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We study the Holstein model of spinless fermions, which at half filling exhibits a quantum phase transition
from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical
electron-phonon coupling strength. In our work, we focus on the real-time evolution starting from two different
types of initial states that are CDW ordered: (i) ideal CDW states with and without additional phonons in the
system and (ii) correlated ground states in the CDW phase. We identify the mechanism for CDW melting in
the ensuing real-time dynamics and show that it strongly depends on the type of initial state. We focus on the
far-from-equilibrium regime and emphasize the role of electron-phonon coupling rather than dominant electronic
correlations, thus complementing a previous study of photoinduced CDW melting [H. Hashimoto and S. Ishihara,
Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means of matrix-product-state
based methods with a local basis optimization (LBO). Within these techniques, one rotates the local (bosonic)
Hilbert spaces adaptively into an optimized basis that can then be truncated while still maintaining a high
precision. In this work, we extend the time-evolving block decimation (TEBD) algorithm with LBO, previously
applied to single-polaron dynamics, to a half-filled system. We demonstrate that in some parameter regimes,
a conventional TEBD method without LBO would fail. Furthermore, we introduce and use a ground-state
density-matrix renormalization group method for electron-phonon systems using local basis optimization. In
our examples, we account for up to My, = 40 bare phonons per site by working with O(10) optimal phonon

modes.
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I. INTRODUCTION

Pump-probe experiments have become a popular setup
to study ultrafast dynamics in solids (see, e.g., [1-11]). In
these experiments, photoinduced phase transitions between
metallic and insulating states [4], melting of charge-density-
wave (CDW) or antiferromagnetic order [1-3], or accessing
metastable states [5] were investigated. A prominent exam-
ple is the observations of Ref. [6] that were interpreted as
photoinduced enhanced superconductivity. In the interpreta-
tion of experiments on ultrafast dynamics, the whole system
is often treated as a collection of coupled subsystems [8].
These include the electronic subsystem, lattice degrees of
freedom (phonons), and possibly spin degrees of freedom.
In the experiments, first electrons are optically excited into
empty states and then their relaxation dynamics is monitored.
Relaxation can occur via electronic interactions or via a
coupling to bosons, i.e., either phonons or spin excitations.
Theoretical support is needed to understand the timescales
and the bottlenecks for relaxation, and to determine which
bosonic excitations are relevant. In general, it is unclear

“heidrich-meisner @uni-goettingen.de

2469-9950/2020/101(3)/035134(18)

035134-1

whether the subsystems first relax and thermalize separately
before reaching global equilibrium or whether all degrees
of freedom are out-of-equilibrium throughout the transient
dynamics. Moreover, the strength of phonon-mediated inter-
actions could be affected in the transient dynamics [12,13].
Thus, a major task for theory is to understand such questions
in simplified yet paradigmatic models. Many studies focused
solely on electronic degrees of freedom (see, e.g., [14-21]),
yet from the above it is clear that phonons need to be modeled
as well [22-24].

The Holstein model of spinless fermions in one dimension
is a prototypical model to study electron-phonon coupled
systems. It hosts a variety of different phenomena driven by
the electron-phonon coupling, especially polaron formation
and a phase transition between a metallic and a CDW phase
[25,26]. The rich phenomena present in the Holstein model
and, in particular, its nonequilibrium dynamics are still ac-
tively discussed. Studies of the latter in electron-phonon cou-
pled systems are often restricted to single electrons (Holstein-
polaron problem) [27-32]. However, having more than one
electron in the system can lead to interesting collective phe-
nomena already in equilibrium. One of the most prominent
examples is the Peierls instability leading to an insulating
CDW-ordered state in a half-filled electron band coupled to
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phonons. Despite the challenges, efforts were made to study
the real-time dynamics in the Holstein model at half filling
[22,33-37].

Perturbative approaches can give reliable results in the
vicinity of the atomic limit, where the bandwidth of the elec-
trons is much smaller than all other energy scales in the system
[26] and also in the limit of small phonon energies [40].
For the intermediate regime, the so-called momentum average
approach developed by Berciu and collaborators [41-46] is
argued to provide reliable analytical results for the Holstein-
polaron problem in equilibrium.

A variety of different quantum Monte Carlo methods have
been developed to investigate the Holstein model [26,39,46—
51]. For wave-function based methods, such as exact diago-
nalization (ED) or the density-matrix renormalization group
(DMRGQG), electron-phonon systems are computationally very
demanding. These methods require that the local Hilbert
spaces have a finite dimension, which is not the case for
electron-phonon coupled systems. The bosonic nature of the
phonons and the fact that their number is not conserved
makes the Hilbert space infinite-dimensional, irrespective of
the system size. Therefore, one has to introduce an ad hoc
cutoff that limits the number of phonons per site. This cutoff
has to be chosen in such way that it does not affect the physics
of the system and the quantitative reliability of the results.
Depending on the task at hand, this can render the problem un-
feasible or at least very hard for wave-function based methods.

Several strategies were suggested to overcome the problem
of large local Hilbert spaces [52]. In the context of DMRG
[53], one can map the Holstein model to a lattice including
pseudosites for the phononic degrees of freedom where every
pseudosite can host one phonon excitation [54,55]. As a
result, the local Hilbert-space dimension is reduced; however,
one introduces long-range hopping into the system. Weille
and Fehske [56] used an inhomogeneous modified variational
Lang-Firsov transformation to obtain an effective Hamilto-
nian including variational parameters that can be solved in
a self-consistency loop including a Lanczos diagonalization
[57]. In other approaches, one chooses basis states in such a
way that the Hilbert space is not too big but still the essential
physics is captured. For instance, Bonca et al. [58] introduced
diagonalization in a limited functional space. In this approach,
a set of dynamically important basis states is constructed by
repeatedly applying parts of the Hamiltonian to an initial state.
This method takes advantage of the spatial correlations of
electrons and phonons and is therefore especially well suited
for studying single electrons on a periodic or infinite lattice
[27,29,31,59-63].

In this work, we will use an approach called local basis
optimization (LBO) introduced by Zhang et al. [64]. This
approach is very flexible since it adaptively chooses the most
important local basis states (called optimal modes) during
the simulation by diagonalization of the single-site reduced
density matrix. The ideas of Zhang et al. [64] were first used
in combination with exact-diagonalization techniques [64—68]
and also with DMRG in its original formulation [69-76].

Here, we will combine LBO with a time-dependent DMRG
algorithm as well as with a ground-state DMRG algo-
rithm in the matrix-product-state (MPS) formulation. In these
DMRG implementations, we choose the optimized basis in an

unbiased way and fully adaptive to system size, system param-
eters, and boundary conditions. The time-dependent version
is based on the work by Brockt et al. [77] to simulate the
real-time evolution in the Holstein-polaron problem (see also
Refs. [78,79]). In this work, we extend this algorithm to
the Holstein model at half filling. Our ground-state DMRG
method combines the algorithm implemented by Guo et al.
[80] for spin-boson models (see also [8§1-83]) with the sub-
space expansion introduced by Hubig et al. [84]. The algo-
rithm can be applied to arbitrary one-dimensional electron-
or spin-phonon problems with local electron- or spin-phonon
coupling. Here, we use this algorithm to study the half-filled
Holstein model.

In the first setup, we prepare the system in a product state
where every second site is occupied by an electron and no
phonons are present in the initial state. We then perform a real-
time evolution of this state for different parameter sets. As we
increase the coupling to the phonons we observe a transition
from dynamics that is dominated by the electron hopping
to dynamics that is strongly influenced by the coupling to
the phonons. This includes a temporal self-trapping of the
electrons for large electron-phonon coupling. In the second
setup, we prepare the system in a product state of small
on-site polarons that form the CDW. In this case, the real-
time evolution can be understood by considering the renor-
malized hopping-matrix elements of the quasiparticles. As a

(a) Hamiltonian

3wy 3wy 2wo 3wo 3wo 2wy lwp phonons

t electrons
0

FELE

FQ

. 99%Y

electron hopping log(to/wo)

(b) Phase diagram

CDW insulator

quench

Lt

TLL metal

el.—ph. coupling 7 /wy

FIG. 1. (a) Sketch of the different terms in the Holstein model
Eq. (1). The fermions can hop from site to site with an amplitude #,.
If a fermion is on a particular site it can create or destroy phonon
excitations at that site with a coupling strength y. Every phononic
excitation costs an energy wy. (b) Sketch of the phase diagram of the
half-filled Holstein model [38,39]. As the electron-phonon coupling
y increases there is a phase transition from a metallic Tomonaga-
Luttinger liquid phase (TLL) to an insulating charge-density-wave
phase (CDW). The arrows represent the different quenches that we
will investigate in Sec. IV C, i.e., frequency and coupling quench (FQ
and CQ, respectively).
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consequence, the dynamics at strong coupling is so slow that
the initial state hardly changes over our accessible simulation
times. In the last setup, we prepare the system in the ground
state of the CDW phase and then we perform quenches to the
metallic phase. We observe that the short-time dynamics is
dominated by the phonons when we decrease the coupling
between electrons and phonons only. However, if we decrease
the phonon frequency compared to the electron bandwidth the
short-time dynamics is dominated by the electron hopping,
while the phonons respond very slowly to the quench.

The melting of charge-density-wave states in a one-
dimensional electron-phonon coupled system was previously
studied by Hashimoto and Ishihara [37] using time-dependent
DMRG simulations with a fixed cutoff in the local phonon
number basis of My, < 8. They study a Holstein model with
an electronic interaction of the form Hyyy =V ) [ (g =
c;cl, ¢;: Fermionic annihilation operator at site /) and drive
the system out of equilibrium by applying a pulse. Starting
from the uncoupled limit of a vanishing electron-phonon
coupling [y =0, cf. Fig. 1(a)], they demonstrate that the
CDW order parameter decays exponentially for V > 5 [where
1o is the electron hopping parameter; cf. Fig. 1(a)]. Turning on
electron-phonon interactions causes a slower decay due to the
formation of polarons and thus a mass renormalization of the
electrons. The excess energies pumped into the system that
were considered in [37] are on the order of AE < 0.1(xN
above the ground-state energy, where N is the number of
fermions in the system. In our work, we consider different
initial states and we deliberately work in the regime of large
quench energies 0.110N < AE < 81N to exemplify the capa-
bilities of our local basis-approximation method.

The paper is organized as follows. In Sec. II, we will revisit
the Holstein model and its phase diagram at half filling. In
Sec. III, we describe the different numerical methods used
throughout this paper. In Sec. IV, we present the results of
our numerical simulations and in Sec. V, we give a summary.

II. HOLSTEIN MODEL OF SPINLESS FERMIONS

The Holstein model [85,86] of spinless fermions describes
a spin-polarized gas of electrons that locally couples to har-
monic oscillators via the density of the electrons. The har-
monic oscillators model dispersionless phonons. The Hamil-
tonian on a one-dimensional (1D) lattice can be written as

Huol = Hiin + Hpn + Hel—ph, (D

where Hy, is the electron kinetic energy, i.e.,

L-1

Hn = —t »_(cjc,,, +He). )
=1

Here the ¢, [c;] are annihilation [creation] operators for spin-
less fermions and 7, is the hopping parameter. Hyy, is the purely
phononic part defined as

L
Hpy = w0 Y _ by, 3)
=1

where b, [bj] are bosonic annihilation [creation] operators
for phonons and wy is the phonon frequency. Hej_p, is the
electron-phonon coupling part:

L
Hapn=—y ) _ (B} +b), )

=1

where n, = c;rcl is the on-site density of the electrons and y is
the electron-phonon coupling strength. The different parts of
the Holstein Hamiltonian Eq. (1) are sketched in Fig. 1(a). The
total number of fermions N = Zlel (n;) is conserved in the
system while the number of phonons is not, as is evident from
Eq. (4). Throughout this paper, we express energies and times
in units of the hopping parameter ¢, and 1/ty, respectively.
Open boundary conditions are used within our numerical
simulations.

In Fig. 1(b), we sketch the ground-state phase diagram of
the half-filled Holstein model that was obtained by a com-
bination of perturbative approaches, quantum Monte Carlo
and DMRG methods [26,38,39,47]. For small values of the
coupling parameter y /wg < 1, the system is in a (metallic)
Tomonaga-Luttinger liquid (TLL) phase while for increasing
coupling strength y /wy, there is a phase transition to a CDW
phase for all values of the hopping parameter 7y > 0. The
order parameter in the latter can be defined as the staggered
density of the fermions in the system:

1 L
Ocow = > (=1 tm). 5)
=1

In the metallic TLL phase, the density is homogenous (n;) =
0.5 = constant and therefore, the order parameter vanishes.
On the other hand, Ocpw # 0 indicates the onset of the CDW
phase, with a maximum value of Ocpw = %1 in the limit
y /[ty — oo. This is strictly true in the thermodynamic limit,
yet we will break the symmetry here by the choice of initial
conditions or system size and boundary conditions.

A subtlety that emerges from using small odd system sizes
is that the order parameter Ocpw can be zero although the
density is not completely uniform. This arises because there
is one more odd site than there are even sites. However, this
should not be concerning. Consider free spinless fermions
on a lattice with odd system size L and open boundary
conditions. The number of fermions is N = (L — 1)/2. Then,
in the ground state, the N lowest single-particle eigenstates
are occupied which also leads to a density profile that is
not flat but has exactly Ocpw = 0. This effect becomes less
pronounced as the system size is increased.

In the atomic limit #y = 0, the Holstein model can be di-
agonalized by performing a Lang-Firsov transformation [87].
In the ground state, fermions are localized at single sites and
are accompanied by coherent states of phonons. All other sites
that do not contain a fermion are free of any phonon. For every
fermion in the system, one gets a binding energy:

2
v
€ ="—, (6)
wo
and the ground-state energy is therefore Ey = —Ne¢,. The
ground state in this limit is highly degenerate since one can

distribute the fermions arbitrarily in the system. It takes the
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form of a product state:

[T e [12al)on. (7)

L€{loce}

[o) o

where |#)eiipn) is the vacuum state of the electrons [phonons]
and {/,..} is the set of sites that are occupied.

Close to the atomic limit #y < ¥, wo one can understand
the phase transition from second-order perturbation theory
[26]. One obtains an effective polaron hopping-matrix ele-
ment,

~ — 2 /2
fo = toe™"/0, (3)
and an effective nearest-neighbor repulsion,

2
- o[, -1
V=2— dg

wo Jo

©))

The effective model can then be mapped to the spin-1/2
XXZ Hamiltonian and the phase transition at the isotropic
Heisenberg point is reached at V. /27y, = 1 [26].

III. NUMERICAL METHODS

A. Ground-state DMRG with local basis optimization

To calculate ground states of the half-filled Holstein model
we use a single-site DMRG algorithm and combine this with
a local basis optimization (LBO) [64]. In the first efforts
to combine LBO with DMRG, the optimal modes were
computed from small systems using exact diagonalization
and then fed into larger systems (see, e.g., [69,70,72]) or
the optimal modes were computed from units larger than a
single site (see, e.g., [75]). The algorithm presented in [73]
uses the original DMRG formulation [88] and is the closest
to our implementation and the one of [80], yet uses differ-
ent environment-block DMRG basis dimensions depending
on whether optimal-phonon mode optimization takes place
or not.

The algorithm used in this work is an adaptation of the
method described in [80] to electron-phonon systems com-
bined with the subspace-expansion method (DMRG3S) [84].
Therefore, we use the abbreviation DMRG3S + LBO when
referring to the method used in this work.

Consider a pure quantum state |i) of a lattice system that
can be expanded in a product-state basis of d-dimensional
local Hilbert spaces. We start out by writing this state as a
matrix-product state (MPS) in the standard fashion following
Ref. [89]:

V) =D do.qlor...o0) =) M™ .. .M™o;...01),
{o1} {o1}
(10)

where the o; label the state in the local Hilbert space and M
are matrices such that the matrix product yields M ... M° =
dg,..o, (actually, the first matrix M and the last matrix M*
have to be a row and column vector, respectively, for the
matrix product to yield a scalar). The sum runs over all
possible values of o1, ...,o0.. The full many-body Hilbert
space has dimension dim(H) = d*.

In principle, the dimension of the matrices M —the so-
called bond dimension—also grows exponentially with the
system size L except at the edges of the system. The success
of MPS-based methods relies on the fact that ground states
of short-range Hamiltonians in one dimension that have a
gap to the excitation spectrum can be efficiently represented
with matrices of a limited dimension that does not depend
on the system size L [89-92]. This can be understood in the
following way: Divide the system into two parts and consider
the reduced density matrix of one of these subsystems. If the
spectrum of the reduced density matrix of the subsystems falls
off fast enough, the state can be efficiently and accurately
represented by considering just a limited part of the states in
either one of the subsystems. The area law of entanglement
for the ground state of gapped short-range Hamiltonians in
one dimension ensures a fast algebraic decay of the spectrum
[92]. Therefore, it is enough to consider a finite dimension of
the matrices M [89].

Following Ref. [64], we now consider a special bipartition
where we only look at one site. The local reduced density
matrix at site / is given by

pr = w (YY), (11)

m

m#l

where the trace runs over all local degrees of freedom o, that
are not on site /. Diagonalizing this local density matrix we
obtain

1Y =U1A[UT, (12)

where A; is a diagonal matrix with the eigenvalues of the
local density matrix on the diagonal and U is a local basis
transformation from the original basis (in practice, this will
most often be an occupation number basis) to the eigenbasis
of the local reduced density matrix.

If the spectrum of the local reduced density matrix falls off
fast enough it is advisable to rotate the original M of our
MPS into the new 6; eigenbasis of the local reduced density
matrix. It is then sufficient to only keep that part of the eigen-
basis with the largest eigenvalues of the local reduced density
matrix without losing much of the information of the state
[64]. Therefore, we introduce a truncated basis transformation
R%° that has dimensions d, x d where d, < d. Here R is
identical to U with the exception that in R, we got rid of
the d — d, rows of the matrix that correspond to the smallest
eigenvalues of p;. We then write the MPS as

) =Y _(MPR*™).. . (M*R*)|oy...01),  (13)
{o1}

where
M = M°'R™", (14)

The rotation into an optimized local basis is motivated
by the observation that the Holstein model Eq. (1) can be
diagonalized in the atomic limit ) =0 via a Lang-Firsov
transformation as discussed in Sec. II. The ground state of
the model will then take the form Eq. (7) where the sites
that are occupied by an electron also contain a coherent
state of phonons. In order to represent this state accurately,
large phonon occupations need to be accounted for such that
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the Hilbert space in the phonon occupation basis has to have
a large dimension. On the other hand, in the Lang-Firsov
basis, a two-dimensional local Hilbert space is enough to
represent the ground state: One state for a site occupied by
an electron and one for an empty site. That is, in the atomic
limit keeping only one state per fermion occupation sector is
sufficient to represent the ground state exactly. Away from the
atomic limit, keeping only d, < d states is still sufficient to
accurately represent the ground state [64,65] as we will see in
the following. In fact, Zhang et al. found numerical evidence
that the spectrum of the local reduced density matrix falls off
exponentially in ground states [64,93], which seems to hold
also in time-evolved states of the Holstein polaron model [31].
Diagonalizing the local density matrix automatically finds the
optimal basis to represent the state. Manipulations on the MPS
matrices M? that we have to do during the DMRG sweeps
become cheaper because of the reduced dimensionality when
using the optimized local basis. We stress that the outlined
ansatz finds the optimized basis at every site adapted to the
system parameters, boundary conditions, and also time during
a time evolution.

We will now explain the basic steps of our algorithm. We
consider an MPS in mixed canonical form where the MPS
matrices are transformed into an optimal basis:

— AG1 G101 AGi-1 Gi—10i—1 \f0i G0
WI) - ZAaoalR o 'Aai—ZUi—lR Mai—laiR
{o1}
ROi+1 ROi+10i+1 ROL GLOL
x Bt ROnowi B ROy oy). (15)

Here and for the rest of the section a summation over all
indices that appear twice is implied. The indices ap and
a; are fixed dummy indices to standardize notation. The

A;‘;ﬁla, and BZLM are left- and right-normalized MPS tensors,
respectively,
R Gl
Aafz/flAuj,la; = 8a1a;’ (16)
Bo Bt —
Bal’lila, az,,] - 8(1;7101,[7 (17)

such that the local reduced density matrix at site i in the
optimized basis can be written as

(0% = MG M5 (18)

aiai—1*

The first step is to shift the focus of the state which is currently
on the M% tensor to the basis transformation tensor R%°
such that the local reduced density matrix can be written in
terms of only the R%° tensor instead of the M tensor. The
different tensor manipulations that are necessary are depicted
in Fig. 2(a). We perform a singular value decomposition
(SVD) of M%:

M("r, — Xt

ai—14a; ai—14a;

ATTY T (19)
Now the local reduced density matrix can be written as

(Ioi)&i’&i — A‘ET’y‘E'ﬁ',-’yTO“‘,-T”A‘E”T. (20)
We then perform a DMRG optimization step on R =
ATTY 7% R%% ysing a Lanczos optimization scheme. This step
optimizes the local basis for the current MPS.

The next step is to shift the focus back to the local site
tensor [Fig. 2(b)]. We again perform an SVD, now on the

@

contract
-+ truncate

contract

+ optimize

FIG. 2. Different steps of the DMRG with the subspace-
expansion and local basis optimization update. (a) Shift of the focus
to the basis transformation tensor and optimization. (b) Shift of the
focus back to the site tensor and truncation. (c¢) Transformation of
the local part of the Hamiltonian matrix product operators into the
optimized basis (see also [80]).

optimized R* tensor and in the process truncate the new
optimized basis to the desired size:

Rra,- — Xtﬁ[/Ad[diydidi. (21)

We set the Y% as our new local basis transformation matrix
and our new site tensor is
M&i — XT

ara; = KXo 0 X AT (22)
The third step is to perform a single-site DMRG optimization
on the new Mg,‘i]ai tensor using the local Hamiltonian in
matrix-product operator form. The local Hamiltonian can be
transformed into the optimized basis using the updated tensor
R [Fig. 2(c)].

In principle, these three steps can be repeated several times
until no further improvements can be detected. However, in
the implementation used for this work we fix the number of
iterations to just one or two.
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When we shift the focus to the next site we perform a
subspace expansion as explained in Ref. [84] to avoid getting
stuck in local minima in the energy landscape.

The first two steps of the local optimization described
above can be combined with any DMRG algorithm. However,
using single-sitt DMRG is especially beneficial here since
such an algorithm scales better with the local (optimal) basis
dimension. For example, for spinless fermions or the Fermi-
Hubbard model, the local dimension is d =2 or d = 4, re-
spectively. Utilizing symmetry sectors (e.g., particle-number
conservation), the effective local dimension of every symme-
try block can be reduced down to degr = 1. As a consequence,
the local Hilbert-space dimension is more or less irrelevant for
the performance of the algorithm (the runtime scales at most
linearly with the number of symmetry blocks). Therefore,
single-site DMRG algorithms have no major performance
benefit over a two-site DMRG algorithm. However, for sys-
tems such as the Holstein model, where some degrees of
freedom are not conserved (i.e., the number of phonons), the
scaling of the algorithm with the local dimension becomes
substantial. Away from the atomic limit, 7y # 0, the local
dimension is d, > 1 in the different symmetry blocks and,
as a consequence, an efficient single-site DMRG algorithm
is desirable.

In the implementation used for this work, we utilize the
fermion number conservation of the Hamiltonian Eq. (1).
This means that the local basis transformation tensors R
consist of two symmetry blocks. In our algorithm, we fix a
maximal dimension d, of the blocks. In the truncation process
[Fig. 2(b)] we take the singular values of both blocks of A, sort
them by size, and then start filling the blocks starting with the
largest singular value. We stop as soon as one of the blocks
has reached the maximal dimension d,,.

In order to test the validity of our approach, we compare
the DMRG3S + LBO results with Lanczos diagonalization
that produces numerically exact results [94]. As already men-
tioned in the introduction, the unbounded Hilbert space of the
bosonic phonon degrees of freedom requires an ad hoc cutoff
in order to be feasible for exact wave-function based methods.
In Fig. 3, we show the relative error of the ground-state
energy, i.e.,

E —E
As = DMRG Lz
|ELz|

where Epmrg [E1.] stands for the ground-state energy ob-
tained with DMRG3S + LBO [Lanczos]. In order to compare
with Lanczos diagonalization, we investigate a small system
of L =4 in the CDW phase (wo/fo =2 and y/ty = 4). In
the Lanczos approach, we use M, = 400 Lanczos steps and
M, = 30 phonons per site, which yields a Hilbert space of
dim(H) ~ 5 x 10° at half filling. In the DMRG3S + LBO
ground-state search, we fix the discarded weight in the bond
dimension to 1071, We present Ae for different maximal
phonon numbers per site My, as different colors and different
maximal numbers of optimal modes per fermion sector d, as
different symbols in Fig. 3.

It is evident from the presented results that one needs to
converge in both the number of optimal modes d, and the
maximal local phonon number M, to get an accurate result.
One can see that a maximum number of optimal modes of

, (23)

=6 X T X d.=5 - =
10 L=4,wolty=2, do=5 = Mpn=20
; yito=4 do=8  —x Mpn=30
1077 y !
KX XKoo o
—8 OGO 0-0-4 AR
y 10 %%‘ooe&&%om KRB WSS
5 o oo
10 QQG-Q‘ e XﬁXXX-x— HKHHNHNHN N
8
1010 0
0 5 10 15 20

x103 sweeps

FIG. 3. Relative error Ae of the ground-state energy obtained
with the DMRG3S + LBO algorithm calculated for L = 4, wy/ty =
2, and y /ty =4 (crosses: Data calculated with d, = 5, diamonds:
d, = 8). Red symbols were calculated with M}, = 20 and blue sym-
bols with My, = 30. The discarded weight for the bond dimension is
1070, The thin black dotted line marks Ae = 10717,

d, =5 or a maximum local phonon number of My, = 20 is
not enough to get an energy with an error of the same order as
the discarded weight 107! (thin black dotted line in Fig. 3).
To converge the energy difference Ae to the same order of
magnitude as the discarded weight, a minimum number of
phonons per site of My, = 30 and a minimum number of opti-
mal modes of d, = 8 is required. Comparing the convergence
behavior for different parameter sets (not shown here), we
observe that our DMRG3S 4 LBO method is especially well
suited for the region where 7y ~ .

As mentioned above, we use a subspace expansion to avoid
local minima in the energy landscape when converging to
the ground state [84]. Within this scheme, a mixing factor is
introduced that controls the MPS-basis enrichment process.
As pointed out in Ref. [84], it is a delicate task to choose
this mixing factor in such a way that one avoids local minima
while still converging in energy. This seems to be especially
hard when working with a fixed discarded weight in the
bond dimension. To check convergence of the algorithm, it is
advisable to not only monitor the ground-state energy during
the runs but also the variance of the energy ag = (Y|H?|Y) —
(¥|H|¥)2. The variance can be taken as a measure of how
close a given state is to an eigenstate of the Hamiltonian.

In the present work, the DMRG3S + LBO algorithm will
be used for comparatively small system sizes since these
are constrained by what can be handled with the following
time-evolution method. However, in the Appendix, we show
that our findings are robust against finite-size effects. A more
extensive discussion of the DMRG3S + LBO method and a
benchmark against other state-of-the-art DMRG methods for
electron-phonon systems such as the pseudosite method [55]
and the method introduced in Ref. [32] will be presented
elsewhere.

B. TEBD with local basis optimization

As discussed in the previous section, rotating the local
basis into an optimized basis can be beneficial for MPS-
based numerical methods. For the time evolution used in this
work, we therefore employ the same strategy. We use the
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time-evolving block decimation (TEBD) algorithm pioneered
by Vidal [95,96] and combine it with local basis optimization
[64]. The algorithm used here is based on Ref. [77], where
single-electron problems are studied, and applies this method
to finite electron densities. In the following, we will outline
the different steps in this time-evolution approach.

The time-evolving block decimation relies on the Trotter
decomposition of the Hamiltonian. Consider the Hamiltonian
Hxn of a one-dimensional lattice system with at most a
nearest-neighbor interaction. Then, Hny can be split into two
sums:

L

Hw=Y_h=)Y h+ Y h=Hu+Hee (24)
=1 [ odd [ even

where all local summands /; in Heye, and Hygqg commute with

each other. The corresponding time-evolution operator can be

written in a second-order Trotter decomposition as

—iHNNGt —iHodd(Sl/Ze—iHevenéle—iHodd(St/2

e =e

+ 0((81)%)

— l—[ e*ih;é[/z l_[ e*ih[&[ 1—[ 67”’”6[/2—'—0((81‘)3).

[ odd [ even [ odd
(25)

The individual local time-evolution operators U; = e~ "%

only act on two adjacent sites. In the MPS algorithm, these U,
operators take the form of gates that are applied to the MPS
[Fig. 4(a)].

Consider a generic MPS in Vidal’s notation [96] where on
every site, there is an additional basis transformation tensor R
as in Eq. (15):

¥) = ) Fo ROALL T2 RPAD
{o1}

ajdy” diay ard)

L—1 G
x AU o
L-14y_y  4p_,4L

The first step in the time evolution is to contract the local
basis transformation from one side to the local time-evolution
operator U; while the other side stays in the original basis
[Fig. 4(b)]:

0101410/0] ~6161410/0]

RO101 ROI1+101+1 Ul — Ul

R0y ... op). (26)

27)

With this modified time-evolution operator U; we act on the
bond tensor @ [Fig. 4(b)]:

516, -1 G 1 G, 1+1
10k A[ ]/ re A[ ] o A[ + ], , (28)
=144 16y d_,ar adp gy A dy g

0/0l, q)a'I&H] 7 6161410/0] (29)

alfla;ﬂ a’*IGEH !

Note that the updated bond tensor W is now in the origi-
nal basis. This is important to ensure that during the time
evolution, the full local Hilbert space can be explored and
also the optimal modes can change from before to after the
application of the time-evolution operator. Next, we transform
the time-evolved bond tensor W to the optimized basis. For
that we calculate the local reduced density matrix on the sites
land [+ I:

o/o) /0], o0/
P = T (30)
=144 141411
. oo’ o o
po-l+lgl+1 =y ! l+’1 1/ A . (31)
1G4y A di-1

° contract, | m_
A<

contract

FIG. 4. (a) General structure of a TEBD algorithm [89,95].
(b) Different steps in the application of a single local time-evolution
operator in the TEBD with local basis optimization algorithm [77].

Next, we diagonalize the local reduced density matrices to
obtain the local basis transformation matrices U'. Each of
them can then be truncated to the desired optimal dimension
d, to obtain the basis transformation matrices R; and R;4;.
For the time evolution, we actually define a local discarded
weight Aj,. which is the maximum weight that is discarded
from the spectrum of the local density matrix. We keep this
local discarded weight fixed rather than the optimal dimension
throughout one simulation. By applying the inverse of R on
the new bond tensor W, we get the bond tensor in the optimal
basis W. We then go back to the original Vidal notation by
performing an SVD of the ¥ = USV" and contracting the
inverse of AU~ from the left to U and the inverse of AU+
from the right to V' to obtain ', A, and "%+,

In a conventional time-dependent DMRG method, one has
the discarded weight in the bond dimension Ay and the time-
step size 8t as simulation parameters. In the TEBD with local
basis optimization (TEBD-LBO) algorithm, one additionally
gets the maximal local phonon number M, and the local
discarded weight Aj,. as simulation parameters. For all of
the results presented in Sec. IV, we made sure that the total
error originating from 8¢, Myp, Ay, and Ay is smaller than
the symbol size (as a consequence, the error bars are omitted
in all figures). This is achieved by setting Ay, Ajpe < 1077
throughout the paper and choosing ¢ fp < 0.05. As opposed
to the method used by Brockt et al. [77], where the maximum
number of phonons per site can grow during the time evolu-
tion, we work with a fixed maximal phonon number My, per
site.
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FIG. 5. Comparison between TEBD-LBO data (open black sym-
bols) and Lanczos time-evolution data (small blue symbols) of the
decay of the charge-density-wave order parameter Ocpw starting
from the bare CDW state |[BCDW) Eq. (32). Calculations are done
for system size L = 4, phonon frequency wy/ty = 2, and different
coupling strengths y /fo = 1, 3,4 (squares, diamonds, and circles,
respectively). In the TEBD-LBO time evolution, we use a local
phonon cutoff M, = 10, 30, 40, respectively. The local discarded
weight is set to Ay, = 1073, For clarity, we only show every fourth
data point that was computed in TEBD-LBO and every twentieth
data point from the Lanczos time evolution.

Let us now test the accuracy of the TEBD-LBO algorithm.
In Fig. 5, we present the decay of Ocpw starting from a CDW
state without phonons, i.e., | (t = 0)) = [0101)¢|¥)pn (With
|#)pn as the vacuum state of the phonons; see also Sec. IV A
for details) as calculated with TEBD-LBO and Lanczos time
evolution for system size L = 4. The time evolution within
the latter is carried out with a time step of 8t 7y = 1072 and
My, =20 Lanczos steps. It is evident from the presented
data that, similarly to DMRG3S + LBO, the TEBD-LBO
algorithm perfectly reproduces the Lanczos data for all con-
sidered values of the coupling strength y. Furthermore, we
have checked (not shown) that the time evolution from other
initial states (discussed in Sec. IV B and Sec. IV C) is in full
agreement with the Lanczos results.

IV. RESULTS FOR THE REAL-TIME EVOLUTION

In this section, we present the main findings of our work: A
study of the melting of CDW order during the time evolution
from initial product states (see Secs. IV A and IV B) and after
quenches from correlated ground states (see Sec. IVC). In
order to get a nonzero value of the CDW order parameter
Ocpw in the correlated ground state, we work with an odd
number of sites L. As a consequence, we are not exactly at
half filling but rather N = (L — 1)/2. For consistency, we also
use odd system sizes L in Secs. IV A and IV B.

A. Bare CDW melting

As a first example of charge-density-wave melting in the
Holstein model we prepare the system in a product state where
every second site is occupied by a fermion and no phonons are

CDW initial states
(a) |IBCDW)

\:/t/b\:/ @9@9

FIG. 6. Sketch of the initial states: (a) |[BCDW) Eq. (32) and (b)
IDCDW) Egqg. (34).

b) [DCDW)

present in the system:

(L-1)/2

IBCDW) = [ I1 c;} 18)e1|)ph- (32)

=1

|#)efphy is the vacuum state of the electrons [phonons]. We call
this state a bare charge-density wave (BCDW). The structure
of the state in real space is sketched in Fig. 6(a). Next, we
time-evolve this state

IBCDW(t)) = ¢ 1! | BCDW) (33)

with the Hamiltonian Eq. (1) of the Holstein model for differ-
ent parameter sets.

In Fig. 7(a), we plot the time evolution of the CDW order
parameter Ocpw When starting from the bare charge-density-
wave state for L = 13, wy/ty = 2, and coupling strengths
y /to = 1, 3, 4. These parameter sets correspond to the TLL
phase, the transition region, and the CDW phase, respectively
[38,39]. As expected for small values of y /fy = 1, the order
parameter decays toward zero and oscillates around this value
with an amplitude that slowly dies out. In the same figure, we
compare the behavior at y /t) = 1 to the behavior at y =0
for which the time evolution of Ocpw can be calculated
analytically in the thermodynamic limit, i.e., Ocpw,y=o(t) =
Jo(4tty), where J is the zeroth-order Bessel function of the
first kind (see, e.g., [97]). From this comparison, it is evident
that the frequency of the oscillations is controlled by the
hopping parameter fy. However, in contrast to the case of
y = 0 where the oscillations are very long lived and the
amplitude decays algebraically, at y /f, = 1, the amplitude of
the oscillations is strongly damped.

On the contrary, for the large coupling strength y /1y = 4,
the order parameter, after an initial fast drop, is temporarily
stuck at Ocpw = 0.6 between tfy ~ 1 and tty ~ 2.5 before it
eventually decays toward zero. Such a plateau is also clearly
visible at coupling strength y /fy = 3. This behavior of the
order parameter at strong coupling can be understood as
follows. When starting from the bare charge-density-wave
state the fermions are free to move around. By tunneling into
empty sites, the fermions reduce the order imprinted in the
initial state. However, at large couplings the fermions have a
strong tendency to form heavy polarons; i.e., many phonons
are created as can be seen in Fig. 7(b) where we plot the time
evolution of the number of phonons per fermion in the system
Npw/N = (1/N) ZzL=1 (bjbl). These phonons surrounding the
fermions drastically change their effective mass and they form
heavy and therefore less mobile polarons. As their movement
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FIG. 7. Time evolution of (a) the decay of the charge-density-
wave order parameter Ocpw and (b) the phonon number per fermion
Npn /N when starting from the bare CDW state [BCDW) Eq. (32). The
small black dots in panel (a) are exact analytical results for y = 0 in
the thermodynamic limit [97]. The dashed horizontal lines in panel
(b) represent the phonon number in the ground state at the respective
parameters. Simulations are performed for L = 13, wy/ty =2 and
different coupling strengths y /t; = 1, 3, 4. In the time evolution, we
use a local phonon cutoff My, = 10, 30, 40, respectively. The local
discarded weight is set to A, = 1078, For clarity, we only show
every fifth data point that was computed.

is impeded, the order parameter does not change for a time
span of ~1.5/ty. This self-trapping effect is, however, only
temporary. The system coherently oscillates between a state
with a large and a small number of phonons and the order
parameter decays further as soon as the phonons are reemitted,
allowing the electron to move again into empty sites. The
phonon oscillation period can clearly be seen in the time evo-
lution of the phonon density in the system shown in Fig. 7(b).
The phonon number Ny, /N oscillates with a period of 27 /wg
and the length of the plateaus in Ocpw at y/fo = 3,4 is
controlled by this phonon oscillation period.

If one further increases the phonon frequency wy/t), sev-
eral plateaus can be observed before the order parameter
Ocpw relaxes toward zero. Such a behavior can be seen in
Fig. 8(a) where we plot the time evolution of Ocpw for the
same initial state |[BCDW) but for wy/ty = 10. The steplike
structure in the decay of the order parameter is evident in
the data for y/fp = 15,20 and the length of the plateaus
coincides well with the phonon oscillation period 27 /w, [see
Fig. 8(b) for the time dependence of the phonon density
Npn/N in the system]. Similar to the case at wg/tp = 2, for
the weaker coupling y/fp =5, we observe a decay of the
order parameter toward zero with damped oscillations with
a frequency controlled by the hopping parameter #,. These

1.00 Re0e, L=13,b)o/to=1o ylto=5
2004 y/to=15

Yito =20

0.75

0.50

Ocpw

0.25

0.00 T e

~0.25 R et D
) (@)

(b)

—0.50

14
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10
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—-EmE
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FIG. 8. Time evolution of (a) the decay of the charge-density-
wave order parameter Ocpw and (b) the phonon number per fermion
Npw/N when starting from the bare CDW state [BCDW) Eq. (32).
Simulations are performed for L = 13, wy/to = 10 and different
coupling strengths y /tp = 5, 15, 20. In the time evolution, we use
a local phonon cutoff M, = 10, 30, 40, respectively, and the local
discarded weight is set to A, = 1078, For clarity, we only show
every twenty-fifth data point that was computed.

oscillations are superimposed with oscillations that have a
frequency controlled by the phonon frequency wy.

In Fig. 9, we plot the kinetic energy Exi, = (Hkin) of
the fermions as a function of time for L = 13, wy/th =2
and different coupling strengths y /fy = 1, 3, 4 (i.e., the same

0.0 poma_
—0.2} 5 i ) . ® :A&
_________ e T T T ST
%—0.4 ’
ST Y L S —
W_gg Yito=1
ylto=3
L=13, to=2
~1.0 wo/ 0 Y/to =4
12+ ground state
0 1 2 3 4 5 6
tto

FIG. 9. Time evolution of the kinetic energy per fermion Ey;, /N
when starting from the bare CDW state |BCDW) Eq. (32). The
dashed horizontal lines represent the kinetic energy in the ground
state at the respective parameters. Simulations are performed for
L =13, wy/ty = 2 and different coupling strengths y /ty = 1, 3, 4. In
the time evolution, we use a local phonon cutoff M, = 10, 30, 40,
respectively. The local discarded weight is set to Ay, = 1078, For
clarity, we only show every fifth data point that was computed.
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FIG. 10. Time evolution of (a) the decay of the charge-density-
wave order parameter Ocpw and (b) the phonon number per fermion
Npw/N when starting from the bare CDW state [BCDW) Eq. (32).
Simulations are performed for L = 13, wy/tp) =2 and coupling
strengths y /to = 4. In the time evolution, we use different local
phonon cutoffs M, = 10, 20, 40 to illustrate convergence in this
parameter. The local discarded weight is set to A, = 1077, For
clarity, we only show every fifth data point that was computed.

parameters as in Fig. 7). It is not surprising that the initial drop
in kinetic energy gets steeper as the coupling strength y /1y is
increased. However, for longer times the energy loss from the
electronic system decreases with increasing coupling strength.
This trend follows the trend of the ground-state kinetic energy
plotted as dashed horizontal lines in Fig. 9. The electrons get
more and more localized in the ground state as y /fy increases
and therefore, the kinetic energy grows. Yet, we emphasize
here that during the time evolution we do not drift toward the
ground state since energy is conserved throughout the time
evolution. Quite on the contrary, we remain in a high-energy
state. An open question left for future work is a comparison to
finite-temperature equilibrium expectation values of the same
observables.

In order to illustrate the capabilities of the TEBD-LBO
method, we compare such a simulation that is converged
for a given local and global discarded weight for L = 13
sites (wo/ty = 2, y /to = 4) with a resulting d, = 12 (and an
My, = 40) to a simulation with My, = 10 and M, = 20,
which is shown in Fig. 10. Clearly, the simulation with My, =
10 cannot correctly produce the dynamics for ¢ > 1/ty and
fails to capture the intermediate plateau formation for 1 <
tty < 2.5. The simulation with My, = 20 is able to capture
the plateau formation but evidently is not converged. This
shows that the TEBD-LBO is not only more accurate on a
quantitative level but is also capable of accessing parameter
regimes that are out of reach for conventional simulations with
a small My, using the phonon-number basis.
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FIG. 11. Time evolution of (a) the decay of the charge-density-
wave order parameter Ocpw and (b) the phonon number per fermion
Npn /N when starting from the dressed CDW state [DCDW) Eq. (34).
The small black dots in panel (a) are exact analytical results for
y = 0 when starting from the |[BCDW) state in the thermodynamic
limit [97]. The dashed horizontal lines in panel (b) represent the
number of phonons per fermion in the ground states at the respective
parameters. Simulations are performed for L = 13, wy/fy = 2 and
different coupling strengths y /#y = 1, 3, 4. In the time evolution, we
use a local phonon cutoff My, = 20, 30, 40, respectively. The local
discarded weight is set to A, = 1078, For clarity, we only show
every fifth data point that was computed.

B. Dressed CDW melting

In the second example, we start from the ground state in
the atomic limit oy = 0. As discussed in Sec. II, the ground
state takes the form Eq. (7) and we prepare it in such a way
that Ocpw = 1. This is done by setting the hopping parameter
to = 0 and performing an imaginary time evolution of the bare
charge-density-wave state [BCDW) to reach the ground state.
This results in the state

w2 [E=D/2 o
IDCDW) =e¢ % []_[ ch; e%b2[j||@>el|®)ph’ (34)
=1

up to machine precision. We will refer to this state as a dressed
charge-density wave (DCDW) and its structure in real space
is sketched in Fig. 6(b).

In Fig. 11(a), we plot the order parameter Ocpw as a
function of time when starting from the DCDW state. We set
the phonon frequency to wy/fy = 2 during the time evolution
and use different coupling strengths y /ty = 1, 3, 4 (the same
as for the BCDW state in Fig. 7 and 9). For the strongest
coupling y/ty = 4, the initial state is close to the ground
state and therefore, the order parameter decays very slowly.
This resemblance is also reflected in the time dependence
of the phonon number plotted in Fig. 11(b). For the strong
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FIG. 12. Time evolution of the decay of the charge-density-wave
order parameter Ocpw When starting from the dressed CDW state
IDCDW) Eq. (34). Here, the time axis is in units of the effective
hopping matrix element 7y Eq. (8) (system size L = 13, phonon fre-
quency wy/ty = 2, and data for different coupling strengths y /1) =
1,3,4). In the time evolution, we use a local phonon cutoff My, =
20, 30, 40, respectively. The local discarded weight is set to A}, =
103, For clarity, we only show every fifth [every twentieth] data
point that was computed for y /o = 3 [y /ty = 4].

coupling y /ty = 4, the phonon number barely changes over
time and stays close to the value in the ground state plotted
as a dashed horizontal line. On the other hand, for the small
coupling y/tp = 1, the initial state is far from the ground
state and, as a consequence, the order decays fast toward zero
and oscillates around this value. Again, the frequency of the
oscillations is controlled by the hopping parameter #y as is
evident from the comparison to the exact analytical curve at
y = 0 [97] [small black dots in Fig. 11(a)]. Furthermore, for
y /to = 1, the phonon number increases by a factor of two
within 77y & 1.5. For the intermediate coupling of y /fy = 3,
the order parameter slowly and steadily decays to zero and the
phonon number in the system changes moderately compared
to the other two cases.

The different timescales of the dynamics in Fig. 11(a) can
also be understood in terms of decreasing effective hopping
matrix elements for the polarons for increasing coupling
strength y /fy. In Fig. 12, we plot the order parameter Ocpw
as a function of time where time is expressed in units of the
inverse effective hopping matrix element 7, Eq. (8), from the
small 7y perturbation theory [26]. This does not produce a
complete collapse of the data sets since we are already far
away from the small-#y limit. Nevertheless, the decay of the
order parameter now happens on comparable timescales for
the different coupling strengths.

Another feature that is noticeable in Fig. 11(a) is peaks
in Ocpw around fty ~ 3.1 and tty &~ 6.3 for y/ty = 4. The
first peak is also visible for y /o = 3. The positions in time
of these features coincide with multiples of the phonon pe-
riod 2 /wy. This becomes evident when comparing data for
different phonon frequencies wy/fy (not shown here). These
features are also very prominent in Fig. 13 where we plot the
kinetic energy as a function of time when starting from the
DCDW state. For the strong coupling y /fy = 4, the kinetic
energy relaxes to the ground-state value (dashed red line
in Fig. 13) after tfyp ~ 0.5 and fluctuates around it. Around
tty =~ 3.1, a peak appears that corresponds to the one seen in
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FIG. 13. Time evolution of the kinetic energy per fermion Ey;,/N
when starting from the dressed CDW state [DCDW) Eq. (34). The
dashed horizontal lines represent the kinetic energy in the ground
states at the respective parameters. Simulations are performed for
L = 13, wy/ty = 2 and different coupling strengths y /ty = 1, 3,4.In
the time evolution, we use a local phonon cutoff My, = 20, 30, 40,
respectively. The local discarded weight is set to Ay, = 1078, For
clarity, we only show every fifth data point that was computed.

Fig. 11(a). After tty ~ 3.5, the kinetic energy again fluctuates
around the ground-state value before the second peak appears
around 7fy) ~ 6.3. In contrast, the kinetic energy at y /fp = 1
slowly decays to Exi,/(toN) ~ —0.7 and only shows very slow
fluctuations around that value. It is worth noting that this value
is still far above the ground-state kinetic energy (horizontal
dashed green line in Fig. 13). The latter is not surprising since
the initial DCDW state is far away from the ground state at
these parameters.

Comparing the time evolution of the BCDW state and
the DCDW state, one notices that the behavior at the weak
coupling y /ty = 1 in the two cases is very similar. The order
parameter decays toward zero very fast and oscillates with a
frequency controlled by the hopping parameter #;. In contrast,
the behavior for the stronger couplings y /ty = 3, 4 is quite
different for the two different initial states. When starting
from the BCDW state the initial movement of the fermions
is not affected much by the coupling to the phonons and
only after a transient time, when phonons are emitted by the
fermions and the polarons are formed, the fermions become
very slow. However, this slowing down of the movement
is only temporary and after the phonons are reabsorbed the
dynamics of the fermions speeds up again. In contrast, the
DCDW state at y /ty = 3, 4 already contains very heavy po-
larons and the movement of the fermions is slow right from
the beginning. A closely related behavior has been seen in
a recent work by Kloss et al. [32] in the expansion of a
single particle injected into an empty Holstein lattice. When
the particle is initially dressed by phonons, the expansion
is strongly suppressed as the coupling strength is increased.
In the opposite case of a bare electron, a repeated temporal
suppression of the dynamics over time intervals of one phonon
period is observed. We find both these phenomena in the time
evolution of the dressed and bare CDW state, respectively.

Another aspect is that the BCDW state as initial state
is increasingly farther away from the ground state as y/wy
increases (cf. Table I). On the other hand, in the case of the
DCDW state the opposite is true. The stronger the coupling
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TABLE I. Energy difference between the ground states and the
initial states AEBCDW[DCDW] = EBCDW[DCDW] — E® for the BCDW
[DCDW] state with L = 13 and wy/ty = 2.

v/t AEgcpw/(toN) AEpcpw/(toN)
1 1.674 1.174
4.877 0.377
4 8.153 0.153

y /wo the closer the initial state is to the ground state in
terms of energy. This explains the slower relaxation due to
the smaller fraction of intermediate states available in the
many-body spectrum.

C. Quench from CDW to metallic phase

In contrast to the initial CDW product states discussed in
the previous sections, we now start from a fully correlated
CDW state, i.e., the many-body ground state. The quench
protocol is as follows. We prepare the system in the ground
state for parameters in the CDW phase. Then, at time ¢t = 0,
we quench the phonon frequency wy/fy and the electron-
phonon coupling parameter y /fy such that for the resulting
parameter set, the system is in the metallic TLL phase. The
quenches considered here are illustrated in the sketch of the
phase diagram in Fig. 1(b) as arrows. The horizontal arrow
(FQ) illustrates the quench of both the phonon frequency
wyp/to and the coupling strength y /@y in such a way that y /wq
stays constant, while the vertical arrow (CQ) illustrates the
quench of only the coupling y /f). As mentioned earlier, we
use an odd system size L to pin the charge-density wave and
get a nonzero value for the order parameter Ocpw in the initial
ground state. The number of particles in the system is then
N=(L-1)/2.

In Table II, we list the quench energies AE = EMt — F&
in the two quenches, which is the difference between the
energy of the state after the quench E™' and the ground-
state energy E® for these parameters. Furthermore, we list
the kinetic and phonon quench energy AE} = E[N' — ES
and AE;';l = EI"E“ — Egg , respectively, where E, = (H,). The
kinetic part of the quench energy is very similar in the two
quenches while the phononic part is not. In the frequency
quench, we reduce the energy of individual phonons with
respect to the bandwidth and therefore, AE;'}? becomes quite
small. In comparison, in the coupling quench the ratio of
phonon energy and bandwidth stays fixed and AESE domi-
nates AEY". This explains why in the frequency quench, AEY
is smaller than in the coupling quench.

TABLE II. Total quench energies AEY and the contributions
from the kinetic part AES and the phononic part AE .

AEY/(th)N) AEX /(toN) AE;‘I:l /(toN)
FQ 0.822 1.007 0.197
CQ 5.190 0.952 7.398

1.0h (a) - free fermions in TL
N L=13 FQ

E' + CQ
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FIG. 14. Time evolution of (a) the decay of the charge-density-
wave order parameter Ocpw and (b) the staggered displacement
Ouisp Eq. (35) in a quench from the CDW phase to the TLL phase.
Circles: Quench from wg init/fo = 2 and yinit/to = 4 to wo/ty = 0.1
and y /ty = 0.2 (frequency quench, FQ). Diamonds: Quench from
Yinit/To =4 to y/to =1 while wy/tp =2 is kept fixed (coupling
quench, CQ). The small black dots in panel (a) are exact analytical
results in the thermodynamic limit for [BCDW) as initial state and
no coupling to phonons [97]. The dashed horizontal lines in panel
(b) represent the value of Oy, in the respective ground states. The
system size is L = 13, local phonon cutoff My, = 40, and the local
discarded weight is set to Ao, = 1078, For clarity, we only plot every
second [fourth] data point that was computed in the FQ [CQ].

1. Frequency quench

We first consider the frequency quench, starting from the
ground state at wo init/fo = 2 and Yinit/fo = 4 which is in the
CDW phase. At t = 0, we quench the phonon frequency to
wp/ty = 0.1 and the coupling strength to y/fp = 0.2 with
y /wy = 2 = constant. The time evolution of the order param-
eter is shown in Fig. 14(a) as circles. The order quickly decays
toward zero and oscillates around a value slightly bigger
than zero. The comparison to the exact analytical results for
relaxation from the BCDW state with y = 0 [97] [small black
dots in Fig. 14(a)] reveals that the frequency of the oscillations
is controlled by the hopping parameter #). Moreover, the
electrons clearly move into the previously empty sites.

Instead of the phonon number, we discuss the staggered
displacement to characterize the dynamics in the phonon
sector:

1 L
Oaisp = 7 D_ (=D (b] +b)). (35)
=1

(bl+ + b,) is the expectation value of the displacement of the
harmonic oscillator on site /. In equilibrium, a nonzero value
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FIG. 15. Time evolution of the kinetic energy per fermion Ey;, /N
in a quench from the CDW phase to the TLL phase. Circles: Quench
from a)(),im(/t() =2 and )/im(/l() =4 to (l)()/t() = 0.1 and )//l() =02
(frequency quench, FQ). Diamonds: Quench from yi,/fo =4 to
y/to = 1 while wy/ty = 2 is kept fixed (coupling quench, CQ). The
dashed horizontal lines represent the kinetic energy per fermion
Eyin /N in the respective ground states. The system size is L = 13,
local phonon cutoff My, = 40, and the local discarded weight is set
to A = 1073, For clarity, we only plot every second [fourth] data
point that was computed in the FQ [CQ].

of the fermion CDW order parameter Ocpw is accompanied
by a nonzero value of the staggered displacement Ogis,. We
plot the staggered displacement in Fig. 14(b). For the FQ, it
remains positive during the simulation window and decreases
only slightly. To qualitatively understand the nonequilibrium
phenomena investigated here it is helpful to adapt a mean-
field-like picture. The displacements of the harmonic oscilla-
tors can be viewed as a potential landscape for the electrons
when we replace the displacement operators in Eq. (4) by their
expectation values.

In the case of the frequency quench, the staggered displace-
ment Oy;sp changes very slowly as a function of time since
the phonon period 27 /wy is very large. As a consequence,
at the end of our simulation time, there is still a background
potential landscape. The electrons move in this background
potential and therefore, their order remains larger than in the
free case y = 0. This also means that although the electron
CDW order parameter Ocpw exhibits a fast dynamics and
only shows small oscillations, the entire system is still very
far from equilibration since the phonons remain in a spatially
inhomogeneous state. In order to observe the relaxation of
the whole system toward a stationary state one would have to
simulate to much longer times than what is currently feasible
with our method. Finally, in Fig. 15 we present the kinetic
energy after the frequency quench. It relaxes toward an almost
stationary value after t7op & 1.5 with only small oscillations
with a frequency similar to that in the time evolution of Ocpw.

2. Coupling quench

In the second quench scenario, we fix the phonon fre-
quency to wy/fo = 2 and quench only the coupling strength
from yini/to = 4 to y /to = 1. The time evolution of the order
parameter Ocpw is plotted as diamonds in Fig. 14(a). In
contrast to the frequency quench, the order parameter in the
coupling quench shows large slow oscillations with an ampli-

tude that barely decreases on the timescales that are accessible
here. In Fig. 14(b), we plot the staggered displacement Ogisp
in this quench as diamonds. One can see that the staggered
displacement oscillates with a period of 27 /@, between pos-
itive and negative values; i.e., the phonons, once released
from the polaron, start to undergo a nonequilibrium dynamics
with oscillating displacement. Note that the phonon density
itself also remains largely concentrated on the even sites (data
not shown here). For the effective potential landscape this
means that the fermions are attracted to their initial places
when Oy;gp is positive and are pushed away from these sites
when Oyisp is negative. Therefore, the oscillations in Ocpw
and Og;sp are locked to one another and the frequencies are
comparable. Similar to the FQ, the spatially inhomogeneous
nonequilibrium distribution of the phonons remains stable.

This locking effect also explains the oscillations in the
kinetic energy plotted as diamonds in Fig. 15. The kinetic
energy has a maximum whenever Ogis, has a maximum or
a minimum. This occurs when the fermions are localized on
the even or odd sites, respectively. On the other hand, when
the potential landscape is closer to being flat and Og;gp i close
to zero, the fermions hop around and the kinetic energy has a
minimum.

In summary, the quenches again exhibit strong dependen-
cies on the initial state and on the final-state parameters in
the transient dynamics. As in the relaxation dynamics of
the BCDW and DCDW states, the phonons primarily slow
down the electronic dynamics. For the postquench parameters
in the TLL phase considered here, the electrons can move
but the phonon distribution relaxes much slower, resulting
in a slowly decaying inhomogeneous nonequilibrium distri-
bution. It would be very interesting to extend the analysis
to the case of dispersive phonons to study whether this can
speed up both the electronic relaxation and the dissolving
of spatially inhomogeneous phonon distributions. From a
broader perspective, this leads to the topic of energy transport,
which in the Holstein model can only occur via electronic
quasiparticle motion while dispersive phonons could carry an
energy current themselves. These questions are left for future
studies.

V. SUMMARY

To summarize, we studied the melting of CDW order by
means of real-time simulations of the half-filled Holstein
model of spinless fermions in one dimension. To this end,
we investigated relaxation dynamics that is dominated by
electron-phonon coupling in the far-from-equilibrium regime,
complementary to the case studied in [37] where strong elec-
tron interactions were present. We find a strong dependence
of the transient dynamics on the precise initial state and
on the model parameters. As discussed in previous work
[29,32,34,37,98], a main effect of an electron-phonon cou-
pling is the slowing down of the dynamics of the electrons
compared to a purely electronic system. This is attributed to
the formation of polarons which renormalizes the mass of
the charge carriers. For weak coupling the movement of the
electrons is comparable to the dynamics of free particles with
small corrections. In the case of strong coupling, the dynamics
on transient timescales can be altered more drastically, which
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is exemplified by the temporal self-trapping of the electrons
observed here.

Furthermore, we often find very different timescales for
the relaxation in the electron and the phonon sector as is
most clearly evident in the quenches from correlated ground
states. In these situations, we observe that the initial spatially
inhomogeneous phonon distribution persists and forms a po-
tential background for the electron relaxation. As a result,
inhomogeneities remain in the spatial electron distribution as
well. A question for further studies is how this picture changes
when introducing a dispersion of the phonons. It remains as
an open question whether regimes can be found where the
presence of phonons actually accelerates the full relaxation of
the electronic system. This connects our work to the question
of how inhomogeneities in the phonon sector of an electron-
phonon coupled system relax and, more generally, how differ-
ent channels of energy and charge transport compete in such
systems (in the context of the Su-Schrieffer-Heeger model,
such questions were discussed in, e.g., [98]).

Our work demonstrates the capabilities of combining LBO
with MPS-based numerical methods when applied to electron-
phonon coupled systems. The TEBD-LBO algorithm gives
access to regimes far from equilibrium that are out of reach
for conventional MPS-based techniques. We postpone the
question of a benchmark of our DMRG3S + LBO algorithm
against other state-of-the-art ground-state DMRG algorithms
that were developed for electron-phonon coupled systems
(such as the pseudosite method [55]) to future studies.
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APPENDIX: FINITE-SIZE DEPENDENCE

In Figs. 16, 17, and 18, we compare time-evolution data
produced with our TEBD-LBO method (cf. Sec. III B) for
different system sizes L = 5,9, 13.

In Fig. 16, the initial state is the bare CDW state and the
phonon frequency is set to wy/fyp =2 as in Sec. IV A. The
largest finite-size effects are seen for y /fyp = 1 in Fig. 16(a).
This is expected since because of the weak coupling, the
dynamics is the fastest here. Nevertheless, there are no big
qualitative differences between the different system sizes.
Finite-size effects are even smaller for the larger couplings
y [to = 3 [Fig. 16(b)] and y /tg = 4 [Fig. 16(c)] where until
tty ~ 2.8, the data of the different system sizes lie on top of
each other and only small deviations are seen for larger times.
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FIG. 16. Time evolution of the charge-density-wave order pa-
rameter Ocpw Wwhen starting from the bare CDW state |BCDW)
Eq. (32). Comparison between different system sizes L = 5 (open
black symbols), L =9 (open colored symbols) and L = 13 (filled
symbols). The phonon frequency is wy/fo = 2 while in panel (a)
y/to = 1, in panel (b) y/tp = 3 and in panel (c) y/typ = 4. In the
time evolution, we use a local phonon cutoff My, = 10, 30, 40,
respectively, and the local discarded weight is set to Aj,. = 1078,
For clarity, we only show every fifth data point that was computed.

The picture is similar for the DCDW state (cf. Sec. IV B) as
the initial state. In Fig. 17, we compare the time evolution of
Ocpw at wy/ty = 2 for the system sizes L = 5, 9, 13. Again,
the largest finite-size effects are seen in panel (a) of Fig. 17 for
y/to = 1. For y /ty = 3 [Fig. 17(b)] small finite-size effects
are observable for t7y > 4, while for y /ty = 4 [Fig. 17(c)] the
data for the different system sizes lie on top of each other for
the full simulation time. This is a manifestation of the very
slow dynamics and the proximity to the ground state of the
dressed CDW state at large y /t.

In Fig. 18, we compare different system size data for the
quenches discussed in Sec. IV C. In Fig. 18(a), the phonon fre-
quency and coupling strength are quenched from wy init /f0 = 2
and Yinit/fo = 4 to wo/tp = 0.1 and y /ty = 0.2. Here, we can
observe large boundary effects for L = 5 after tfp ~ 3 and
for L =9 after t#; ~ 4.7. This is not surprising since the
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FIG. 17. Time evolution of the charge-density-wave order pa-
rameter Ocpw When starting from the dressed CDW state |[DCDW)
Eq. (34). Comparison between different system sizes L = 5 (open
black symbols), L =9 (open colored symbols) and L = 13 (filled
symbols). The phonon frequency is wy/fo = 2 while in panel (a)
y/to = 1, in panel (b) y/tp = 3 and in panel (c) y/tp = 4. In the
time evolution, we use a local phonon cutoff My, = 20, 30, 40,
respectively, and the local discarded weight is set to Ay, = 1078,
For clarity, we only show every fifth data point that was computed.

dynamics is dominated by the hopping parameter 7y in this
case as discussed in Sec. IV C. The largest velocity in the sys-
tem is therefore v,y & 2ty and hence the fastest excitations
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FIG. 18. Time evolution of the charge-density-wave order pa-
rameter Ocpw for different system sizes L = 5 (open black symbols),
L =9 (open colored symbols) and L = 13 (filled symbols). Panel
(a): Quench from wy init/fo = 2 and yinie/to = 4 to wy/ty = 0.1 and
y /to = 0.2 (frequency quench). Panel (b): Quench from y;y /t0 = 4
to y/to = 1 while wy/ty = 2 is kept fixed (coupling quench). The
local phonon cutoff is My, = 40 and the local discarded weight is
set to Ay, = 1078, For clarity, we only plot every second data point
that was computed in panel (a) and every fourth data point that was
computed in panel (b).

had time to travel across the entire system and bounce back
from the boundary.

The situation is different in Fig. 18(b) for the quench
of the coupling strength yini/to =4 to y/tp = 1 while the
phonon frequency is fixed to wy/fo = 2. In this case, the
finite-size effects seen are very small which is evidence
for the fact that the dynamics in the system is not dom-
inated by the free movement of the electrons. Instead,
the presence of the phonons from the CDW initial state plays
the key role in the dynamics.

Overall, Figs. 16, 17, and 18 show that the key features in
the time evolution of Ocpw that are described in Sec. IV are
robust against finite-size effects and are not just an effect of
the small system sizes considered in this work.
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