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Complex-time shredded propagator method for large-scale GW calculations
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The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle
properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not
routinely applied to study large complex assemblies due to the method’s high computational overhead and quartic
scaling with particle number. Here, the GW equations are recast, exactly, as Fourier-Laplace time integrals over
complex time propagators. The propagators are then “shredded” via energy partitioning and the time integrals
approximated in a controlled manner using generalized Gaussian quadrature(s) while discrete variable methods
are employed to represent the required propagators in real space. The resulting cubic scaling GW method has a
sufficiently small prefactor to outperform standard quartic scaling methods on small systems (�10 atoms) and
offers 2–3 order of magnitude improvement in large systems (≈200–300 atoms). It also represents a substantial
improvement over other cubic methods tested for all system sizes studied. The approach can be applied to any
theoretical framework containing large sums of terms with energy differences in the denominator.
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I. INTRODUCTION

Density functional theory (DFT) [1,2] within the local
density (LDA) or generalized gradient (GGA) [3,4] approx-
imation provides a solid workhorse capable of realistically
modeling an ever increasing number and variety of systems
spanning condensed matter physics, materials science, chem-
istry, and biology. Generally, this approach provides a highly
satisfactory description of the total energy, electron density,
atomic geometries, vibrational modes, etc. However, DFT is
a ground-state theory for electrons and DFT band energies do
not have direct physical meaning because DFT is not formally
a quasiparticle theory. Therefore significant failures can arise
when DFT band structure is used to predict electronic excita-
tions [5–7].

The GW approximation to the electron self-energy [8–11]
is one of the most accurate fully ab initio methods for the
prediction of electronic excitations. Despite its power, GW is
not routinely applied to complex materials systems due to its
unfavorable computational scaling: the cost of a standard GW
calculation scales as O(N4) where N is the number of atoms in
the simulation cell whereas the standard input to a GW study,
a Kohn-Sham DFT calculation, scales as O(N3).

Reducing the computational overhead of GW calculations
has been the subject of much prior research. First, GW
methods scaling as O(N4) but with smaller prefactors ei-
ther avoid the use of unoccupied states via iterative matrix
inversion [12–18] or use sum rules or energy integration
to greatly reduce the number of unoccupied states required
for convergence [19–21]. Second, cubic-scaling O(N3) meth-
ods, including both a spectral representation approach [22]
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and a space/imaginary time method [23] utilizing analytical
continuation from imaginary to real frequencies, have been
proposed. Third, a linear scaling GW technique [24] has
recently been developed that employs stochastic approaches
for the total density of electronic states with the caveat that
the nondeterministic stochastic noise must be added to the list
of usual convergence parameters.

Here, we present a deterministic, small prefactor, O(N3)
scaling GW approach that does not require analytic continua-
tion. The GW equations are first recast exactly using Fourier-
Laplace identities into the complex time domain where prod-
ucts of propagators expressed in real space using discrete
variable techniques [25] are integrated over time to gener-
ate an O(N3) GW formalism. However, the time integrals
are challenging to perform numerically due to the multiple
timescales inherent in the propagators. Second, the timescale
challenge is met by shredding the propagators in energy
space, again exactly, to allow windows of limited dynamical
bandwidth to be treated via generalized Gaussian quadrature
numerical integration with low overhead and high accuracy.
The unique combination of a (complex) time domain formal-
ism, bandwidth taming propagator partitioning, and discrete
variable real-space forms of the propagators permits a fast
O(N3) to emerge. Last, our approach is easy to implement
in standard GW applications [26,27] because the formulae
follow naturally from those of the standard approach(es) and
much of the existing software can be refactored to utilize our
reduced order technique.

The resulting GW formalism is tested to ensure both its
accuracy and high performance in comparison to the standard
O(N4) approach for crystalline silicon, magnesium oxide,
and aluminium. The new method’s accuracy and performance
are compared also to that of reduced overhead quartic scal-
ing methods as well as existing O(N3) scaling techniques.
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Importantly, we provide estimates of the speed-up over con-
ventional GW computations and the memory requirement in
the application of the new method to study technologically
and scientifically interesting systems consisting of �200–300
atoms—the sweet spot for the approach on today’s supercom-
puters.

II. THEORY

A. Summary of GW

The theoretical object of interest for understanding one-
electron properties such as quasiparticle bands and wave func-
tions is the one-electron Green’s function G(x, t, x′, t ′), which
describes the propagation amplitude of an electron starting at
x′ at time t ′ and ending at x at time t [28]:

iG(x, t, x′, t ′) = 〈T { ψ̂ (x, t ) ψ̂ (x′, t ′)† }〉 ,

where the electron coordinate x = (r, σ ) specifies electron
position (r) and spin (σ ). Here, ψ̂ (x, t ) is the electron annihi-
lation field operator at (x, t ), T is the time-ordering operator,
and the average is over the statistical ensemble of interest. We
focus primarily on the zero-temperature case (i.e., ground-
state averaging); however, to treat systems with small gaps,
the grand canonical ensemble is invoked. As is standard,
henceforth atomic units are employed: h̄ = 1 and the quantum
of charge e = 1.

The Green’s function in the frequency domain obeys
Dyson’s equation

G−1(ω) = ωI − [T + Vion + VH + �(ω)],

where the x, x′ indices have been suppressed; a more compact
but complete notation shall be employed henceforth

G(ω)x,x′ = G(x, x′, ω) .

Above, I is the identity operator, T is the electron kinetic
operator, Vion is the electron-ion interaction potential operator
(or pseudopotential for valence electron only calculations), VH

is the Hartree potential operator, and �(ω) is the self-energy
operator encoding all the many-body interaction effects on the
electron Green’s function.

The GW approximation to the self-energy is

�(t )x,x′ = iG(t )x,x′W (t+)r,r′ ,

where t+ is infinitesimally larger than t and W (t )r,r′ is the
dynamical screened Coulomb interaction between an external
test charge at (r′, 0) and (r, t ):

W (ω)r,r′ =
∫

dr′′ ε−1(ω)r,r′′Vr′′,r′ .

Here, ε is the linear response, dynamic and nonlocal micro-
scopic dielectric screening matrix, and Vr,r′ = 1/|r − r′| is
the bare Coulomb interaction. The GW self-energy includes
the effects due to dynamical and nonlocal screening on the
propagation of electrons in a many-body environment. The
notation introduced above (to be continued below) is that para-
metric functional dependencies are placed in parentheses and
explicit dependencies are given as subscripts; the alternative
notation wherein all variables are in parentheses with explicit
dependencies given first followed by parametric dependencies

separated by a semicolon is also employed where convenient
[e.g., W (r, r′; ω) ≡ W (ω)r,r′ ].

To provide a closed and complete set of equations, one
must approximate ε. The most common approach is the
random-phase approximation (RPA): one first writes ε in
terms of the dynamic irreducible polarizability P via

ε(ω)r,r′ = δ(r − r′) −
∫

dr′′ Vr,r′′P(ω)r′′,r (1)

and P is related to G by the RPA

P(t )r,r′ = −i
∑
σ,σ ′

G(t )x,x′G(−t )x′,x .

In the vast majority of GW calculations, including the
formalism given here, the Green’s function is approximated
by an independent electron form (band theory) specified by a
complete set of one-particle eigenstates ψn(x) (compactified
to ψx,n) and eigenvalues En

G(ω)x,x′ =
∑

n

ψx,nψ
∗
x′,n

ω − En
. (2)

The ψn and En are obtained as eigenstates of a noninteracting
one-particle Hamiltonian from a first principles method such
as density functional theory [1,2], although one is not limited
to this choice. Although not central to the analysis given
here, formally En has a small imaginary part that is positive
for occupied states (i.e., energies below the chemical poten-
tial) and negative for unoccupied states. We have suppressed
the nonessential crystal momentum index k in Eq. (2) for
simplicity—including it simply amounts to adding the k index
to the eigenstates ψx,n → ψk

x,n and energies En → Ek
n and

averaging over the k sampled in the first Brillouin zone (BZ).
For our purposes, the frequency domain representations of

all quantities are useful. The Green’s function G in frequency
space is given in Eq. (2) while the frequency dependent
polarizability P is

P(ω)r,r′ =
∑

c,v,σ,σ ′
ψx,cψ

∗
x,vψ

∗
x′,cψx′,v[ f (Ev ) − f (Ec)]

× 2(Ec − Ev )

ω2 − (Ec − Ev )2

=
∑

c,v,σ,σ ′
ψx,cψ

∗
x,vψ

∗
x′,cψx′,v[ f (Ev ) − f (Ec)]

×
[

1

(ω − (Ec − Ev ))
− 1

(ω + (Ec − Ev ))

]
. (3)

Here, v labels occupied (valence) eigenstates while c labels
unoccupied (conduction) eigenstates. The occupancy function
f (E ) required to handle finite temperatures for zero/small
gap systems is explicitly included (see Sec. II D); for gapped
systems at zero temperature f (Ev ) = 1 and f (Ec) = 0. [The
occupancy f (E ; β,μ) formally depends parametrically on
two thermodynamic variables: the inverse temperature β =
1/kBT and the chemical potential μ.] We have employed a
general, compact notation valid for collinear and noncollinear
spin calculations. For collinear spin, nonzero contributions to
P only occur when the spin indices σ and σ ′ of x = (r, σ ) and
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x′ = (r′, σ ′) match; for the full spinor (noncollinear) case, we
sum over all the spin projections σ, σ ′ in the usual way.

Of particular practical importance is the zero-frequency or
static polarizability P(ω = 0) (which we also simply denote
as P below)

Pr,r′ = −2
∑

c,v,σ,σ ′

ψx,cψ
∗
x,vψ

∗
x′,cψx′,v[ f (Ev ) − f (Ec)]

Ec − Ev

(4)

which is employed both as part of plasmon-pole models of the
frequency dependent screening [8–11,29] as well as within
the COHSEX approximation [8] (see below). Again, the
crystal momentum index has been suppressed for simplicity;
including it requires the replacements P → Pq, where q is
the momentum transfer, ψx,v → ψk

x,v and Ev → Ek
v , ψx,c →

ψ
k+q
x,c and Ec → Ek+q

c , and averaging Eqs. (3) and (4) over k
(i.e., Brillouin zone sampling). We note that current numer-
ical methods for computing P based on the sum-over-states
formulas, e.g., that of Eq. (4), have an O(N4) scaling (e.g.,
see Ref. [26]).

Formally, the screened interaction W can always be repre-
sented as a sum of “plasmon” screening modes indexed by p,

W (ω)r,r′ = Vr,r′ +
∑

p

2ωp Bp
r,r′

ω2 − ω2
p

= Vr,r′ +
∑

p

Bp
r,r′

(
1

ω − ωp
− 1

ω + ωp

)
. (5)

Here, Bp is the mode strength for screening mode p and
ωp > 0 is its frequency. This form is directly relevant
when making computationally efficient plasmon-pole models
for the screened interaction [29]. The self-energy is then
given by

�(ω)x,x′ = −
∑

v

ψx,vψ
∗
x′,vW (ω − Ev )r,r′

+
∑
n,p

ψx,nBp
r,r′ψ

∗
x′,n

ω − En − ωp

= −
∑

v

ψx,vVr,r′ψ∗
x′,v

+
∑
v,p

ψx,vBp
r,r′ψ

∗
x′,v

ω − Ev + ωp
+
∑
c,p

ψx,cBp
r,r′ψ

∗
x′,c

ω − Ec − ωp
, (6)

where the n sum is over all bands (i.e., valence and conduc-
tion). Inclusion of crystal momentum in Eq. (6) means �(ω)
carries a k index, ψx,v → ψ

k−q
x,v and Ev → Ek−q

v . All screening
quantities derived from Pq now also carry a q index, W q, ω

q
p

and Bpq, and Eq. (6) is averaged over the q sampling.
Within the COHSEX approximation, when the applicable

screening frequencies, ωp, are much larger than the interband
energies of interest, the frequency dependence of � can be
neglected

�
(COHSEX)
x,x′ = −

∑
v

ψx,vψ
∗
x′,vW (0)r,r′

+ 1

2
δ(x − x′)[W (0)r,r′ − Vr,r′ ] , (7)

where the label in the supercript is placed in paranthesis to
avoid possible confusion—a convention to be followed below.
The numerically intensive part of the COHSEX approxima-
tion is the computation of the static polarizability, Eq. (4)—
once P is on hand, the static W (0) is completely determined
by P via matrix multiplication and inversion,

W (0) = ε−1(0)V = (I − V P)−1V .

Equations (3), (4), (6), and (7) are of primary interest, here,
as evaluating them scales as O(N4) as written. Terms with
manifestly cubic scaling terms will not be discussed further.
The computation of observables such as ε∞ and the band gap
in various approximations, e.g., E (gap,G0W0 ) and E (gap,COHSEX),
from the key terms, are described in Refs. [8–11]. The super-
script on the band gap is employed to distinguish the gap of
the input single-particle spectrum gap E (gap), from appropriate
corrections to it which we present below to evaluate the
performance of the new method. Comparison of the accuracy
of different approximations to the gap is not part of this work
but is fully described in the above references.

B. Complex time shredded propagator formalism

We now describe the main ideas and merits of our new
approach to cubic scaling GW calculations. The resulting
formalism is general and can be applied to a broad array of
theoretical frameworks whose evaluation involves sums over
states with energy differences in denominators.

The analytic structure of the equations central to GW
calculations, outlined in the prior section, necessitates the
evaluation of terms of the form

χ (ω)r,r′ =
Na∑
i=1

Nb∑
j=1

Ai
r,r′B

j
r,r′

ω + ai − b j
(8)

as can be discerned from Eqs. (3), (4), (6), and (7). The
input energies ai and b j and the matrices Ai and B j are either
direct outputs of the O(N3) ground state calculation (i.e.,
single particle energies and products of wave functions when
χ = P), or are obtained from O(N3) matrix operations on
the frequency dependent polarizability P(ω), or other such
derived quantities.

The analytic form of χ in Eq. (8) arises because we have
chosen to work in the frequency or energy representation.
However, one can equally well represent such an equation in
real, imaginary or complex time by changing the structure of
the theory to involve time integrals over propagators. Here, we
will effect the change of representation from time to frequency
directly through the introduction of Fourier-Laplace identities
which allows us to reduce the computational complexity
of the GW calculation. This imaginary time formalism has
connections to prior work found in Refs. [23,30,31].

In more detail, while the frequency representation has
advantages, the evaluation of Eq. (8) scales as O(NaNbN2

r )
because the numerator is separable but the energy denomina-
tor is not. This basic structure of the frequency representation
leads to the familiar O(N4) computational complexity of GW
as the number of states or modes (Na, Nb) and the number
real-space points (Nr) required to represent them, here by
discrete variable methods, scale as the number of electrons, N .
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For the widely used plane wave (i.e., Fourier) basis, adopted
herein, a uniform grid in r space that is dual to the finite
g-space representation is indicated—fast Fourier transforms
(FFTs) switch between the dual spaces, g and r space, both
efficiently and exactly (without information loss); for other
basis sets, appropriate real-space discrete variable represen-
tations (DVRs) with similar dual properties can be adopted
[25,32,33].

In the following, a time domain formalism that reduces the
computational complexity of Eq. (8) by N to achieve O((Na +
Nb)N2

r ) ∼ O(N3) scaling, in a controlled and rapidly conver-
gent manner, is developed. This will be accomplished through
the introduction of time integrals and associated propagators
which we shall then shred (i.e., partition) to tame the multiple
timescales inherent to the theory. Again, the resulting formu-
lation is general: it applies to any theory with the structure of
Eq. (8).

Reduced scaling is enabled by replacing the energy denom-
inator 1/(ω + ai − b j ) of Eq. (8) by a separable form through
the introduction of the generalized Fourier-Laplace transform

F (E ; ζ ) =
∫ ∞

0
dτ h(τ ; ζ ) exp[−ζEτ ] (9)

That is, inserting the transform, Eq. (8) becomes

χ (ω; ζ )r,r′ =
Na∑
i=1

Nb∑
j=1

F (ω + ai − b j ; ζ )Ai
r,r′B

j
r,r′ . (10)

Here, ζ is a complex constant with |ζ | akin to an inverse
Planck’s constant that sets the energy scale, and h(τ ; ζ ) is
a weight function. The desired separability arises from the
exponential function in the integrand of F (E ; ζ ) and allows
us to reduce the computational complexity of GW . In the
following, the ζ dependence of χ will be suppressed for
reasons that will become immediately apparent.

To motivate the utility of Eq. (10), consider the case where
∀ i, j either ω + ai − b j > 0 or ω + ai − b j < 0: here, ζ is
chosen to be real (positive for the first case and negative
for the second), and we set h(τ ; ζ ) = ζ . This corresponds
to a textbook Laplace transform [34] and yields an exact
expression for the energy denominator:

lim
h(τ ;ζ )→ζ

F (ω + ai − b j ; ζ ) = 1

ω + ai − b j
. (11)

For this case, the introduction of the transform involves no
approximation, and h(τ ; ζ ) = ζ will be employed to establish
and describe our formalism. It is directly applicable to the
static limit of χ (ω) where ω → 0 and ai − b j > 0 ∀ i, j [i.e.,
gapped systems, cf. the static polarizability matrix of Eq. (4)].
The importance of the actual value of ζ will become clear
below. A yet more general treatment, applicable to gapless
systems and finite frequencies ω �= 0, requiring nontrivial
h(τ ; ζ ), will then be given, wherein F becomes an approxima-
tion to the inverse of the energy denominator within the class
of regularization procedures commonly employed in standard
GW computations.

Inserting the generalized Fourier-Laplace identity into
Eq. (8) yields

χ (0)r,r′ =
∫ ∞

0
dτ h(τ ; ζ )

[
Na∑
i=1

Ai
r,r′e−ζ (ai−E (off) )τ

]

×
⎡
⎣ Nb∑

j=1

B j
r,r′e−ζ (E (off)−b j )τ

⎤
⎦

=
∫ ∞

0
dτ h(τ ; ζ )ρ (A)

r,r′ (ζ τ )ρ̄ (B)
r,r′ (ζ τ )

=
∫ ∞

0
dτ h(τ ; ζ ) χ̃ (ζ τ ; 0)r,r′ . (12)

Here, E (off) is a convenient energy offset selected such that all
the exponential functions are decaying (e.g., midgap) and

ρ (A)(ζ τ )r,r′ =
Na∑
i=1

Ai
r,r′e−ζ (ai−E (off) )τ ,

ρ̄ (B)(ζ τ )r,r′ =
Nb∑
j=1

B j
r,r′e−ζ (E (off)−b j )τ ,

χ̃ (ζ τ ; 0)r,r′ = ρ (A)(ζ τ )r,r′ ρ̄ (B)(ζ τ )r,r′ (13)

where the ρ (A,B)(ζ τ ) are imaginary time propagators (mani-
festly, for ai > bi ∀ i, j but the reverse is treated by letting
ζ → −ζ and switching the ρ and ρ̄ labels). The result is a
separable form for χ̃ (τζ ; 0)r,r′ , a product of A and B prop-
agators, whose zero frequency transform over h(τ ; ζ ) yields
the desired χ (0)r,r′ . This exact reformulation can be evaluated
in O(N3) given that an O(N0) scaling discretization (i.e.,
quadrature) of the time integral can be defined.

Consider that the largest energy difference in the argument
of the exponential terms defining χ̃ (ζ τ ; 0)r,r′ , is the bandwidth
E (bw) = max(ai ) − min(b j ) while the smallest energy differ-
ence is the gap E (gap) = min(ai ) − max(b j ) which are both
known from input. Both energy differences are essentially
independent of system size N for large N (exactly so for
periodically replicated arrays of atoms in a supercell). Hence
the longest and shortest timescales, ∼h̄/E (bw) and ∼h̄/E (gap),
in χ̃ (τζ ; 0)r,r′ are independent of N . Therefore, barring non-
analytic behavior in the density of states or modes, a system
size independent discretization scheme can be devised to
generate χ (0)r,r′ from χ̃ (ζ τ ; 0)r,r′ . Of course, the formulation
is most useful when the discrete form rapidly approaches the
continuous integral with increasing number of discretizations
(i.e., quadrature points).

The development of a rapidly convergent discretization
scheme is, however, challenged by the large dynamic range
present in the electronic structure of most materials systems,
E (bw)/E (gap) � 100. Simply selecting the free parameter |ζ | ≈
1/E (bw) to treat such large bandwidths is insufficient to allow
a small number of discretizations (i.e., number of quadrature
points) to represent the time integrals accurately. Hence, an
efficient approach capable of taming the multiple timescale
challenge presented by the large dynamic range in the inte-
grand, χ̃ (ζ τ ; 0)r,r′ , of χ (0)r,r′ , will be given. Once such an
approach has been developed for gapped systems, the solution
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FIG. 1. An example of the proposed energy windowing approach
with Naw

= Nbw
= 2 (a) For gapped systems, the energy ranges of

{ai} and {bj} do not overlap. (b) For systems with overlapping energy
ranges, energy window pairs arise both with energy crossings, red
arrows, and without, blue arrows.

will be generalized to treat gapless systems and response
functions at finite frequencies through use of imaginary ζ and
nontrivial h(τ ; ζ ).

In order to tame the multiple timescales inherent in the
present time domain approach to χ (0)r,r′ , the propagators
ρ (A,B) must be modified. Borrowing ideas from Feynman’s
path integral approach, the propagators are “shredded” (sliced
into pieces) in energy space. That is, the energy range spanned
by ai is partitioned into Naw

contiguous energy windows
indexed by l = 1, . . . , Naw

and b j is similarly partitioned
into Nbw

windows indexed by m = 1, . . . , Nbw
; to illustrate

this shredding, a 2 × 2 energy window decomposition for a
gapped system is shown in Fig. 1(a) (i.e., Naw

= Nbw
= 2).

Shredding the propagators allows χ̃ (τζ ; 0)r,r′ to be recast
exactly as a sum over window pairs (l, m),

χ (0)r,r′ =
Naw∑
l=1

Nbw∑
m=1

∫ ∞

0
dτ h(τ ; ζlm)χ̃ lm(ζlmτ ; 0)r,r′ , (14)

where for each window pair (l, m),

χ̃ lm(ζlmτ ; 0)r,r′ = ρ
(A)
lm (ζlmτ )r,r′ ρ̄

(B)
lm (ζlmτ )r,r′ ,

ρ
(A)
lm (ζlmτ )r,r′ =

∑
{i∈L}

Ai
r,r′e−ζlm (ai−E (off) )τ ,

ρ̄
(B)
lm (ζlmτ )r,r′ =

∑
{ j∈M}

B j
r,r′e−ζlm (E (off)−b j )τ . (15)

Here, L and M represent the sets of integer indices of the
single particle states that contribute to the lth A-type and mth
B-type energy windows, respectively. The energy E (off) is an
offset chosen for convenience: e.g., choosing it to be in the
gap between the smallest ai and largest b j to generate strictly
decaying exponential functions. As above, treating bj > ai

only necessitates reversing the sign of the ζlm and switching
the bar labels on the density matrices. The energy windows
need not be equally spaced in energy; in fact, the optimal
choice of windows is not equally spaced even for a uniform
density of states or modes as shown in Sec. II C.

The shredded form of χ (0)r,r′ given in Eq. (14) has com-
putational complexity of O(N3) because the operation count
to evaluate it, is

N2
r

∑
lm

(
L(A)

l + L(B)
m

)
N (τ,h)

lm ∼ O(N3) , (16)

to be compared with the operation count of the standard GW
method, NaNbN2

r ∼ O(N4). Here, the L(A)
l , L(B)

m ∼ O(N ) are
the number of states or modes in the lth and mth energy
windows, respectively, and N (τ,h)

lm ∼ O(N0) is the number
of quadrature points required for accurate integration in a
specific window pair (l, m) (see Sec. II C).

The shredded propagator formulation of χ (0)r,r′ has four
important advantages. First, every term in the double sum over
window pairs (l, m) has its own intrinsic bandwidth which
is handled by its own ζlm while preserving the desired sep-
arability. Second, each window pair can be assigned its own
quadrature optimized to treat its limited dynamic range. Third,
the windows can be selected to minimize the dynamic range
in the window pairs which allows small N (τ,h)

lm (i.e., efficient
quadrature) to treat all pairs with small fractional error, ε (q).
These first three advantages are sufficient to tame the multiple
timescale challenge. Fourth, finite frequency expressions for
gapped systems as well as gapless systems at finite tempera-
ture can be addressed utilizing simple extensions of Eq. (14)
as demonstrated below.

The next theoretical issue to tackle is to show that the
optimal windows can be found in O(N3) or less computational
effort given the input energies ai and b j . Since the compu-
tationally intensive part of χ (0)r,r′ involves its r, r′ spatial
dependence, it is best to choose an optimal windowing scheme
in the limit Ai

r,r′ , B j
r,r′ → 1 as, within a limited energy range

of a window pair, the spatial dependence of the Ai or B j are
to good approximation similar. (Note, the plane-wave basis
approach considered here does not exploit spatial locality and
full-sized N2

r matrices are employed, but other approaches
may benefit considering spatial locality in window creation).
If the density of states for ai and b j is taken to be locally flat,
then the optimal number and placement of windows can be
determined in O(N0); if the actual density of states is taken
into account, the scaling remains O(N0) as the density of
states is an input from the electronic structure computation
(typically, KS-DFT). Here, optimal indicates the windows are
selected to minimize the operation count, Eq. (16), required to
compute Eq. (14) over the number and placement (in energy
space) of the windows. In practice, as discussed in Sec. II C,
we take N (τ,h)

lm to be the number of quadrature points required
to guarantee a prespecified, upper error bound, obeyed by all
the time integrals of each window pair; again, each window
pair (l, m) has its own tuned quadrature and timescale taming
parameter, ζlm.

The control given by the energy windowed formulation
of χ (0)r,r′ in Eq. (14) is the key to extending our efficient
O(N3) method to gapless systems and to finite frequencies.
For gapless systems at zero frequency, there will be some few
energy windows pairs (most likely only one) for which ai =
b j happens at least once. This is not problematic because, e.g.,
for the case of computing the polarizability matrix of Eqs. (3)
and (4), the occupancy difference f (Ev ) − f (Ec) regularizes
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the singularity of the denominator via L’Hôpital’s rule applied
to [ f (Ev ) − f (Ec)]/(Ec − Ev ) (the mapping from the general
formalism being ai → Ev , b j → Ec). Adding the occupancy
factors presents no difficulties: all that is required is to take
the difference between two terms of the same form as Eq. (8)
in the problematic window pair(s) with an overlapping energy
range—a small added expense (see Sec. II D). However, a
more general approach that can handle finite frequencies,
described next, can also be adopted to handle gapless systems.

For the case of finite frequency ω �= 0, in some window
pair(s) the quantity in the denominator, ei j = ω + ai − b j , can
change sign [see Fig. 1(b)]. In standard GW implementations,
singularities (zeros of ei j) that may arise in these window pairs
are tamed by either dropping their contributions to the sum
when |ei j | is small [9] or by regularizing 1/ei j , e.g., replacing
1/ei j by ei j/(e2

i j + |ζ |−2) [26].
Lorentzian regularization can be accommodated easily

within our time domain formalism by selecting h(τ ; ζ ) =
|ζ | exp(−τ ) for the weight function in Eqs. (9) and (10) and
choosing ζ to be a pure imaginary number,

ei j

e2
i j + |ζ |−2

= Im

[∫ ∞

0
dτ |ζ |e−τ ei|ζ |ei jτ

]

= |ζ |
∫ ∞

0
dτ e−τ [sin(|ζ |(ω − bj )) cos(|ζ |ai)

− cos(|ζ |(ω − bj )) sin(|ζ |ai)] (17)

for the small number of window pairs where ei j changes
sign. In order to factorize the complex exponential and ex-
pose the separability of i, j in the second line of the above
equation, we have chosen to decompose the energy difference
as ei j = (ω − b j ) + (a j ), but the decomposition ei j = (ω +
ai ) + (−b j ) is also possible. Nonetheless, a large number of
quadrature points must be taken to accurately discretize the
time integral of Eq. (17), in practice.

Alternatively, as will be detailed in Sec. II E, the weight
function

h(τ ; ζ ) = |ζ | exp(−τ − τ 2/2)

and its transform

F (ei j ; ζ ) = |ζ |Im

{√
π

2
exp

(
− (ei j |ζ | + i)2

2

)

×
[

1 + i erfi

(
ei j |ζ | + i√

2

)]}
, (18)

form a preferable choice of regularization. Importantly, the
transform, Eq. (18), approaches 1/ei j at large ei j , is well
behaved for all ei j but can be generated accurately with
fewer time integration quadrature points than required by the
Lorentzian. The benefits of the alternative weight function,
an asymptotic analysis, and the associated rapidly conver-
gent quadrature are presented in Sec. II E 2 and associated
appendices.

Lastly, we note that the new formalism can handle prob-
lematic regions/points in the density of states that might
need specialized treatment, such as van Hove singularities, by
simply assigning them their own window in a Lebesgue-type
approach (see Sec. II C 3) [35]. As long as the number of
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FIG. 2. Numerical error vs computational savings for our cubic
scaling formalism, CTSP-W, compared to the standard quartic GW
formulation for bulk Si and MgO modeled in a 16 atom supercell.
The CTSP-W error decreases and computational work increases as
the integration error is decreased (i.e., the number of quadrature
points is increased). Computational work is measured by the ratio
of operation count, Eq. (16), of the cubic method to the quartic
method. (Top) Error in the macroscopic optical dielectric constant
[ε∞(MgO) = 6.35, ε∞(Si) = 64.85]. (Bottom) Error in the COH-
SEX band gap [E (gap,COHSEX)(MgO) = 7.56 eV, E (gap,COHSEX)(Si) =
1.92 eV].

special regions/points is independent of systems size, the
scaling of the method remains O(N3).

In order to convince the reader that the new formalism
represents an important improvement, we provide a com-
parison of our O(N3) time domain results to those of the
corresponding O(N4) direct frequency domain computation
in Fig. 2 for two standard test systems, crystalline silicon
and magnesium oxide. In the figure, the new method is re-
ferred to via the sobriquet complex time shredded propagator
(CTSP) method where CTSP-W indicates the use of optimal
windowing, and in the discussion to follow, CTSP-1 the use
of one window. Even for small unit/supercells, the O(N3)
computational approach outlined above delivers a significant
reduction in computational effort compared to the standard
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approach (the CTSP error decreases exponentially with the
number of time integration quadrature points as given in Sec.
II C 2 b and logarithm-linear plots are thereby the natural way
to present the data).

The detailed analysis underlying CTSP’s reduced scaling
with system size and high performance is presented in Secs.
II C-II F and associated appendices. We also show below that
(all) the new method’s parameters can be reduced to one, the
fractional time integration quadrature error ε (q), which allows
for the easily tunable convergence demonstrated by the results
given above (see Fig. 2). The use of the simple operation count
as given in Eq. (16) to represent computational work is, also,
justified in the following.

C. Static polarization matrix in O(N3) for gapped systems

The static polarizability matrix defined in Eq. (4) reduces,
for systems with large energy gaps compared to kBT , to

Pr,r′ = −2
Nv∑
v

Nc∑
c

ψ∗
r,vψr,cψ

∗
r′,cψr′,v

Ec − Ev

as the occupation number functions for this special case are
zero or one; the occupancies will be reintroduced to treat
zero-gap systems in Sec. II D. Here, Nv and Nc are the number
of valence and conduction states, respectively. Nonessential
indices or quantum numbers such as spin σ and Bloch k vector
have been suppressed.

1. Laplace identity and shredded propagators

Employing the energy windowing approach of Eqs. (14)
and (15), the energy range of the valence and conduction band
is divided into Nvw

and Ncw
partitions with the valence and

conduction partition indexed by l and m ranging from E (v,min)
l

to E (v,max)
l and E (c,min)

m to E (c,max)
m , respectively. Thus the static

polarizability can be written as

Pr,r′ =
Nvw∑
l=1

Ncw∑
m=1

Plm
r,r′ (19)

where each window pair (l, m) contributes

Plm
r,r′ = −2ζlm

∫ ∞

0
dτ e−ζlmE (gap)

lm τ

× ρm(ζlmτ )r,r′ ρ̄l (ζlmτ )r′,r (20)

via the Laplace identity where the choice h = ζ generates the
desired energy denominator, 1/(Ec − Ev ) [i.e., F (x; ζ ) = 1/x
in Eq. (10)]. Each window pair (l, m) has its own energy gap,
E (gap)

lm = E (c,min)
m − E (v,max)

l , energy scale, ζlm, and bandwidth,
E (bw)

lm = E (c,max)
m − E (v,min)

l . [To connect directly to the for-
malism of Eqs. (14) and (15), the sign of ζ has been reversed
and the bar labels on the density matrices have been switched.]
The imaginary time density matrices for the windows are
given by

ρm(τ )r,r′ =
∑

{c∈M}
e−τ�Emcψr,cψ

∗
r′,c , (21)

ρ̄l (τ )r,r′ =
∑
{v∈L}

e−τ�Elvψr,vψ
∗
r′,v , (22)

where, again, the integer indices of the single particle states
in the mth conduction and lth valence windows are contained
in the sets, M and L, respectively. Here, �Elv = E (v,max)

l −
Ev and �Emc = Ec − E (c,min)

m are defined with respect to the
edges of each energy window. A good choice of windows can
significantly reduce the dynamic range, i.e., the bandwidth to
band gap ratio E (bw)

lm /E (gap)
lm , for all window pairs. This allows

coarse quadrature grids to be employed to approximate the
time integrals in all window pairs with controlled accuracy as
given next.

2. Discrete approximation to the time integral

The continuous imaginary time integral of Eq. (20) must be
discretized in an efficient and error-controlled manner to form
an effective numerical method. The natural choice is Gauss-
Laguerre (GL) quadrature

∫ ∞

0
dτ e−τ s(τ ) ≈

N (τ,GL)∑
u=1

wu s(τu) . (23)

Here, N (τ,GL) is the number of quadrature points, the u are
the integer indices of the points, s(τ ) is the function to be
integrated over the exponential function, exp(−τ ), the {w}
and {τ } are the N (τ,GL) member sets of the quadrature weights
and nodes [36] whose explicit dependence on N (τ,GL) has been
suppressed for clarity. Inserting the discrete approximation,
the contribution from each window pair (l, m) is

Plm
r,r′ = −2ζlm

N (τ,GL)
lm∑
u=1

wue−τu(ζlmE (gap)
lm −1)

× ρm(ζlmτu)r,r′ ρ̄l (ζlmτu)r′,r . (24)

a. Optimal error-equalizing energy scale factor ζlm. The
energy scale factor ζlm is selected to equalize the error of
all integrals in a window pair. The geometric mean, ζ−1

lm ≈√
E (bw)

lm E (gap)
lm , is close to the optimal error matching choice

as described in Appendix A 1: the end points of the window
range are treated with (nearly) equal accuracy.

b. Estimating the number of quadrature points. For any
set of interband transition energies {Em − El} in window pair
(l, m), the largest quadrature errors occur for the largest inter-
band transition energy E (bw)

lm and the smallest interband transi-

tion energy E (gap)
lm . Taking ζ−1

lm =
√

E (bw)
lm E (gap)

lm to balance the
error across the window pair, the number of quadrature points,
N (τ,GL)

lm , required to generate the desired fractional error level,

scales as ∼
√

E (bw)
lm /E (gap)

lm (see Appendix A). Stripping the
indices for clarity, we find

N (τ,GL)(α; ε (q) ) = α(y − 0.3 ln ε (q) )

α =
√

E (bw)

E (gap)
, y = 0.4 (25)

to be a good approximation, valid for ε (q) < 0.135 (see Ap-
pendix A). To extend the range to ε (q) < 1, we simply set
y = 1. Importantly, the procedure ensures that N (τ,GL)

lm is cho-
sen such that time integration error for any term in a window
pair has upper bound ε (q).

035139-7



KIM, MARTYNA, AND ISMAIL-BEIGI PHYSICAL REVIEW B 101, 035139 (2020)

3. Optimal windowing

Given that the number of points required to generate max-
imal fractional quadrature error ε (q) for a given window pair
can be neatly determined, we now consider the construction
of the optimal set of windows. This can be accomplished
via minimization of the cost to compute the static polariz-
ability over the number of windows, Nvw

and Ncw
, and the

associated Nvw
and Ncw

member sets, {E (v,min), E (v,max)} and
{E (c,min), E (c,max)} of the window positions in energy space,

C(GL)(ε (q) ) =
Nvw∑
l=1

Ncw∑
m=1

N (τ,GL)(αlm; ε (q) )

×
(∫ E (v,max)

l

E (v,min)
l

D(E )dE +
∫ E (c,max)

m

E (c,min)
m

D(E )dE

)

=
Nvw∑
l=1

Ncw∑
m=1

C(GL)
lm (ε (q) ), (26)

which for clarity are omitted from the dependencies of
C(GL)(ε (q) ). Here, N (τ,GL)(αlm; ε (q) ) is given in Eq. (25), and
D(E ) is the density of states (which will be taken on addi-
tional indices when performing k-point sampling as given in
Appendix B). The integrals over the density of states D(E )
are simply the number or fraction of states in the appropriate
energy window.

For a density of states with problematic points, we assign
windows to those regions a priori (fixed position in energy
space) allowing for fast minimization over the smooth parts
of D(E ). For example, if there is a special point in the D(E )
at energy Especial, a window boundary is fixed to bracket
this energy [Especial − �E/2, Especial + �E/2], allowing the
minimization to proceed over the smoothly varying regions
of the DOS integral in a Lebesgue inspired approach (i.e., the
DOS is only required to be Lebesgue integrable) [35].

The cost estimator, Eq. (26), can be minimized straight-
forwardly, as detailed in Appendix B, once at the start of a
GW calculation. The computational complexity of the min-
imization procedure is negligible O(N0) compared to both
the O(N3) computational complexity of both P and the input
band structure. We note that for the form of N (τ,GL)(α; ε (q) ) in
Eq. (25), the optimal windowing, both the number of windows
and their positions in energy, is independent of error level
as N (τ,GL)(α; ε (q) ) = α · U (ε (q) ) is separable. Importantly, all
parameters of the method are now completely determined by
the usual set (input band structure and a choice of energy
cutoff in the conduction band) and one new parameter, ε (q),
the fractional quadrature error required to accurately trans-
form from the time domain to the frequency domain. The
quadrature error will be connected to the error in physical
quantities in Sec. III.

D. Static P for gapless systems

The standard approach employed to treat gapless systems is
to introduce a smoothed step function f (E ; μ, β ) for the elec-
tron occupation numbers as a function of energy E centered on
the chemical potential μ (Fermi level) with “smoothing” pa-

rameter or inverse temperature β [37–39]. Examples include
the Fermi-Dirac distribution of the grand canonical ensemble

f (E ) = 1

1 + exp[β(E − μ)]
,

where formally, β = 1/kBT , or the more rapidly (numeri-
cally) convergent and hence convenient

f (E ) = 1
2 erfc(β(E − μ)) .

Typical literature values of β correspond to temperatures
above ambient conditions (e.g., β−1 = 0.1 eV ≈ 1000 K).
The static RPA irreducible polarizability matrix including the
occupation functions is given in Eq. (4).

To proceed, note that the energy-dependent part of the sum
in Eq. (4),

Jcv = f (Ev ) − f (Ec)

Ec − Ev

, (27)

is smooth for all energies and has the finite value − f ′(μ) as
Ev, Ec → μ (note, Ec � Ev ∀ c, v). Hence, for a calculation
with a small but finite gap, the terms in the sum for P are
finite and well behaved such that windowing plus quadrature
approach will work well. As before, we split P into a sum
over window pairs with the contributions from each window
pair now given by

Plm
r,r′ = −2ζlm

N (GL)
lm∑

u=1

wu e−τu(ζlmE (gap)
lm −1)

× [Slmu
r′,r Qlmu

r,r′ − T lmu
r′,r Zlmu

r,r′ ],

where

Slmu
r,r′ =

∑
{v∈L}

f (Ev )e−τuζlm�Evl ψr,vψ
∗
r′,v,

Qlmu
r,r′ =

∑
{c∈M}

e−τuζlm�Emψr,cψ
∗
r′,c,

T lmu
r,r′ =

∑
{v∈L}

e−τuζlm�Evl ψr,vψ
∗
r′,v,

Zlmu
r,r′ =

∑
{c∈M}

f (Ec)e−τuζlm�Emψr,cψ
∗
r′,c .

The five-index entities S, Q, T, Z can be computed with
O(NvN2

r ) or O(NcN2
r ) operations (i.e., cubic scaling), where

Nr is the number of r grid points (see also Sec. III.C). Since
f (Ec) becomes small as a function of increasing Ec, the T Z
term need only be computed for the few window pairs where
β(Ec − μ) is sufficiently small. Hence, the additional work
required to treat gapless systems is, in fact, modest.

Direct application of the cost-optimal energy windowing
method for gapped systems in Sec. II C generates infinite
quadrature grids in situations where the gap is exactly zero due
to degeneracy at the Fermi energy. The solution is straightfor-
ward: the key quantity that is to be represented by quadrature
is Jcv of Eq. (27). For Ec − Ev → 0, Jcv → − f ′(μ) where
− f ′(μ) = β/4 for the Fermi-Dirac distribution and β/

√
2π

for the erfc form above. Thus, the system has an effective
gap of ∼β−1. For energy window pairs (l, m) that contain
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degenerate states at the Fermi energy, we manually set their
gap to E (gap)

lm = 1/β via a “scissoring” operation [i.e., shifting
the conduction band up by 1/(2β ) and valence bound down by
1/(2β )] in the offending window pair and then applying the
method of Sec. II C. Alternatively, the regularization approach
of the next section can be adopted for zero-gap systems.

E. �(ω) in cubic computational complexity

Given poles of the screened interaction W (ω)r,r′ , ωp, with
residues, Bp

r,r′ , the dynamic (frequency-dependent) part of the
GW self-energy can be expressed as

�(ω)r,r′ =
∑
p,v

Bp
r,r′ [ψrvψ

∗
r′v]

ω − Ev + ωp
+
∑
p,c

Bp
r,r′ [ψrcψ

∗
r′c]

ω − Ec − ωp
(28)

[omitting the static/bare potential term in Eq. (6) as it can be
computed in O(N3) and is, thus, not of interest here]. In the
following, we develop a cubic scaling energy window-plus-
quadrature technique that delivers Eq. (28) directly1 for real
frequencies ω in such a way that analytical continuation is not
required.

1. Windowing for �(ω)

The dynamic self-energy,

�(ω)r,r′ = �(+)(ω)r,r′ + �(−)(ω)r,r′ ,

�(+)(ω)r,r′ =
∑
p,v

Bp
r,r′ [ψrvψ

∗
r′v]

ω − Ev + ωp
,

�(−)(ω)r,r′ =
∑
p,c

Bp
r,r′ [ψrcψ

∗
r′c]

ω − Ec − ωp
, (29)

consists of two terms, labeled (±). The (+) term involves the
valence single particle states, their shifted energies (Ev − ω),
the plasmon residues and their modes (ωp). The (−) term
involves the conduction single particle states, their shifted
energies (Ec − ω), the plasmon residues and their mode
complement (−ωp). An efficient windowed scheme requires
independently decomposing the two terms as is now usual,

�(+)(ω)r,r′ =
N (+)

vw∑
m=1

N (+)
pw∑

l=1

�(+)
(
ω; ζ (+)

lm )lm
r,r′

)
, (30)

�(−)(ω)r,r′ =
N (−)

cw∑
m=1

N (−)
pw∑

l=1

�(−)
(
ω; ζ (−)

lm )lm
r,r′

)
, (31)

simply using the shifted single-particle energies and ± plas-
mon modes to define the windows. Note, ζ

(+)
lm �= ζ

(−)
lm , N (+)

pw
�=

N (−)
pw

and the index sets are also unique to each term, + and −.
Almost all the window pairs (l, m) in Eqs. (30) and (31) can
be treated using the approach of Sec. II C with GL quadrature

1To avoid excessive memory use, one can compute the large
matrix �(ω)r,r′ for a fixed ω and then compute and only store the
much smaller number of desired matrix elements 〈n|�(ω)|n′〉 before
moving to the next ω value.

because the denominator, x = ω − En ± ωp, is finite and does
not change sign where n = v for + case and n = c for −
case. The difficulty is that, for some few window pairs, the
denominator, x, changes sign such that the Eq. (11) does
not apply. Thus a scheme to treat window pairs with energy
crossings is required.

2. Specialized quadrature for energy crossings

We treat energy window pairs (l, m) with an energy cross-
ing, where x = ω − En ± ωp changes sign as the sum over p
and the generalized index, n, in the windows is performed, by
replacing 1/x by the regularized F (x; ζ ) of Eq. (9),

�(±)(ω)lm
r,r′ =

∑
{p∈L(±)}

∑
{n∈M(±)}

Bp
r,r′ [ψrnψ

∗
r′n]

×F (ω − En ± ωp; ζ ) . (32)

where ζ is same for all windows with a crossing. As discussed
in Sec. II B, the two standard regularization strategies in the
GW literature are (1) to these zero contributions for small x
[i.e., setting F (x; ζ ) = 0 for small x] or (2) to use a Lorentzian
smoothing function with ζ = −iγ , γ > 0 and h(t ; ζ ) = γ e−τ ,
i.e.,

F (x; ζ ) = x

x2 + γ −2
= Im

∫ ∞

0
dτ γ e−τ eiτγ x .

Below we shall eschew ζ and work in terms of γ which is
more natural.

As detailed in Appendix C, a better choice for the weight
function and resulting transform are

h(τ ; γ ) = γ exp(−τ − τ 2/2),

F (x; γ ) = γ Im

{√
π

2
e− (xγ+i)2

2

[
1 + ierfi

(
xγ + i√

2

)]}
. (33)

The new weight has a transform that both approaches 1/x
faster than the Lorentzian in the large x limit (see Appendix
C), and is regular for all x. In addition, its transform can be ac-
curately computed via time integration with fewer quadrature
points than required by weight that leads to the Lorentzian
(i.e., the pure exponential function).

A Gaussian-type quadrature for the new weight function
can be generated following the standard procedure [40] to cre-
ate a set of nodes {τ } and weights {w} for a given quadrature
grid size N (τ,HGL) (see Appendix H). The superscript HGL
denotes Hermite-Gauss-Laguerre quadrature since the weight
function has both linear and quadratic terms in the exponent.
Inserting the result, the discrete approximation becomes

F (x; γ ) ≈ γ Im
N (τ,HGL)∑

u=1

wu eiτuxγ

≈ γ

N (τ,HGL)∑
u=1

wu sin(τuxγ ). (34)
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Finally, for the window pairs (l, m) with an energy crossing

�(±)(ω)lm
r,r′ = γ

N (τ,HGL,±)
lm∑

u=1

wu

⎧⎨
⎩
⎡
⎣ ∑

{p∈L(±)}
Bp

r,r′ sin(±τuωpγ )

⎤
⎦

×
⎡
⎣ ∑

{n∈M(±)}
ψrnψ

∗
r′n cos(τu(ω − εn)γ )

⎤
⎦

+
⎡
⎣∑

{p∈L}
Bp

r,r′ cos(±τuωpγ )

⎤
⎦

×
⎡
⎣ ∑

{n∈M(±)}
ψrnψ

∗
r′n sin(τu(ω − εn)γ )

⎤
⎦
⎫⎬
⎭ , (35)

which is separable and can be computed in O(N3). Again, one
value of broadening parameter γ is selected for all windows
with energy crossings. The parameter γ is a convergence
parameter taken to be as small as possible without effecting
results. The number of grid points will vary depending on the
bandwidth in the window pair scaled by γ and the desired
fractional error.

3. Quadrature points for specified error level

For window pairs without an energy crossing, ω − En ±
ωp does not change sign, and the GL quadrature previously
analyzed is utilized (the general subscript is n is used to denote
that either c or v states are possible). For window pairs with
energy crossings, the HGL quadrature is required. Appendix
D details the construction of N (τ,HGL)(x; ε (q) ),

N (τ,HGL)
(
x; ε (q)

) = c2
(
ε (q)
)
x2 + c1

(
ε (q)
)
x + c0

(
ε (q)
)
, (36)

where x = γ (Emax − Emin) is the bandwidth of the window
pair with energy crossings (scaled by γ ), and c2, c1, and c0

are low order polynomial functions of ln ε (q). The values of
the coefficients are given in Appendix D.

4. Optimal window choice

We now consider the computational cost to compute �(ω)
for window pairs with an energy crossing,

C(HGL)
lm (ε (q) ) = 2N (τ,HGL)

lm (xlm; ε (q) )

×
(∫ ω

(p,max)
m

ω
(p,min)
m

D(p)(ω)dω +
∫ E (n,max)

l

E (n,min)
l

D(E )dE

)
.

Here, the mth plasmon mode window spans the energy range
[ω(p,min)

m , ω
(p,max)
m ], the lth band energy window spans the en-

ergy range [E (n,min)
l , E (n,max)

l ], the density of plasmon modes
is D(p)(ω) and the density of band states is D(E ). (The
explicit dependence of the cost function on the window edges
is, again, suppressed.) The parameter xlm is xlm = γ E (bw)

lm

where �E (bw)
lm is the absolute value of the maximum energy

difference between the single particle and plasmon modes in
the window pair. Although potentially discontinuous as the
window ranges evolve during minimization, the insertion does
not prevent rapid numerical convergence of the cost function

to its minimum value. Further discussion can be found in
Appendix E.

F. Cubic scaling P(ω)

The energy window plus time integral quadrature methods
developed to compute the static P and the dynamic �(ω)
can be applied directly and without modification to the com-
putation of the frequency-dependent polarizability P(ω) of
Eq. (3) with O(N3) computational effort. The key observation
is that P(ω) can be written as the sum of two simple energy
denominator poles:

P(ω)r,r′ =
∑

c,v,σ,σ ′
[ψx,cψ

∗
x′,c][ψx′,vψ

∗
x,v]

×
(

1

ω − (Ec − Ev )
− 1

ω + (Ec − Ev )

)
. (37)

Since P(ω) = P(−ω), we need only focus on P(ω) for ω > 0.
The second energy denominator ω + Ec − Ev is always posi-
tive definite since Ec − Ev � 0 and can be evaluated in O(N3)
with the same GL quadrature methodology developed for
evaluating the static P in Sec. II C; the presence of ω > 0 in
the second denominator enlarges the effective energy gap and
enhances convergence of our method. The first energy denom-
inator ω − (Ec − Ev ) can change sign once ω is larger than the
energy gap. However, this term can be evaluated with O(N3)
effort using the energy crossing quadrature/regularization
method developed for �(ω) in Sec. II E.

III. RESULTS: STANDARD BENCHMARKS

Here, the application of the new CTSP method to standard
benchmark systems is presented. Results for the optical di-
electric constant and the energy band gap within the COHSEX
approximation are given for crystalline silicon (Si) and mag-
nesium oxide (MgO). Next, studies of the static polarization of
crystalline Al, a gapless systems, are presented. Last, a G0W0

computation of the band gap of crystalline Si is given.

A. Optical dielectric constant and COHSEX band gap

In order to evaluate the performance of the new reduced
order method, CTSP, we study two standard benchmark mate-
rials: Si and MgO. We first perform plane wave pseudopoten-
tial DFT calculations for both materials to generate the DFT
band structure and then employ the results in the reported GW
computations. Appendix G contains the details of the DFT and
GW calculations.

Silicon is a prototypical three-dimensional covalent crystal
(diamond structure) with a moderate band gap (0.5 eV in DFT-
LDA) while rocksalt MgO is an ionic crystal with a relatively
large gap (4.4 eV in DFT-LDA). To judge the performance of
CTSP, the convergence of two basic observables are studied:
the macroscopic optical dielectric constant ε∞ and the band
gap within the COHSEX approximation to the self-energy [8].

Figure 3 shows the error in ε∞ as a function of the
computational savings achieved by both CTSP-W and CTSP-
1 O(N3) techniques, and the O(N3) interpolation method
described in Appendix F, relative to the standard O(N4)
method for 16 atom (periodic) supercells of MgO and Si.
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FIG. 3. Error in the macroscopic RPA optical dielectric constant
ε∞ for the interpolation, the CTSP-W and the CTSP-1 methods with
respect to the prediction of the standard quartic O(N4) technique.
The horizontal axis is the ratio of computational load of the cubic
methods to the standard O(N4) method as measured by operation
count for a system of 16 Si atoms. Upper: Bulk Si data generated
by using input fractional quadrature error ε (q) {0.001, 0.01, 0.1, 0.2}
for interpolation; {0.001, 0.01, 0.1, 0.3, 0.5} for CTSP-1;
and {0.001, 0.01, 0.1, 0.3, 0.5, 0.8} for CTSP-W. Middle:
same for bulk MgO with ε (q) {0.001, 0.01, 0.1} for
interpolation {0.001, 0.01, 0.1, 0.3, 0.7} for CTSP-1 and
{0.001, 0.01, 0.1, 0.2, 0.4} for CTSP-W. One point on each
method’s curve is generated per input value ε (q).

Each data point is generated by fixing a fractional quadrature
error, ε (q) and then minimizing our cost function for CTSP-W.
Figure 4 shows the COHSEX band gap for the CTSP-W and
interpolation methods, respectively.

The results demonstrate that the CTSP-W approach shows
high performance with respect to both accuracy and effi-
ciency; the improvement over the CTSP-1 and the interpola-
tion methods is clear for Si. The larger MgO gap can be treated
with fewer integration points and also leads to functions that
are easier to interpolate. For both materials, the CTSP-W
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FIG. 4. Error in the COHSEX approximation to the band gap
(�-X gap for Si and � for MgO) for the interpolation, and the
CTSP-W with respect to the prediction of the standard quartic O(N4)
technique as function of the ratio of operation count to the standard
method. All data sets are computed for a supercell size of 16 atoms.
The nomenclature and numerical tolerances are those of Fig. 3.

method achieves better than 0.1 eV accuracy in the band gap
with at least an order of magnitude reduction in computation
compared to the O(N4) approach. Note that the computational
savings of CTSP-W relative to the standard technique, as
measured by operation count, will improve linearly as the
number of atoms is increased (beyond N = 16).

Figure 5 shows the correlation between the logarithm of
the fixed fractional quadrature error, ε (q), and the logarithm
of the fractional error in the macroscopic optical dielectric
constant given by the application of CTSP-W to Si and MgO.
The data indicate the error in ε∞ is at least one order of
magnitude smaller than the input fractional quadrature error
and the slopes of the log-log curves are approximately unity.
Although these results do not represent a rigorous bound,
they nonetheless show that the error in physical quantities
calculated via the CTSP methods can be controlled by turning
one simple “knob” (ε (q)) and the integration accuracy required
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FIG. 5. The relation between the input fractional quadrature error
tolerance ε (q) and the output error in the physical observable ε∞
for the CTSP-W method applied to Si and MgO. The dotted line
represents the situation where quadrature error equals to observable
error.

for well converged results is surprisingly modest (see also
Sec. III D).

B. Zero-gap materials

In order to test the performance of the reduced order ap-
proach for static P in zero-gap materials, we study crystalline
aluminum (Al) (Appendix G contains the details of DFT
calculations performed to obtain the band structure). Gaussian
broadening (β−1 = 0.03 Ry) is employed to treat the occupa-
tion numbers and for simplicity the occupation numbers are
set to 0 or 1 when these differ from their corresponding zero-
temperature values by less than 10−6. Although there is no
energy gap in a truly extended metallic Al system, calculations
performed in a finite periodic supercell will have discrete
eigenvalues and a (small) artificial energy gap. However, the
new method is robust to zero energy gap as described above
and associated appendices.

Figure 6 shows the error in the P0,0 element of the RPA irre-
ducible polarizability (where these matrix indices correspond
to reciprocal space) for q = ( 1

2 , 1
2 , 1

2 ). The performance of
the CTSP-W method is compared to both the quartic scaling
method and the single window limit, CTSP-1 as above. Here,
the single window limit is not as efficient as it was for Si
or MgO. This is because treating very small E (gap) requires
a large quadrature grid to obtain the desired accuracy in the
single window limit. However, the CTSP-W method com-
pletely removes any trace of difficulties associated with the
small E (gap) and delivers accurate results with high efficiency
for (nearly) zero-gap systems.

C. G0W0 gap

Figure 7 shows the convergence of the G0W0 band gap
of Si computed via the CTSP-W approach with integration
error—the G0W0 band gap is determined in the standard way
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FIG. 6. Error in the P
q=( 1

2 , 1
2 , 1

2 )
0,0 element of bulk Al using CTSP-

W. The horizontal axis is the ratio of computational load of the
cubic to that of the standard O(N4) method for a supercell of
eight Al atoms. A total 400 states were used, and the broaden-
ing parameter was set to 0.03 Ry (see Appendix G). The set of
fractional quadrature errors ε (q) employed to generate the curve is
{0.01, 0.1, 0.3, 0.5, 0.7, 0.8}.

using �(ω) computed by the cubic-scaling CTSP-W method
as described in Sec. II E. The dynamic behavior of W [i.e.,
the pole energies ωp and pole strengths Bp of Eq. (6)] are
determined using the generalized plasmon-pole (GPP) model
of Hybertsen and Louie [9]. The figure shows that high
accuracy is possible with large computational savings when
compared to the standard O(N4) approach.
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FIG. 7. Error in the bulk G0W0 band gap (�-X gap for Si) for
the CTSP-W method as a function of the ratio of computational
load to that of the “exact” quartic method (horizontal dashed line).
All data were generated using a supercell of 16 Si atoms. The
set of fractional integration errors employed to generate the curve
is {0.001, 0.01, 0.05, 0.1, 0.5, 1}. The computed band gap with the
O(N4) method is E (gap,G0W0 ) = 1.37 eV.
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D. Single convergence parameter

Finally, compared to standard O(N4) GW calculations,
our cubic scaling CTSP approach has a single added input
parameter which is the a priori desired fractional quadrature
error ε (q). Due to the CTSP method’s construction, the choice
of window parameters and quadrature grids are all determined
by this single parameter. As illustrated in Fig. 5, the output
error in computed observables is smaller in magnitude than
the input quadrature error. Hence, one can estimate quickly
the value of the input quadrature error that bounds the desired
accuracy in the output observables (although the bound is not
rigorous).

A simple quantity that can be computed in O(N ) com-
plexity via CTSP and provides an estimate of the error in
physical observables generated by the CTSP method, is the
model static polarizability,

P(model) =
∑

cv

f (Ev ) − f (Ec)

Ec − Ev

. (38)

That is, Eq. (38), can be computed for a range of quadrature
errors at the start of a GW calculation: monitoring the CTSP
error in P(model) provides a refined estimate of the ε (q) required
to reach the desired error level in the resulting observables
specified at input.

If a more quantitative estimate of the error in physical
observables is required, we recommend performing a con-
vergence study on a small model system representative of
the system of interest (e.g., a small supercell or unit cell of
bulk material instead of a large supercell of bulk with defects,
an idealized surface with small in-plane lattice parameters
instead of a complex surface reconstruction, etc.). This proce-
dure will again necessitate performing a series of cubic scaling
CTSP computations at various levels of quadrature error ε (q)

to refine the parameter choice through a direct study of the
convergence of the physical observables. Due to the small
size of the model system, the process will require small or
negligible compute time. Finally, a full convergence study
of the CTSP prediction of the observables of interest as a
function of ε (q) on the (large) system can be performed. This
latter procedure retains cubic computational complexity but
with increased prefactor. In general, performing convergence
studies using CTSP on model systems is likely to provide
sufficient error control for validation purposes—the model
system approach is commonly used to select the cutoff energy
in the conduction band for standard GW computations, for
instance.

IV. RESULTS: SCALING ANALYSIS AND COMPARISON
TO OTHER METHODS

First, the cubic scaling and small prefactor of the new
CTSP-W O(N3) method of this paper are verified with actual
computations. Next, the ability of the new technique to treat
physical systems of scientific and technological interest that
heretofore have been too computationally intensive to study
routinely, is evaluated. Last, the performance of the new
method is compared to small prefactor O(N4) methods and
other O(N3) techniques.
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FIG. 8. Compute time per operation for evaluation of the static P
of crystalline Si. Black squares indicate the O(N4) method, and red
circles and blue asterisks indicate the O(N3) CTSP-W method with
maximum fractional quadrature error (ε (q)) of 1% and 10%. A stan-
dard workstation with the Linux operating system was employed—
the application was not parallelized. The flatness of the curves for
both the O(N4) and O(N3) methods indicate their computation time
increase as N4 and N3: there is no additional hidden cost to using
the O(N3) method in an actual calculation. Computational details
are given in Appendix G. Issues such as cache utilization, different
for different system sizes in our untuned application, account for the
factors of <2× deviation from a horizontal line.

A. Verification of cubic scaling

We verify the scaling of the CTSP-W method in realistic
calculations at two input fractional quadrature error levels
(ε (q)). The actual total computer time required to compute
the static P is measured as a function system size (num-
ber of atoms in the supercell) and the compute time per
operation presented in Fig. 8 for crystalline silicon. The
number of operations are NvNcN2

r for the O(N4) method and∑
l,m N (τ,GL)

lm (L(v)
l + L(c)

m )N2
r for the CTSP-W O(N3) method

[see Eq. (16)]. The result is a flat line—the algorithms scale
as they should on a present-day desktop computer.2

It is important that the compute times per operation are
very close to each other indicating that the O(N3) method has
a prefactor that is comparable to that of the O(N4) method
even in small systems, N � 10 atoms. Thus the reduced order
method is highly efficient. These results also validate our use
of operation counts as the measure of computational work
in the comparisons presented above (and below)—the CTSP
method has virtually the same computational overhead as that
of the standard O(N4) scaling approach per operation.

2For systems with a small number of atoms, the CTSP-W runs
slightly slower per operation, <2×, due to the inefficient caching
and pipelining of our untuned software.
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TABLE I. Representative medium and large physical systems
that at present are computationally challenging to approach with
existing O(N4) GW methods. Here, Nv and Nc are number of valence
and conduction bands respectively. Nk is number of k points to be
sampled. NFFT is the number of FFT grids, which is the same as
the rank of P matrix. The gap and bandwidth are estimates to be
determined by application of our method.

Medium system Large system

N 72 177
Nv 144 529
Nc 2806 10 600
Nk 8 4
NFFT 39 000 319 000
Gap 2.2 eV 1 eV
Bandwidth 110 eV 103 eV

B. Sizing for large systems

The computational effort required to generate the static
P(0)r,r′ polarizability matrix with the quartic, CTSP-1 and
CTSP-W methods will now be analyzed for two systems:
“medium” and “large.” The medium-sized system is a 72-
atom GaN supercell, while the large system is a 177-atom
photovoltaic interfacial system. The number of plane waves
in the basis set is 19 200 and 149 000, and the number of FFT
grid points is 39 000 and 319 000 for 72-atom and 177-atom
systems, respectively (see Table I). The first material system,
GaN, is a III/V semiconductor important in the production of
RF (radio frequency) components and LEDs (light emitting
diodes). The second material system, a hybrid photovoltaic in-
terfacial system consists of ZnO nanowires covalently bonded
to P3HT polymer chains [Poly(3-hexylthiophene)], has been
studied previously [41] both experimentally and theoretically
at the DFT level of theory: this type of photovoltaic system
combines an organic polymer photoabsorber (here, P3HT)
with an inorganic carrier transport channel (here, ZnO) at the
nanometer scale to dissociate optically excited excitons into
highly mobile carriers.

Table II shows the number of operations [27] required
to compute P(0)r,r′ for the two systems using the standard
quartic scaling method, CTSP-1 and CTSP-W. For the CTSP-
W method, the parameters are selected by minimizing the
cost function described in Sec. II C. The quadrature grids are
chosen to achieve less than 0.1% error in the calculation of
P(model). We emphasize that 0.1% error in ε (q) will achieve ac-
curate results as presented in Figs. 3-5. Table II shows that the

TABLE II. Number of operations required to calculate the Pq
r,r′

matrix for the medium and large systems of Table I followed by the
memory required to store Pr,r′ in each case.

Medium Large

Standard O(N4) 4.92 × 1015 2.28 × 1018

Operation count
CTSP-1 5.38 × 1014 2.26 × 1017

Pq
r,r′ CTSP-W 1.18×1014 2.67 × 1016

Memory for Pq
r,r′ 23 GB 1 TB

CTSP-W method yields an efficient computation of P(0)r,r′

without sacrificing accuracy – for the medium system, the
CTSP-W method delivers about a 40× reduction in operation
count while, for the large system, CTSP-W delivers about
a 100× reduction (compared to the standard quartic scaling
technique). Thus these technologically interesting problems
are now approachable in terms of computer time typically
available to users of supercomputer centers throughout the
world.

It is important also to consider the memory requirements to
store a large matrix such as Pr,r′ and whether this requirement
can be satisfied by today’s supercomputers (see Table II). The
Blue Waters machine at NCSA,3 a leading HPC platform, has
64 GB of memory per node and the installation has 23K nodes
for a total of 1.4 petabytes of memory. The BlueGene/Q in-
stallation at Argonne National Laboratory, Mira, has 16 GB of
memory per node and 49K nodes for a total of 0.8 petabytes.
Thus, using only a fractional allocation of such computers,
the P matrix, even for the large system, can easily be ac-
commodated. More compact representations of the P matrix
are possible and under development. Of course, the effective
utilization of distributed memory supercomputers requires a
well-parallelized GW software implementation such as that
developed by us in Ref. [27] or by others in Ref. [26]; both of
these software applications can be modified to implement the
CTSP methodology straightforwardly.

Last, it is worth noting that five-index entities such as those
presented in Sec. II D are purely formal devices and never
stored in full form. The only large matrix stored is Pr,r′ and
that is computed in N2

T tiles of size (Nr/NT × Nr/NT ), indexed
by {T, T ′}, to reduce the memory footprint as follows [27].
Intermediate quantities can be strictly reduced to matrices
of size (Nr/NT × Nr/NT ) because at each step through the
l, m, T, T ′, and u control sum or loop, two such matrices
are constructed (i.e., the current tile of Slmu

r,r′ and Qlmu
r,r′ ), their

product taken and the result added to the current resolution of
the current tile of Pr,r′ . If necessary, Q, Z , and their product
can be subsequently computed, reusing the memory, and also
added to resolution of the current tile of Pr,r′ . In the next
iteration of the five-index sum, the memory is, again, reused
and the process repeated until Pr,r′ is fully resolved (the five-
index sum is completed).

C. Comparison with small prefactor O(N4) methods

Next, we compare the CTSP-W method to existing, low
prefactor, quartic scaling GW methods. We choose to employ
the YAMBO GW software (http://www.yambo-code.org/)
which implements a quartic scaling sum-over-states technique
within the “terminator” acceleration approach of Bruneval and
Gonze (BG) [19]. A 16-atom Si supercell with one k point
is employed. Figure 9 shows the error in the band gap ver-
sus computational savings. The band gap error is referenced
to a computation utilizing a large number of bands (3200)
that converges the gap to better than 1 meV. Computational
savings are referenced to a computation utilizing 2464 bands
with the standard quartic scaling method. As expected, the

3https://bluewaters.ncsa.illinois.edu/
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FIG. 9. Comparison of the performance, absolute band gap error
versus computational load, for the O(N4) GW terminator method
of Ref. [19] as implemented in the YAMBO software, labeled YAMBO

BG, and the O(N3) CTSP-W method for a 16-atom Si cell with one k
point. The BG band gap is shown as red circles. The CTSP-W 2464
band gap (i.e., computed using 2464 bands) is given by the green
stars, and the CTSP-W 1280 band gap (i.e., computed using 1280
bands) is given by the blue squares. See Fig. 3 for other details.

BG method systematically and rapidly improves the band gap
as the computational load is increased (i.e., more unoccupied
bands are explicitly summed over), since it is designed to
compute a good approximation to having an infinite number
of unoccupied bands. The CTSP-W is run under two realistic
conditions: using 1280 bands which leads to a band gap error
∼10 meV if all 1280 bands are used, and using 2464 bands
which leads to a band gap error below 1 meV. We note that a
precision of 10 meV for band gaps is more than sufficient for
GW calculations since the GW approximation itself is not this
accurate.

Both the O(N4) terminator method and the O(N3) CTSP-
W method deliver significant savings in the computational
workload compared to the standard quartic scaling method
for an accuracy of 10 meV in the band gap of the 16-atom Si
system. We observe that the CTSP-W method is already more
efficient than the terminator method for a 16-atom cell. Since
the CTSP-W method scales cubically, its efficiency advantage
over the quartic method increases linearly with system size.
We thus conclude that the new cubic method has a sufficiently
small prefactor to be competitive with existing accelerated
quartic scaling GW methods even for simulations cells with
as few as ∼10 atoms.

D. Comparison with other O(N3) methods

Last, the performance of the new CTSP-W method is com-
pared to other cubic scaling GW methods—that of Foerster
et al. [22] and Liu et al. [23], respectively—in Figs. 10 and 11.
The comparison is for the model given in Eq. (38). The input
energies are taken from a 16-atom crystalline Si supercell
with 399 bands generated at the � point of the BZ (The
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FIG. 10. Comparison between the performance of the cubic scal-
ing Foerster et al. [22] and the CTSP-W method. The y axis is the
error (%) in P(model) (for a 16-atom Si supercell with 399 bands)
and the x axis is the logarithm of the ratio of computational work
to that of the quartic method. The standard for the error is the
quartic scaling result. For the Foerster method, the operation count
is Nω(Nc + Nv ) where Nω is the number of frequency grid points,
and for the CTSP-W method the workload is defined in Eq. (16)
where Nr is set to one. The band gap E (gap) is manually adjusted (i.e.,
using a “scissors” operation, to investigate its effect on performance.
F-single and F-double mean the Foerster method using single and
double windows.

band occupancies are 1 or 0 for this system). The workload
is defined as Nω(Nc + Nv, where Nω is a number of frequency
grid points used in Eq. (32) of Ref. [22]. We calculate P(model)

with the single and double window methods of Foerster et al.
To investigate the effect of the input single particle band gap
on performance, we manually adjust it from E (gap) = 0.47 eV
to E (gap) = 5 eV by uniformly shifting the conduction bands
up in energy (a “scissors” operation).

First, for all cases examined, CTSP is more computa-
tionally efficient than the method of Foerester et al. for
the same level of accuracy. We note that the approach of
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FIG. 11. Comparison of the performance of the cubic scaling
minimax method of Liu et al. [23] and the CTSP-W method of
this paper, for the computation of P(model). The computational work
(x axis) for the minimax method is Nω(Nc + Nv ), where Nω is the
number of imaginary time grid points (see also the text). The standard
quartic scaling method provides the baseline.

Foerester has not been widely adoption in GW applications
due to its large crossover point (large system sizes are re-
quired before the technique is more efficient than the standard
approach).

Second, Fig. 11 shows a comparison between the minimax
grid technique (the approach of Liu et al.) and the CTSP-W
method for computing the static polarizability, P(model). We
used two sets of data, 399 Si eigenvalues from 16-atom cell
and 435 MgO eigenvalues from 16-atom cell. For the minimax
method, the computational work is defined as Nω(Nc + Nv ),
where Nω is the number of imaginary time grid points used in
the minimax technique. We find that the minimax method is
competitive with the CTSP-W method but slightly inferior in
performance.

To compare two methods more deeply, we note two points
in favor the CTSP-W method. First, the choice of quadrature
grids and energy windows is a straightforward and robust

exercise, requiring only the minimization of a simple cost
function. By contrast, finding the Nω energy grid points that
solve the minmax problem [23] is quite challenging, and we
found it required significant (human and computer) effort
to do so. Second, CTSP-W computes frequency-dependent
spectral quantities such as the polarizability and the self-
energy directly on the real ω frequency axis which is the
final desired and useful physical representation of any spectral
function. Namely, using CTSP-W, there is no need to com-
pute quantities along the imaginary energy or time axis and
then analytically continue to real frequencies. This is highly
desirable as it avoids (i) the use of analytical continuation
methods that are based on assumptions on the analytical
form of the functions, and (ii) the numerical instabilities
inherent in analytical continuation when high accuracy is
desired [42].

V. CONCLUSION

In summary, the GW equations have been recast, exactly,
as Fourier-Laplace time integrals over complex time propaga-
tors. The propagators are then partitioned in energy space and
the time integrals approximated in a controlled manner us-
ing generalized Gaussian quadratures. Coupled with discrete
variable methods to represent the propagators in real-space, a
cubic scaling GW method emerges. Comparisons show that
the new method, CTSP, has sufficiently small prefactor to out-
perform standard and accelerated quartic scaling methods on
small systems (N � 10 atoms). For large systems (up to 200–
300 atoms), we demonstrate the method fits comfortably in
today’s supercomputers both in terms of memory requirement
and computational load and offers speedups of 2 to 3 orders of
magnitude compared to the conventional technique. CTSP’s
efficiency indicate that it has the potential for wide adoption,
and we are currently developing a fine grained parallel version
of the method based on our previous work [27].

Lastly, we discuss possible further development of the
CTSP method aimed at reducing its prefactor and/or its com-
putational complexity (scaling). The key CTSP expressions of
Eqs. (22) and (35) contain sums over many high energy con-
duction band states which are computationally expensive both
to generate and manipulate. Thus, one may develop a modified
terminator method [19] to reduce the number of needed high
energy band states significantly, thereby reducing the O(N3)
prefactor. Reducing the scaling to O(N2) or N2 log 2N is
more challenging for a plane wave basis. However, restricting
band state sums to an energy window (as in CTSP-W) is
equivalent to summing over all band states with occupancies
given by the difference between two different Fermi-Dirac
distributions whose chemical potentials are set at the start
and end of the window, respectively. Thus we can, in prin-
ciple, apply the Fermi operator expansion [43,44] approach
to describe the Fermi-Dirac functions using polynomials of
the Hamiltonian and matrix-vector multiplications without
reference to the bands themselves. Such an approach should
lead to an O(N2) (or N2 log 2N) scaling method (under plane
waves and other basis sets), but significant future work is
required to realize the concept with both low prefactor and
effective error control.
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APPENDIX OVERVIEW

In order to improve the readability of the paper, we have
chosen to place the detailed analyses in appendices. In Ap-
pendix A, the Gauss-Laguerre quadrature for window pairs
without energy crossing is discussed. In Appendix B, the
determination of the optimal windowing by minimization of
the cost function for quantities without energy crossings is
described. Appendices C and D discuss the weight function
and quadrature employed to treated window pairs with energy
crossings, respectively, while Appendix E describes mini-
mization of the cost function for quantities whose evaluation
involves treating energy window pairs with energy crossings.
In Appendix F, an alternative O(N3) method based on inter-
polation is given, and in Appendix G, computational details
related to the results presented in the main text are described.
Last, MATLAB code to generate the weights and nodes of the
Hermite-Gauss-Laguerre quadrature is presented.

APPENDIX A: GAUSS-LAGUERRE QUADRATURE
OPTIMIZATION

We provide the optimizations required to evaluate energy
denominators by discrete approximation to time domain inte-
grals for a set of energies in a window pair.

1. Optimal error matching choice for energy scale ζ

First, we describe the optimal error matching choice of
ζlm for the Gauss-Laguerre (GL) quadrature of Eq. (24).
We suppress the energy window index lm and describe why
ζ−1 ≈

√
E (bw)E (gap) is a good choice for the energy scale ζ :

it equalizes the error of the GL quadrature across a given
window pair.

We seek to optimally approximate the continuous time
integral yielding the desired energy denominaor via numerical
quadrature,

1

�
= ζ

∫ ∞

0
e−ζ�τ dτ ≈ ζ

N (τ,GL)∑
u=1

wue−τu (ζ�−1)

for � = Ec − Ev > 0. That is, defining the dimensionless
quantity, x = ζ�, we wish to minimize the error

ε (q)(x)

x
= 1

x
−

N (τ,GL)∑
u=1

wu exp (−τu(x − 1)) , (A1)

for x spanning the scaled range of a given window pair. We
first note that the error is exactly zero at x = 1 since GL
quadrature is exact when integrating e−τ . Figure 12 shows a
plot of the error versus x. The error curve is symmetric around

FIG. 12. Gauss-Laguerre (GL) quadrature error in the integration
of e−xτ with 12 quadrature points as a function of ln10 x, solid blue
curve [see Eq. (A1)]. The dashed black horizontal line shows that for
−0.75 � log10 x � 0.75 equal error is generated for x and 1/x.

ln x = 0, especially when smaller error values are of interest,
which is the case herein. That is, the integration error, to a
good approximation, is even in ln x about ln x = 0.

Second, the interband energies � range from E (gap) to
E (bw). Examining Fig. 12, the lowest errors are sampled
as x ranges from its lowest value of ζE (gap) to its high-
est value of ζE (bw). Therefore it is reasonable to choose ζ

such that x = ζE (gap) < 1 and x = ζE (bw) > 1 straddle x =
1 and have the same error, i.e., optimal error equalization.
For a symmetric error function about ln x = 0, this requires
− ln(ζE (gap)) = ln(ζE (bw)) which yields the geometric mean
ζ−1 =

√
E (bw)E (gap). The geometric mean becomes exactly

optimal as N (τ,GL) is increased as well as when E (bw)/E (gap)

is close to unity (the many windows limit).

2. Number of Gauss-Laguerre quadarature points for
bounded error

When we fix ζ−1 =
√

E (bw)E (gap), the maximum fractional
error of Eq. (A1), ε (q), occurs at the largest energy transition
(i.e., the error in computing the inverse energy 1/E (bw) via
quadrature). For N (τ,GL) quadrature points, we have

ε (q)(α) = 1 − α

N (τ,GL)∑
u=1

wu exp [(1 − α)τu]. (A2)

where α =
√

E (bw)/E (gap). The analogous equation for the
fractional error in the computation of 1/E (gap) has α replaced
by 1/α, and is equal to the error of Eq. (A2) due to optimal
error-matching choice of ζ . Figure 13 displays a contour plot
of the fractional quadrature error, ε (q) of Eq. (A2). The plot
demonstrates that N (τ,GL) is essentially linear in α for any
fixed choice of fractional error. Analysis of the contour plot
shows that an accurate and compact explicit relation between
the variables is

N (τ,GL)(α; ε (q) ) = α(y − 0.3 ln ε (q) ),
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FIG. 13. The fractional error, ε (q), of Gauss-Lauguerre quadra-
ture (for x = 1/E (bw)) as a function of α and N (τ,GL). Here, α is
defined to be

√
E (bw)/E (gap). Each contour is labeled by ε (q). For a

fixed fractional error, N (τ,GL) is linear in α.

y = 0.4. (A3)

This equation fits the data well for ε (q) � 0.135 but the range
can be extended to unit ε (q) by taking y = 1.0. Note, our
choice bounds the integration error: the end points of the
energy windows are worst cases and all other transitions are
computed more accurately. Hence, the number of quadrature
points needed to compute the interband transitions within an
energy window pair can be simply estimated so as to ensure a
maximal a priori fractional error bound, ε (q).

APPENDIX B: OPTIMAL SETS OF ENERGY WINDOWS

We describe our prescription to determine the optimal
number and placement of energy windows in the range of
Ec and Ev . This is accomplished by minimizing the com-
putational cost function C(GL)(ε (q) ) of Eq. (26). In this Ap-
pendix, we omit the fractional error level ε (q) as it does not
affect the optimal set of energy windows. To motivate the
discussion, consider a 2 × 2 window scheme where the two
free parameters are the dividing energy values E∗

v and E∗
c

in the valence and conduction bands, respectively, that deter-
mine the boundaries of the windows. These are converted to
dimensionless quantities, E (ratio)

c = (E∗
c − E (min)

c )/(E (max)
c −

E∗
c ) and E (ratio)

v = (E∗
v − E (min)

v )/(E (max)
v − E∗

v ). Figure 14
shows the dependence of the cost C(GL) on two ratios for
the case of flat densities of states. The function, C(GL), is
a smooth function of the window boundaries and we find
that this smoothness is not confined to 2 × 2 windowing but
carries over to larger number of windows. Note, the position
of the minimum in Fig. 14 is nontrivial, occurring at the point,
(E (ratio)

v , E (ratio)
c ) = (1.25, 0.29).

Since C(GL) is a smooth function of the energy window
partitions, for a given number of windows (Nvw

, Ncw
) and

some starting set of window partitions (e.g., all equal), we
can employ a simple gradient descent algorithm to minimize
C(GL) over the positions of the energy window boundaries and

2000
9

4000

3

Evratio

1

Ecratio

1

6000C

3

8000

9

10000

FIG. 14. Computational cost to compute the static P using a
Nvw

= 2 × Ncw
= 2 window scheme as a function of energy window

size for a 16-atom Si system with 399 states (32 occupied and
367 unoccupied states) and one k point (no k-point sampling and
hence q = 0 strictly). The position of the minimum does not occur
at the equipartition point, (1,1), but rather at (E (ratio)

v , E (ratio)
c ) =

(1.25, 0.29).

to find the minimum value of C(GL)(Nvw
, Ncw

). By varying
the number of windows Nvw

, Ncw
over a reasonable range and

tabulating the minimized cost function C(GL)(Nvw
, Ncw

), the
global minimum and the hence the optimal choice of window-
ing, i.e., the number of windows pairs {Nvw

, Ncw
} and their

partitioning of the energy ranges, can be found. In practice,
varying the number of window from 1 to 9 is sufficient to
determine the best windowing choice for all the systems we
have considered; so that, 81 small minimization procedures
are performed in total. Note, the process is simplified because
of the separable nature of N (τ,GL) of Eq. (A3): the partitioning
results do not depend on the desired fractional error, ε (q).

Figure 15 illustrates the minimal value the cost function
at several {Nvw

, Ncw
} for a bulk Si crystal described by 16-

atom supercell and 32 valence and 367 conduction band
states. Here, the minimal computational load occurs for at
the point, (Nvw

= 1, Ncw
= 5). For k−point sampling over the

first BZ under the CTSP-W method, the computation of Pq at
momentum transfer q is optimized by applying the windowing
with cost function minimization procedure to each k, k + q
pair. That is, the densities of states acquire band indices,
Dk (E ), Dk+q(E ), and the number of windows {Nk

vw
, Nk+q

cw
} and

their partition, the sets {E (v,min)
k , E (v,max)

k }, {E (c,min)
k+q , E (c,max)

k+q },
are optimized for each (k, k + q) pair in the BZ.

APPENDIX C: WEIGHT FUNCTION FOR WINDOW PAIRS
WITH ENERGY CROSSINGS

We develop a weight function and associated quadrature
for the case when F (x; ζ ) must be evaluated for energy differ-
ences x that are both positive and negative within a window
pair, i.e., energy crossings occur. A standard choice in the
GW literature is to employ a Lorentzian broadening parameter
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FIG. 15. Minimized computational cost C (GL) to compute the
static P of a 16-atom Si system for window pairs {Nvw

, Ncw
} span-

ning (Nvw
= 9 × Ncw

= 9) (81 total pairs). The total number of
bands in the system was taken to be 399 (32 occupied and 367
unoccupied states) and one k point (no k-point sampling and hence
q = 0 strictly). The position of the minimum is at the point, (Nvw

=
1, Ncw

= 5).

γ > 0 to regularize the singularity of 1/x by replacing it with

F (x) = Im
γ

1 − ixγ
= x

x2 + γ −2
(C1)

in the spirit of the additional scattering that typically ame-
liorates resonances in real materials. This odd function in x
is continuous, approximates 1/x when γ |x| � 1, and has a
separable form as a Fourier integral

F (x) = γ Im
∫ ∞

0
dτ e−τ eiτxγ . (C2)

The exponential weight function implies that the most appro-
priate quadrature method for approximating the integral is the
simply Gauss-Laguerre quadrature. Hence, this F (x) can be
used to separate the sums over n and p when computing �(ω).

The difficulties with this choice are practical. First, the
quadrature grids needed for reasonable errors can become
large. Second, the function approaches 1/x only when |x| �
γ −1 such that if γ −1 is not small compared to the width of
the energy windows being employed, there will be sizable
errors across window boundaries when we switch from F (x)
to 1/x. On the other hand, if we make γ −1 small to avoid this
matching error, the steepness of F (x) near the origin, which
is directly related to the rapid oscillations versus τ of e−iγ xτ

with large γ in the integral form of F in Eq. (C2), requires a
large quadrature grid to describe accurately.

We alleviate the above difficulties by taking advantage
of the freedom afforded in choosing the functional form of
F (x; ζ ) in Eq. (9). Instead of employing the weight function
h(τ ; ζ ) = |ζ |e−τ with ζ = iγ , we propose to use

h(τ ; ζ ) = |ζ | exp(−τ − τ 2/2),

which falls off much faster for large τ and will thus generate a
much smoother F (x) for small x. However, since its behavior
for small τ is the same as the e−τ , the associated F (x) will
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FIG. 16. (Left) Comparison of the two weight functions de-
scribed in the text for γ = 1. The blue dashed curve is the expo-
nential weight exp(−τ ) associated with Lorentzian broadening; the
solid red curve is the new weight function associated with Eq. (C3).
(Right) Fourier transforms of the weight functions. The transform
of the exponential weight e−τ (dashed blue) is x/(1 + x2) while the
transform of the weight h(τ ) = exp(−τ − τ 2/2) is given by Eq. (C3)
(solid red). For comparison, the target function 1/x is shown as well
(short dashed green). Equation (C3) is smoother for small x and
approaches 1/x more rapidly at large x than x/(1 + x2).

also approach 1/x asymptotically at large x. In addition,
choosing the ratio of exactly 1/2 between the prefactors of the
linear and quadratic parts of the exponential defining h is not
arbitrary: this choice of ratio guarantees that F (x; ζ ) = 1/x +
O(1/x5) for large x while any other choice F (x; ζ ) = 1/x +
O(1/x3). We also note the transform F (x) can be written, in
closed form, in terms of the generalized error function

F (x) = ζ Im

{√
π

2
e− (xζ+i)2

2

[
1 + ierfi

(
xζ + i√

2

)]}
. (C3)

Figure 16 shows a comparison of the two weight functions
and their computed Fourier transforms F (x). The weights
and nodes for a Gaussian-type quadrature for the weight
function, exp(−τ − τ 2/2), which we term Hermite-Gauss-
Laguerre (HGL) quadrature, can be generate using the proce-
dures embodied in the MATLAB code provided in Appendix H.

It is useful to compare the accuracy of with which the
two choices of weight function can be numerically integrated.
Table III shows the number of quadrature points required to
generate a specified error when using the Lorentzian gener-
ating weight e−τ and improved weight exp(−τ − τ 2/2) for
an energy window of unit width. To generate this table, we
specify a maximum percentage error and then find γ such that
F (x) differs from 1/x by less than the specified error when
x = 1. We then find the size of a quadrature grid N (τ,HGL) such
that the difference between the quadrature approximation of
Eq. (35) and the true F (x) is below the same error level for
all x in the window (i.e., 0 � x � 1). It is clear that the new
weight function and associated quadrature is at least an order
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TABLE III. Number of quadrature grid points required to meet
the maximum specified percent error for the for the integration of
exp(iτ ) over the two weight functions discussed in this section—the
energy window has unit width, i.e., γ x = 1.

% error N (τ,GL) (w = e−τ ) N (τ,HGL) (w = e−τ−τ2/2)

5 6 1
1 24 1
0.1 124 5
0.01 547 15
0.001 2216 36

of magnitude more efficient in generating its transfrom than
the standard choice e−τ .

APPENDIX D: HERMITE-GAUSS-LAGUERRE
QUADRATURE GRID SIZE AT FIXED ERROR

A necessary input to the cost function, whose minimization
determines optimal window placement, is the number of grid
points required to generate a desired error level ε (q) in the
time integrals. Figure 1(b) shows a 2 × 2 windowing example
containing window pairs with an energy crossing. That is,
the sign of the denominator changes for the window pairs
{Ea,1, Eb,1} and {Ea,2, Eb,1}. In order to treat such pairs, we
employ the weight function h(τ ; ζ ) = |ζ | exp(−τ − τ 2/2)
and Hermite-Gauss-Laguerre quadrature to discretize the
τ integrals. For all window pairs without energy crossing,
the time integrals are discretized using Gauss-Laguerre
quadrature and the methodology developed for static P
computations; these windows are not considered further. We
continue below to develop the tools required to treat windows
with energy crossings.

We first seek a quantitative relationship between the num-
ber of quadrature points N (τ,HGL), the energy difference x =
Ea − Eb, and the fractional error of the quadrature for the case
of energy windows with an energy crossing. The fractional
quadrature error is defined as

ε (q) = |F (x) −∑N (τ,HGL)

u=1 wu sin (τux)|
|F (x)| , (D1)

where, again,

F (x) = Im
∫ ∞

0
dτe(−τ−τ 2/2)eiτx

and we have standardized the analysis by setting the en-
ergy scaling variable to unity (|ζ | = γ = 1). Here, F (x) is
computed to very high accuracy via numerical integration
or evaluation of the generalized error function. Figure 17
displays the function ε (q)(x, N (τ,HGL)): due to the presence of
the sine function in ε (q), the quadrature error ε (q) is oscillatory
as a function of x and finding a simple relationship between
ε (q), x, and N (τ,HGL) is challenging.

We find that

ε
(q)
fit = tanh

(
x2N (τ,HGL))

× exp
[− (1 + 3.3N (τ,HGL))e−0.68x2/N (τ,HGL)]

, (D2)
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FIG. 17. Hermite-Gauss-Laguerre quadrature error as function
of x and N (τ,HGL) [see Eq. (D1)]. (Top) The fractional quadrature
error (ε (q)) is indicated as blue dots along with the fit function,
ε

(q)
fit [see Eq. (D2)]. (Bottom) The contour lines of ε

(q)
fit are shown.

Each contour line can be represented with high fidelity using only
quadratic function of x [see Eq. (D3)].

which is also plotted in Fig. 17, provides a good fit to the
data. Direct analytical inversion of Eq. (D2) to obtain N (τ,HGL)

as a function of x and ε
(q)
fit is not feasible. However, a good

estimate is

N (τ,HGL)(x; ε (q) ) = c2(ε (q) )x2 + c1(ε (q) )x + c0(ε (q) ), (D3)

where

c2 = −0.0036 ln ε (q) + 0.11 ,

c1 = −0.0043(ln ε (q) )2 − 0.13 ln ε (q) + 0.54 ,

c0 = −0.204 ln ε (q) − 0.29 .

APPENDIX E: TREATING SYSTEMS WITH ENERGY
LEVEL CROSSINGS

Here, the procedure to determine window placement for
cases in which there is an energy crossing [e.g., in the
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computation of the self-energy �(ω)], is described. In direct
analogy with the static P case, we write a cost function
with separate energy windows for occupied (valence, v) case
ω − Ev + ωp and the unoccupied (conduction, c) case ω −
Ec − ωp in the band sums for the self-energy. We then allow
the number of energy windows Npw

and Nvw
or Ncw

to range
from 1 to 9, and for each such choice (Npw

, Nvw
) or (Npw

, Ncw
),

the computational cost is minimized via a simple gradient
descent method. When a window pair has an energy crossing,
we simply employ Eq. (D2) to estimate the quadrature size,
while for all other window pairs we employ Eq. (A3) to
determine the size of the quadrature grid.

For a concrete example, consider the model self-energy

�(model)(ω) =
∑
vp

1

ω − Ev + ωp
+
∑

cp

1

ω − Ec − ωp
(E1)

using energies and plasmon frequencies from an eight-atom
crystalline Si supercell cell. A total of 32 valence bands, 382
conduction bands and and 425 plasmon modes are employed.
The valence band ranges from −0.21 to 0.23 Ha, the con-
duction band from 0.25 to 2.29 Ha, and the plasmon modes
from 0.31 to 45.5 Ha. Selecting ω = −0.21, only the valence
band sum for �(ω) has the sign-change requiring the use of
HGL quadrature. The conduction contribution to �(ω) does
not change sign, and we simply utilize GL quadrature for
all {ωp, Ec} pairs. In Fig. 18, we present the cost function
minimized for 81 {Nvw

, Npw
} pairs (upper) and 81 {Ncw

, Npw
}

pairs (lower) at error, ε (q) = 0.01. For the valence band sum,
the optimal number of windows is (Nvw

= 2, Npw
= 7), while

for the conduction band, the optimal number of windows is
(Ncw

= 1, Npw
= 3) (i.e., the position of the minimum in the

upper and lower curves of Fig. 18, respectively).

APPENDIX F: INTERPOLATION METHOD

1. Theory

In real space, the static random phase approximation (RPA)
irreducible polarizability matrix is

Pr,r′ = −2
Nv∑
v

Nc∑
c

ψ∗
r,vψr,cψ

∗
r′,cψr′,v

Ec − Ev

. (F1)

One advantage of working in a real-space basis is that the
sum over products of wave functions is separable so one can
come up with cubic scaling algorithms if one can make sepa-
rable approximations to the energy denominator. We begin by
rewriting P as

Pr,r′ = −2
∑

v

ψ∗
r,v A(Ev )r,r′ ψr′,v,

where the matrix A is defined as

A(z)r,r′ =
∑

c

ψr,cψ
∗
r′,c/(Ec − z) .

For a system with an energy gap E (gap), the denominator Ec −
Ev is always positive with a minimum value of the gap E (gap).
Furthermore, the matrix A must be evaluated only for energies
z within the range of valence band energies Ev . Hence, the
calculation of P uses A(z) for values of z where it is smooth in
z. This means we can use interpolation: we first tabulate A(z)
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FIG. 18. The optimized cost function to compute the model
dynamic � (model)(ω) of the text as a function of the number of energy
windows for bulk silicon with ω = Ev,min (valence band minimum
energy), 16 atoms and 399 bands. The upper and lower plots show the
cost to compute the valence and the conduction band contributions
to � (model)(ω), respectively. The position of the two minima are
(Nvw

= 2, Npw
= 7), upper, and (Ncw

= 1, Npw
= 3), lower.

for a range of z values ranging over the valence band energies.
This tabulation costs NzNcN2

r , which is cubic since the valence
bandwidth is an intensive quantity and the number of points Nz

needed for a fixed accuracy is a fixed, intensive number. Next,
to compute P, we sum over v, and for each Ev we interpolate
A to that energy by using the tabulated A. This calculation is
also cubic and costs NiNvN2

r where Ni � Nz is the number of
tabulated z values needed for interpolation (e.g., Ni = 2 for
linear interpolation).

An efficient interpolation scheme should require a small
number of z points Nz as well as a modest interpolation cost
Ni. In our case, the energy dependence requiring interpolation
is given by 1/(Ec − z) which is most rapidly changing for the
largest values of z near the top of the valence E (max)

v band and
when Ec takes on its smallest value at the conduction band
minimum E (min)

c . Hence, an efficient interpolation scheme
will use a nonuniform z grid that appropriately concentrates
sampling points near E (max)

v .
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The next section below describes the approach we use
to find optimal interpolation grids z j for the case of linear
interpolation (i.e., two-point nearest-neighbor interpolation
with Ni = 2) when sampling over the entire range of valence
band energies. We note higher order interpolation schemes
with Ni > 2 can be used as well that will reduce the number
of grid points needed for a fixed error but require more work
to perform the interpolation. In our experience, the higher
order interpolations do not in the end improve performance
at the same level of error when compared to the simpler linear
interpolation method.

Regardless of the precise interpolation scheme used, all
such interpolation methods will have errors that decrease as
a power of the number of grid points, n. As the data presented
in the main text shows, the Fourier-Laplace transform based
methods turn out to have superior error properties (their errors
fall off exponentially in n).

2. Energy grids for interpolation

The function of z that we wish to interpolate over z is

A(z)r,r′ =
Nc∑
c

ψr,cψ
∗
r′,c

Ec − z
.

The function is steepest versus z close to the top of the valence
band E (max)

v when the energy difference in the denominator is
small. In fact, we will consider the worse case scenario and
focus on the stiffest and steepest term in the entire sum which
is for the case Ec = E (min)

c , the conduction band minimum
energy. Hence the most difficult to interpolate term is given
by the dimensionless function

f (z) = Egap

E (min)
c − z

≡ 1

1 + x
,

where z = E (max)
v − xE (gap), and the scaled energy variable x

satisfies 0 � x � (E (max)
v − E (min

v ))/E (gap).
The question is how to pick a grid of {x j} values with n

points where x1 = 0 and xn = (E (max)
v − E (min)

v )/E (gap). For
simplicity, we will be using linear interpolation, so that given
some x between two grid points x j � x � x j+1, the lin-
ear interpolation is f l (x) = [ f (x j )(x j+1 − x) + f (x j+1)(x −
x j )]/�x j where �x j = x j+1 − x j . Calculus then provides an
analytical expression for the maximum error f l (x) − f (x) in
the interval x j � x � x j+1. For large n and thus small spacings
�x j , the lowest order term for the error is

( f I − f )max ≈ (�x j )2

4(1 + x j )3
.

We wish to bound this error by a fixed fractional error toler-
ance, ε (q), for all j,

(�x j )2

4(1 + x j )3
� ε (q) , (F2)

which then in principle determines the grid points x j . In
practice, exact solution of this equation is very difficult, so
we again appeal to the large n limit where x j can be viewed
as a function x( j) of a continuous argument j so we approx-
imate �x j ≈ dx/d j. Then Eq. (F2) turns into an ordinary
differential equation with specified boundary conditions. The

solution is

x( j) = 1

(1 − ( j − 1)
√

ε (q) )2
− 1 .

Since x(n) = (E (max)
v − E (min)

v )/E (gap) is known, this deter-
mines n for each ε (q). And finally we have z j = E (max)

v −
x jE (gap).

The above choice of grid bounds the error when evaluating
the function once. However, when using the interpolation to
compute P from A, we will be evaluating the interpolation
over many values across the valence band which approximate
an integral. Hence, a more appropriate error control scheme
will not only consider the error in interpolating f (x) but also
the fact that narrower intervals of x will be sampled less often
(assuming a smooth and roughly flat density of states). Hence
we should instead bound the error in the function times the
size of the interval

�x j × (�x j )2

4(1 + x j )3
� ε (q).

Repeating the above exercise, the grid appropriate to this error
bound is given by

x( j) = exp([4ε (q)]1/3( j − 1)) − 1 . (F3)

As before, the fixed value of x(n) then determines n at fixed
ε (q), and we use the x j to get the energy grid points z j .
The results in the main text are based on use of this second
(exponential) grid of Eq. (F3).

APPENDIX G: DETAILS OF KS-DFT AND GW
COMPUTATIONS

We have performed DFT simulations to obtain the single
particle wave functions and energies employed as input to
the GW calculations reported in the main text. The plane
wave nonlocal norm-conserving pseudopotential supercell
approach was employed as implemented in the QUANTUM

ESPRESSO software application [45].
To study cystalline Si, we employed the local density

approximation (LDA) for exchange and correlation as pa-
rameterized by Perdew and Zunger [3]. The norm-conserving
pseudopotential for Si was generated with the valence con-
figuration of 3s23p23d0 with cutoff radii of 1.75, 1.93, and
2.07 a.u. for s, p, and d channels, respectively. The plane wave
cutoff was taken to be 25 Ry, and the lattice parameter was set
to the experimental value of 5.43 Å.

To study cystalline MgO, the GGA-PBE exchange-
correlation functional [46] was employed. Both Mg and O
were represented by norm-conserving pseudopotentials gen-
erated with valence configuration 3s2 and 2s22p43d04 f 0 for
Mg and O, respectively. The plane wave cutoff was taken to
be 50 Ry, and the lattice parameter was set to 8.42 Å.

To generate ε∞ and the COHSEX band gap for crystalline
Si and MgO, we sampled the � point of the BZ in a 16 atom
supercell for both cases. The reference G0W0 prediction of
the band gap of Si was obtained using a 4 × 4 × 4 sampling
of the primitive cell – equivalent to a 2 × 2 × 2 sampling of
the 16 atom supercell. The total number of bands in the 16
atom supercell was taken to be 399 and 433 for Si and MgO,
respectively. For the CTSP-W results, {Nvw

= 1, Ncw
= 4} and

{Nvw
= 1, Ncw

= 4} was employed to treat both MgO and Si.
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To create the data on computational load versus the number
of atoms (Fig. 8 of the main text), we studied Si with the
following k-point sampling and bands: 52 bands and eight k
points for the two-atom cell, 104 bands with 4 k-points for the
four-atom cell, 208 bands with two k points for the eight-atom
cell, and 416 bands with one k point for 16-atom cell. For the
CTSP-W method, {Nvw

= 1, Ncw
= 5} were employed for all

simulations.
To study crystalline Al, we employed the LDA for ex-

change and correlation as parameterized by Perdew and
Zunger [3]. The plane wave cutoff was taken to be 50 Ry,
and the lattice parameter was set to 3.99 Å. To obtain P0,0,
we employed a 16 atom supercell, sampled two k points and
included a total 400 bands. Gaussian smearing was used to
represent the occupation numbers with β−1 = 0.03 Ry. For
the CTSP-W results, {Nvw

= 1, Ncw
= 7} was employed in all

cases.

APPENDIX H: HERMITE-GAUSS-LAGUERRE
QUADRATURE

The nodes and weights for the Hermite-Gauss-Laguerre
(HGL) quadrature described in the main text can be obtained
by employing the MATLAB functions provided below.

function [x,w]=GLquad(n)
% function [x,w]=GLagIntP(n)
% Gauss-Laguerre integration: return nodes x
% and weights w for a
% quadrature grid with n points

% This is basically the Golub-Welsch method
J=diag(1:2:2*n-1)+diag(1:n-1,1)+diag(1:n-1,
-1);
[v,l]=eig(J);
[x,ix]=sort(diag(l));
w=v(1,ix)’.^2;
return

function [xmat,wmat] = myweightquad(n)
%function [xmat,wmat] = myweightquad(n)
% Return all nodes (xmat) and weights (wmat)
% for quadratures up to % n points for weight
% w(x)=exp(-x-x^2/2). These are organized in
% matrices. xmat are the nodes and wmat
% are the weights. Each column is for a
% quadrature size going from
% 1 to n (left to right). Thus the lower
% triangle is padded with zeros.

% Figure out number of grid points
% so that the biggest moment (2n)
% is well converged. We do
% Gauss-Laguerre quadrature to
% do these integrals over the weights!
Iold = 0;
for nx=round(10.^[1:.2:7])

[xq,wq] = \rrGLquad(nx);
weight = exp(-xq.^2/2);
I = sum(wq.*weight.*xq.^(2*n));

if Iold>0
err = (I-Iold)/I;
if abs(err)<1e-14

break
end

else
end
Iold = I;

end

% Build polynomials as we go
% and figure out the recursion
% relation coefficients as we go
p = zeros(length(xq),n+1);
p(:,1) = 1;
a = zeros(n,1);
b = zeros(n,1);
for j=1:n

xpp = sum(wq.*xq.*weight.*p(:,j).^2);
pp = sum(wq.*weight.*p(:,j).^2);
a(j) = xpp/pp;
if j>1

ppm1 = sum(wq.*weight.*p(:,j-1).^2);
b(j) = pp/ppm1;

end
if j>1

p(:,j+1) =...
(xq-a(j)).*p(:,j)-b(j)*p(:,j-1);

else
p(:,j+1) = (xq-a(j)).*p(:,j);

end
end

% Prepare for Golub-Welsch
b = b(2:end);
b = sqrt(b);
mu0 = sum(wq.*weight);

% Build Golub-Welsch J matrix,
% eigen decompose it, and get weights and
% nodes for each value of j=1,...,n
% (i.e., all weights and nodes for
% quadratures up to size n)
J = diag(a) + diag(b,1) + diag(b,-1);
xmat = zeros(n,n);
wmat = zeros(n,n);
for j=1:n

Jcut = J(1:j,1:j);
[v,d] = eig(Jcut);
d = diag(d);
[,is] = sort(d);
d = d(is);
v = v(:,is);
x = d;
w = v(1,:).^2*mu0;
w = w’;
xmat(:,j) = [x’ zeros(1,n-j)]’;
wmat(:,j) = [w’ zeros(1,n-j)]’;

end

return
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