. We note that
in the present way of parametrizing the system, the orbital
character of the occupied bands changes as a function of M
at M = 3 for ro = 0. Thus, in cut B when one tunes ro to
reach the topological phase, the orbital character of all the
occupied states (particularly much below the Fermi level)
need not change. On the other hand, as the system makes a
transition from a point near M > 3, r0 = 0 to the topological
phase, the orbital character of the occupied bands changes in
a significant way. The total variation in the orbital character
of the occupied states is shown in Fig. 9. This closure of the
gap and the associated untwisting of the wave function is then
similar to the plateau transition in the integer quantum Hall
effect [67,68]. In the majority of the region M > 3, however,
the trivial insulator mostly gives way to a gapless phase which
is either a metal with delocalized electronic states near the
Fermi level or a novel Anderson insulator with properties
dominated by rare region physics. We find that this transition
is rather generically expected for an amorphous network. To
check this, we investigate the physics of a different “control”
Hamiltonian where Tαβ is changed to a trivial form such
that it does not wind around in real space (as discussed in
Appendix E) keeping the onsite term unchanged and keeping
the time-reversal symmetry intact. This model in a crystalline
limit hosts no topological phases, and in an amorphous setting

FIG. 8. Variation of IPR: Shown in (a) and (b) is the behavior
of the energy spectrum as a function of ro for a particular periodic
configuration at M = 2.2 and 3.24. The color bar shows the IPR of
each of the states (R = 2, L = 14).
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FIG. 9. Variation of orbital character: Shown in (a) and (b) is the
behavior of the orbital content of the filled states as a function of
ro for a particular periodic configuration at M = 2.2 and 3.24 (R =
2, L = 14).

has a transition at M = 3, ro = 0 between two atomic limits.
This transition fans out to a metallic phase at finite ro near
M = 3 (see Appendix E). However, in contrast to this control
Hamiltonian our gapless metallic phase hosts a characteristic
shift in the orbital character of the states near the Fermi
energy, in order to open up into a topologically nontrivial
phase [see Fig. 4(b)].

VI. SUMMARY AND OUTLOOK

We have investigated the nature of phases and phase tran-
sitions for a model of a hopping Hamiltonian (introduced in
Ref. [9]) which can host a topologically glassy phase. We have
used the effective hopping range ro and the onsite orbital en-
ergies (M) as effective parameters to explore the phase space.
We find a rich phase diagram with a wide regime of the system
being in the topological phase with interesting intermediate
phases and phase transitions. We characterize the system us-
ing exact diagonalization techniques and by investigating the
properties of the wave functions. In particular, we characterize
the topological (and trivial) phase through the occurrence
(or absence) of Witten effect. We build a comprehensive
understanding of the phase diagram by alluding to ideas in
the disorder literature and by examining the orbital character
of the occupied orbitals in this system. We further point out
that few transitions in this system could be of a distinct char-
acter than those Anderson transitions which could otherwise
be found in amorphous networks. It would be an interesting
future direction to completely characterize such transitions
and their dependence on the symmetries, depending if they
belong to a particular Altland-Zirnbauer class of the 10-fold
way [2,3,69,70].
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APPENDIX A: HAMILTONIAN AND SYMMETRIES

Following Ref. [9] the form of the Hamiltonian is given by
diag{−3 + M,−3 + M, 3 − M, 3 − M} for on-site term and

T σσ ′
αβ (r̂)

=

⎛
⎜⎜⎜⎝

1 0 −i cos θ −ie−iφ sin θ

0 1 −ieiφ sin θ i cos θ

−i cos θ −ie−iφ sin θ −1 0

−ieiφ sin θ i cos θ 0 −1

⎞
⎟⎟⎟⎠,

(A1)

where θ and φ are polar and azimuthal angle, respec-
tively, for rIJ , which is the relative vector from site I
to site J [see Fig. 1(a)]. More generally, the structure
of T σσ ′

αβ is constrained due to symmetries. For instance,
time reversal which is an antiunitary symmetry that acts
on the fermionic operators as T cIσT −1 = σcIσ constrains
T σσ ′

αβ (θ, φ) = [T σ̄ σ̄ ′
αβ (θ, φ)]∗σ̄ σ̄ ′. Moreover, Hermiticity de-

mands T σσ ′
αβ (θ, φ) = [T σσ ′

αβ (π − θ, φ − π )]†.

APPENDIX B: DETAILS ABOUT THE WITTEN EFFECT

In order to observe the Witten effect, the following pro-
tocol is followed. A magnetic monopole, corresponding to
a vector potential A = −g

r sin θ
(1 + cos θ )φ̂, is placed at the

center of an amorphous glass sphere of diameter L (as
shown in Fig. 2). g is the magnitude of the monopole
strength which we fix to 1. This leads to additional Peierls
phase terms on the different hoppings [see Eq. (1)]. Local
electronic charge density is calculated for a half-filled sys-
tem both with (m = 1) and without (m = 0) the magnetic
monopole. The local difference in charge density at site I is
given by �ρ(rI ) = ρ(rI )m=1 − ρ(rI )m=0 where ρ(rI )m=0(1) =∑

n∈occ

∑
α,σ |ψm=0(1)

n (I, α σ )|2. n labels all the eigenstates
which are occupied, α is the spin/orbital index, and rI is the
real-space position vector of site I where the redistributed
charge density is evaluated. A finite-sized system leads to
inadvertent hybridization of boundary modes, in which case
it is technically prudent to keep one additional state (above
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the occupied states) in calculation of density for both with
and without the monopole. In order to calculate the effec-
tive change in charge density around the point where the
magnetic monopole is introduced, one can evaluate the ef-
fective electric charge around the monopole using QD(r) =∫ r
|r′|=0 d3r′�ρ(r′) = ∑

I,rI�r �ρ(rI ) where r is the distance
from the origin. A variation of QD(r) as a function of r is
shown in Fig. 2. We remark here that while existence of
Witten effect by itself occurs rather sharply, the dyon length
[see Fig. 2(b)] is configuration dependent. We observe that
generally dyon length is smaller if the corresponding periodic
system has a larger spectral gap (�g) (see Fig. 5(a)). This is
expected behavior since dyon length is expected to diverge as
we go close to a quantum phase transition where the spectral
gap goes to zero.

APPENDIX C: IPR, SPECTRAL GAP, AND
ORBITAL CHARACTER

At any value of (M, ro), one can calculate the
configuration-averaged spectral gap and the IPR of the
states near the Fermi energy, if any. The behavior of such
states was shown in Fig. 3. We provide further results for two
different parameter regimes in Fig. 6. We further point out that
the distribution of the spectral gap depends on which phase
we are in. For instance, in near to rare-region dominated SI
the distribution of spectral gaps is extremely wide (see Fig. 7).
We also show the IPR of the energy spectrum and its behavior
with ro corresponding to cuts B and cut C (as discussed in
Figs. 1 and 4) in Fig. 8. In Fig. 9 we show the variation of the
total orbital character of the occupied states for the two cuts.
While at ro = 0 the system has a unique orbital polarization,
with increase in ro the two polarizations mix. In Fig. 9(a)
(M = 2.2) there is a discontinuous jump when the gap closes,
while in Fig. 9(b) (M = 3.24) where there is an intervening
metallic regime the orbital characters are relatively equal in
strengths before a band inversion occurs.

APPENDIX D: DISORDER ESTIMATE

An amorphous network, as discussed here, incorporates
two “kinds” of disorder scale: one, in terms of random con-
nectivity and therefore the fluctuation of coordination number
of the sites; the second, as the distribution of hopping
strengths themselves. While R decides the former, ro deter-
mines the latter [see discussion near Eq. (1)]. Therefore, keep-
ing R fixed one can tune ro to change the effective disorder
scale in the system W ≡

√
〈t2〉/〈t〉 ∝ r−3/2

o . For a given con-
figuration, we numerically calculate this value whose behavior
is shown in Fig. 10. A sharp upward rise in effective W is
noticed in the range of ro ∼ 0.25 which is the scale where
complete localization of all the states can be expected.

APPENDIX E: CONTROL CASE

Note that Eq. (A1) when implemented in a cubic crystalline
system leads to H = (1 ⊗ τz )[−3 + M + cos kx + cos ky +
cos kz]+(σx ⊗ τx )[sin kx]+(σy ⊗ τx )[sin ky]+(σz ⊗ τx )[sin kz]
which realizes a three-dimensional Dirac cone at M = 0.
We consider a deformed H = (1 ⊗ τz )[−3 + M + cos kx +
cos ky + cos kz] + (σx ⊗ τx )[sin kx + sin ky + sin kz].

On a random lattice we generalize this to T σσ ′
αβ (r̂) =

−i{[cos(φ) + sin(φ)] sin(θ ) + cos(θ )}(σx⊗τx ). This respects
time-reversal symmetry and Hermiticity. We analyze the
phases of this model in the ro-M plane. We find an inter-
mediate metallic phase near M ∼ 3 between two spectral
insulator phases. This can be seen in Fig. 11 which shows
the IPR, �g, and Witten effect in this system for a variety
of parameters. Importantly, this has no topological regime
since the system shows no Witten effect. This, however, can
be understood from the fact that, unlike this control case,
T σσ ′

αβ (r̂) in the topological case equals 1 ⊗ τz − ir̂.σ ⊗ τx [see
Eq. (A1)] which winds around on a real-space sphere.
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