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Quantum chaos associated with an emergent ergosurface in the transition layer between
type-I and type-II Weyl semimetals
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We present emergent ergosurfaces (ES) in a transition layer between type-I and type-II Weyl semimetals
(WSMs). The Hawking temperature defined by the surface gravity at the acoustic event horizon which coincides
with the ES when the tangent velocity v‖ is small is in a measurable interval. On the type-II WSM side, i.e.,
inside the ES when v‖ is large, the motion of the quasiparticles may be chaotic after a critical surface as they are
governed by an effective inverted oscillator potential induced by the mismatch between the type-I and type-II
Weyl nodes. In a relevant lattice model, we calculate out-of-time-ordered correlators (OTOCs). We find that
the OTOCs are fast scrambling with a quantum Lyapunov exponent in high temperature and the scrambling is
saturated after the Ehrenfest time. This confirms the quantum chaotic behavior.
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I. INTRODUCTIONS

Recent developments on the frontier of theoretical physics
research have entangled black hole horizon physics with
quantum chaos [1–7].

In condensed matter systems, the black hole analog had
been pioneered by Unruh in transsonic fluid flow [8]. A quan-
tum analog had been provided in Bose-Einstein condensation
[9,10], and a magnonic black hole was predicted [11]. The ex-
otic emergent geometries (or gravities) have also been studied
in Fermi surface [12], fractional quantum Hall effects [13–16],
graphene [17], deformed crystal [18], type-II Weyl semimetal
(WSM) [19–22], and type-III Dirac semimetal [23].
Several systems may simulate the Hawking evaporation at
a black hole event horizon [24,25]. However, the chaotic
behaviors at the horizon do not appear easily. For instance, for
the trajectory of a moving particle outside of the horizon to be
chaotic classically, there must be an external potential near the
horizon [26]. The Lyapunov exponent is subject to a maximal
chaotic bound, the surface gravity [1]. This bound is saturated
for theories with anti-de Sitter/conformal field theory duality,
such as the case in the Sachdev-Ye-Kitaev model [2–4].

Volovik et al. recently studied the emergent metric in
the inhomogeneous WSM [19–21]. They found a general
correspondence between the emergent vielbein ei

μ and the
effective Hamiltonian near a Weyl node K = (Kx, Ky, Kz ), i.e.,

H (�q) = ei
μqiσ

μ, (1)

where μ = 0, i with i = x, y, z and qi = ki − Ki and σμ =
(I, σ i ) are the identity and Pauli matrices. Here the Ein-
stein’s summation convention for repeated indices is used.

*These two authors contribute equally.

The “speed of light” vF (the Fermi velocity), the electron
effective mass mb, and h̄ are set to be 1 unless they are
explicitly restored. The spectrum is given by

E (Qi )± = e j
0[e−1]i

jQi ± |Q|, (2)

with Qi ≡ e j
i q j . The vielbein components ei

μ together with
e0

0 = −1 and e0
i = 0 define an emergent acoustic metric gμν =

ηαβeμ
α eν

β with the signature ημν = diag(−1, 1, 1, 1) [19]. With
this vielbein choice, the conical spectrum (2) can be written as

gμνqμqν = 0, (3)

where q0 = E and the dual metric gμν defines the light cone
with gμνxμxν = 0. Therefore, the ergosurface (ES) of this
emergent geometry is determined by g00 = −(1 − v2) = 0
[27], i.e., |v| = 1, where vi = e j

0[e−1]i
j . A Weyl node is called

type I (type II) if |v| < 1 (|v| > 1). Notice that the type of
each one in a pairwise nodes can be arbitrary [28,29]. From
this effective geometry point of view, quasiparticles associated
with the type-I (type-II) Weyl node effectively live outside
(inside) the ES.

Volovik uses the spherically symmetric metric to study
inhomogeneous WSM [20], which is difficult to be realized
in reality. Both type-I and type-II WSMs have been found
[30–36]. In order to simulate an acoustic event horizon (which
coincides with the ES when the normal velocity v⊥ dom-
inates [27]) in a realizable geometry and study the chaos
phenomena, we consider a type-I/type-II WSM transition
layer (TL) where the type-I and type-II Weyl nodes may
mismatch [see Fig. 1(a)]. In the following, we will assume that
v⊥ dominates whenever the horizon is mentioned. Within the
TL, a black/white hole planar horizon emerges effectively at
a plane with |vz| = 1 in the TL. A fermionic shock wave and
the Hawking evaporation are possible to be detected because
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FIG. 1. (a) The TL between Type-I and Type-II WSMs. The
acoustic event horizon is located at z = zh with vz(zh ) = 1. (b) The
spectra outside, at, and inside the horizon, corresponding to type-I,
critical, and type-II WSM’s. (c) The light cones outside, at, and inside
the horizon. In (b) and (c), we take αz(z) = 0 and project to the x
direction for simplicity.

the Hawking temperature may be as high as several tens of
Kelvin.

In the effective Hamiltonian approach, we further find
that when the Weyl nodes of the type I and type II do not
completely match, the TL states inside and outside the ES
may be totally different: On the type-I WSM side, the TL state
is described by the Landau levels of the WSM in an effective
magnetic field. On the type-II side, after a characteristic plane,
the TL states are governed by an effective inverted oscillator
potential [37–39] and thus are chaotic due to the nonintegra-
bility caused by coupling to the environment potential [26].

To further study the quantum chaos of the quasiparticles
in the TL, we study a lattice model which reduces to the
effective chaotic model in the TL in the long-wavelength
limit. We calculate out-of-time-ordered correlators (OTOCs)
of the quantum states which characterize the quantum chaotic
behavior [1–7,40]. For a proper hopping strength in the TL
with a sufficient layer thickness, we find that in a lower
temperature, the OTOC does not show a fast scrambling over
a short time while it does when the temperature is higher
and a quantum Lyapunov exponent is obtained. The OTOCs
saturate after the Ehrenfest time. These two properties of
OTOC indicate the existence of quantum chaos inside the ES
[41].

II. EFFECTIVE MODEL FOR TL

We consider that type-I and type-II WSMs couple as shown
in Fig. 1(a). The TL is located between z = 0 and z = L.
Assuming KI (KII ) is a Weyl node of the type-I (type-II)
WSM in the regime z > L (z < 0), and |KI − KII | � K0,
where K0 is the distance between a pair of Weyl nodes in the
bulk. The effective Hamiltonian in the bulk of the type-I/II
WSM is given by

HI/II = (
ki − KI/II

i

)
σ i − αx,I/II

(
kx − KI/II

x

)
−αz,I/II

(
kz − KI/II

z

)
, (4)

where αI/II = (αx,I/II , 0, αz,I/II ) are parameters that tilt the

Dirac cones. For the type-I WSM, |αI | =
√

α2
xI + α2

zI < 1 and

|αII | =
√

α2
xII + α2

zII > 1 for the type-II WSM. We further

assume |�α| = |αII − αI | � 1. The small difference in the
Weyl nodes can be viewed as a soft edge between the WSMs.
The soft edge is achieved by a small linear deformation
between the lattice constants, which corresponds to a linear
interpolation between the Weyl nodes in the lowest order.
Therefore, the TL effective Hamiltonian can be approximated
by a linear interpolation between HI and HII [42],

H (z) = HII + (HI − HII )
z

L
, (5)

where 0 � z � L. Defining q = k − KII and Bi = KI
i −KII

i
L =

�Ki
L ,

H (z) = (qx + Bxz)σ x + (qy + Byz)σ y + (−i∂z + Bzz)σ z

−αx(z)(qx + Bxz) − αz(z)(−i∂z + Bzz) + . . . , (6)

where “. . . ” are high-order terms including O(�K · �α),
etc.; qz is replaced by −i∂z; and Bx(By) can be thought as
an effective magnetic field in the y(x) direction. One can
perform a gauge transformation to change −i∂z + Bzz to −i∂z

if the wave function ψ changes to e−i Bzz2

2 ψ accordingly. α(z)
is a linear interpolation like H (z), i.e., α(z) = αII − �α z

L .

Since |�α| � 1, α(z) is a slow-varying vector function of z.
|α(zc)| = 1 determines the critical surface with z = zc which
separates the type-I and type-II WSM, where

zc

L
=

�α · αII −
√

(�α · αII )2 − (�α)2
(
α2

II − 1
)

(�α)2
. (7)

III. EMERGENT GEOMETRY AND HORIZON

To see the emergent geometry, we first consider Bi =
�Ki

L = 0 for simplicity. Comparing the TL Hamiltonian (6)
with the effective Hamiltonian (1), we can identify the
vielbein: ex

0 = −αx(z), ey
0 = −αy(z) = 0, ez

0 = −αz(z), and
ei

j = δi
j . Therefore the effective geometry in the TL is de-

scribed by the line element of the induced metric [19]

ds2 = −[1 − |v(z)|2]dt2 − 2vi(z)dridt + (dr)2,

= −d2t + (dri − vidt )2, (8)

with vi = ei
0 = −αi(z) and |v| = |α(z)| = √

α2
x + α2

z . The
ES, which is denoted as z = zc, is defined by g00 = −[1 −
v(z)2] = 0 and the acoustic event horizon is defined by

vz(zh) = 1 [27,43]. In the limit v2
x

v2
z

→ 0, the ES coincides with
the event horizon which we denote as z = zh. For instance, we
sketch the spectra and light cones with αz(z) = 1 in Figs. 1(b)
and 1(c). In that emergent metric, the Ricci scalar R at the
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acoustic event horizon is given by

Rzh = �α2
x

[ − 2(1 − αIIz )2�α2
x − 4αIIx(1 − αIIz )�α1�α3 + (

1 − 2α2
IIx

)
�α2

z

]
2�α2

z

, (9)

which reduces to zero when �αx → 0. Furthermore, the
surface gravity ηH can be identified by introducing Lμ =
(1, vx, 0, 0) which is the null vector field on the acoustic event
horizon with the integral curves generating the horizon [43],

Lν∂νLμ|z=zh = ∂
(
1 − v2

z

)
2∂z

Lμ = ηH Lμ, (10)

namely

ηH = ∂
(
1 − v2

z

)
2∂z

|z=zh = �α · α(zh)
1

L
. (11)

The Hawking temperature of this emergent black hole horizon
is defined by [43]

TH = h̄ηH

2πkB
= �α · α(zh)h̄vF

2LπkB
, (12)

where we have explicitly restored the Fermi velocity whose
typical value for WSM is vF ∼ 106 m/s. If the thickness of the
TL L � 10 nm, TH � 102�α · α(zh) K. If �α · α(zh) ∼ 0.1,
then the Hawking temperature may arrive at several tens of
Kelvin which are experimentally reachable.

In these discussions, we have assumed the Fermi velocity
vF = 1 is a constant in the low-energy effective theory. If the
interactions and quantum fluctuations are considered, then vF

may be renormalized or even spatial dependent. To exactly
calculate the Hawking temperature, one needs to solve the
Weyl equation with the emergent metric (8), and then a
Hawking evaporation may be observed by a thermal spectrum
of the TL fermion when the layer is forming [20,44]. Similarly
to the transsonic wave in the bosonic fluid [8,45], we shall
have a fermion shock wave with a velocity v(z), which will be
presented elsewhere.

IV. CHAOTIC TRANSITION LAYER

To show the chaotic behavior in the effective theory, we
consider the Dirac equation with mismatching Weyl nodes
0 < �Ki � K0,

H (z)ψ (z, t ) = iψ̇ (t ), (13)

where H (z) is given by Eq. (6) and ψT = (χ, ζ ) is a two-
component spinor. Without loss of generality, we take qy = 0.
Because α(z) slowly varies, we neglect the ∂zα(z) term. Then
the dominant part of χ ’s equation in the large z̃ limit reads

χ̈ − ∂2
z̃ χ +

[
κ z̃2 + B2

y

(
q2

x − 2
√

1 − α2
z

Bx
qxz̃

)]
χ + · · · = 0,

(14)

where z̃ = qx+Bxz

Bx

√
1−α2

z

and κ = (1 − α2)B2
x + (1 − α2

z )B2
y (see

Appendix A for “· · · ” terms in more detail). For κ = ω2 > 0
with a fixed qx, Eq. (14) coincides with the Landau levels of a
Weyl fermion outside the ES.

Equation (14) will become an inverted oscillator when κ <

0 [37–39]. This can be satisfied for |α| > 1 and |αz| < 1 after
a characterized plane zc inside the ES [v(zc)2 = 1 if By = 0]
[46]. An inverted oscillator is known to lead to the chaotic
dynamics when it couples to the environment V (x) [26,47,48].
The detailed form of V (x) is not important as long as the
potential V (x) is a confining one. We therefore introduce an
environment potential V (x) and then Eq. (14) becomes

χ̈ − ∂2
z̃ χ − λ2

Lz̃2χ − B2
y∂

2
x + ε3z̃3χ + ε4z̃4χ

+ 2iB2
yB−1

x

√
1 − α2

z z̃∂xχ + V (x)χ = 0, (15)

where λ2
L = (α2

II − 1)B2
x + (α2

z,II − 1)B2
y > 0, ε3 ∼ O(�α ·

αII ), and ε4 ∼ O[(�α)2] > 0 (see Appendix A). If V (x) = 0,
then Eq. (15) is integrable with a positive Lyapunov exponent
λL and basically describes an inverted oscillator. To explicitly
show the classical chaos, we study the steady-state solution
of (15) and treat E2 = E as a classical energy. The Poincaré
sections for the classical limit of (15) with V (x) ∼ x2 show
that the Kolmogorov-Arnold-Moser tori keep nice periodic
orbits in lower E but break down as E increases, which
indicates the existence of classical chaos. For details, see
Appendix A.

At the end of this section, we would like to point out that, in
the Hawking radiation (12), the temperature is proportional to
|αz(zh)| = vF , while the Lyapunov exponent remains positive
as long as |αx| > 1 even if αz = 0. The Hawking radiation is
not directly related to the chaotic behavior in the TL. In other
words, the chaos survives even if the ES does not coincide
with the event horizon.

V. LATTICE MODEL

To further show the quantum chaos in the TL, we study a
lattice model on a cubic lattice with a lattice spacing a = 1.
For simplicity, we do not consider the environment disorder
while the Lyapunov exponent remains positive. The periodic
boundary conditions are implicated while the thickness in the
z direction is finite. We label the sizes of type-I/II WSMs
and the TL as LI/II and L, respectively. We consider minimal
models describing the type-I/II WSMs on a periodic cubic
lattice with Hamiltonian Hl

I/II [49]

Hl
I/II = dI/II,μσμ, (16)

where

dI/II,x = 2t̃
(

cos kx − cos KI/II
x

) + 2t̃
[
1 − cos

(
ky − KI/II

y

)]
+ t̃

2

(
cos 3kx − cos 3KI/II

x

) + 2t̃γ (1 − cos kz ),

dI/II,y = 2t̃ sin
(
ky − KI/II

y

)
, dI/II,z = −2t̃γ sin kz,

dI,0 = 0, dII,0 = −2ηII
(

cos kx − cos KII
x

)
. (17)
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FIG. 2. The zero-energy Fermi arcs and pockets in the kx-ky

plane. (a) γI = γII = γTL = 1. (b) γI = γII = 1 and γTL = 0.7. The
red Fermi arcs lie in the TL and connect to the Weyl nodes’s
images of the WSMs. The orange and blue regions correspond to
the quasiparticle and quasihole Fermi pockets in the type-II WSM.
Approximately, the states inside the black circle are described by the
effective inverted oscillator and lie in the ES. The additional areas in
(b) are the pink quasiparticle pockets belonging to the interval inside
the ES in the TL, and the green quasiparticle pockets are very close
to the ES from the type-II WSM side.

Here t̃ is the hopping strength. We introduce γ , which is a
z-dependent parameter [see Eq. (C2)], to fine-tune the hopping
strength in the z direction. The high-energy states which may
be quantum chaotic and far away from the Weyl points can be
moved near the Fermi level by tuning γ . The Weyl nodes are
located at KI/II = (KI/II

x , KI/II
y , 0). The lattice Hamiltonian

we use here is given by

Hl =

⎧⎪⎨
⎪⎩

Hl
II , γ = γII , nz � LII ,

Hl
II + ξ

(
Hl

I − Hl
II

)
, γ = γTL, nz ∈ (LII , L + LII ],

Hl
I , γ = γI , nz > L + LII ,

(18)

where nz is the lattice site index in the z direction and
ξ = nz−LII

L . In the long-wavelength limit, the effective Hamil-
tonian in the TL reduces to the form of Eq. (5) to a z-
dependent function which leads to a line of Weyl nodes (see
Appendix C).

Taking KI = (0.54π, 0.46π, 0), KII = (0.5π, 0, 0), and
ηII = 0.8t̃ and considering a half filling lattice with L = LI =
LII = 100, we sketch the Fermi arcs and pockets projected to
the kx-ky plane with the colored regions in Fig. 2. There are the
Fermi arcs on the surfaces of WSMs and the Fermi pockets in
the type-II WSM as expected. In the TL, there are Fermi arcs
that connect the type-I Weyl nodes’ images with the type-II
ones with the same chirality. The Weyl nodes’ lines slightly
deviate from these Fermi arcs and the ES is at ξh ≈ 0.18 (see
Appendix C). According to the band structures of the lattice
model (see Appendix B), there is no Fermi pocket in the
TL for γI = γII = γTL = 1 [Fig. 2(a)], while Fermi pockets
emerge in the TL for γI = γII = 1 and γTL = 0.7 by tuning γ

[Fig. 2(b)].

VI. OTOCS

The sensitivity of the initial value in quantum chaos could
be measured by OTOCs [1]. We consider the simplest OTOC
between the position and momentum operators in the z direc-
tion which is measurable in the transport experiment [40]. In
the semiclassical limit, this OTOC describes the dependence
on the initial condition of the particle motion. On the lattice,
these operators correspond to the site operator nz and the
difference operator P̂z, which is defined by

P̂z|ψk(nz )〉 ≡ 1
2 [|ψk(nz − 1)〉 − |ψk(nz + 1)〉], (19)

where k = (kx, ky) and |ψk(nz )〉 is the state on site nz. The
OTOCs are defined by

CT (t ) = 1

Z
Tr[e−βHl

[nz(t ), P̂z(0)]2]

=
∑
ψ

fψ 〈ψ |[nz(t ), P̂z(0)]2|ψ〉, (20)

where nz(t ) and P̂z(t ) are the time-dependent operators in
Heisenberg’s picture and fψ = 1

e
βEψk +1

is the Fermi distribu-
tion function. More explicitly, the OTOCs are given by

CT (t ) =
∑

k

CT (t, ψk ), (21)

where the k-dependent OTOC is given by

CT (t, ψk ) =
∑

ψ1,ψ2,ψ3

fψ
(
1 − fψ1

)
×(1 − fψ2 )(1 − fψ3 )ρψψ1ρψ1ψ2ρψ2ψ3ρψ3ψ

×[
nz(t )ψψ1 Pz(0)ψ1ψ2 nz(t )ψ2ψ3 Pz(0)ψ3ψ + · · · ],

(22)

Oψψ ′ = 〈ψ |Ô|ψ ′〉 for Ô = nz(t ) and P̂z(0). ρψψ ′ is the prob-
ability that the state |ψ ′〉 transits to the state |ψ〉 due to a
disturbance. For convenience, we take ρψψ ′ = e−β(Eψ−Eψ ′ ) for
Eψ > Eψ ′ or 1 otherwise; O f i = 〈 f |Ô|i〉 for Ô = nz(t ) and
P̂z(0). “ · · ·′′ is the other three terms when explicitly writing
out [nz(t ), P̂z(0)]2.

In numerical calculations, we take a lower temperature
T = 1/β = t̃/4 and a higher T = 2t̃/3. For the model with
γI = γII = γTL = 1, the OTOC with the lower T has a small
magnitude and does not have an exponential fast scrambling,
as shown in Fig. 3(a). In the inset in Fig. 3(a), the negative
slope of the ln CT (t ) in the very short time implies an expo-
nential decay of the OTOC. The reason lies in the binding
potential of the quasiparticles on the lattice site at the be-
ginning. After that time period, ln CT (t ) behaves logarithmic.
As the temperature raises, the fast scrambling of the OTOC
appears and its magnitude becomes three orders larger than
that in the lower temperature as shown in Fig. 3(b). In the inset
of Fig. 3(b), the OTOC still decays exponentially in a very
short time. After this very short time period, a time-dependent
positive quantum Lyapunov exponent λQL(t ) can be read out
according to an exponential fitting CT (t ) ∼ e2λQL (t )t . There is a
time period tQ ≈ 100 in which λQL = 0.006 is constant [50].
This implies the fast scrambling of the OTOC. The emergence
of the quantum chaotic behavior in the higher temperature
is consistent with the classical chaos in the effective model
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FIG. 3. The OTOCs CT (t ). (a) γTL = 1 and T = t̃/4. (b) γTL = 1
and T = 2t̃/3. (c) γTL = 0.7 and T = t̃/4. (d) γTL = 0.7 and T =
2t̃/3. The insets are a logarithmic fitting (red curve) of the ln CT (t ) in
the short time for (a) and (c), while the ones in (b) and (d) include the
linear region (red line) of the ln CT (t ) with λQL = 0.006 and λQL =
0.023, respectively.

because the chaos appears at higher energy. After tQ, due
to the quantum fluctuation, the fast scrambling begins to
be suppressed and ln CT (t ) deviates from the linear fitting.
After a long time tE � 5000, the OTOC is saturated instead
of growing everlastingly in the classical chaos. This time
tE corresponds to the Ehrenfest time. This shows a possible
distinction between the quantum chaos and the classical one
[41].

For γI = γII = 1 and γTL = 0.7, as shown in Figs. 3(c)
and 3(d), the fast scrambling in the OTOC is absent for the
lower temperature while it exists in the higher temperature,
similar to that for γTL = 1. However, the time tQ ≈ 40 and the
saturated time tE ≈ 300 are shorter than those for γTL = 1.
This is because the green pockets emerge in Fig. 2(b), which
increases the density of states and then enhances the quantum
fluctuation. Meanwhile, the higher density of states also raises
the quantum Lyapunov exponent in linear region about 4
times, λQL = 0.023. This means that the scrambling is much
faster than that for γTL = 1. In both cases of γTL = 1 and
γTL = 0.7, the OTOCs are dominated by the states inside the

black circle which corresponds to the inverted oscillator in the
effective theory. Besides the black circle area, there are other
states contribute to the positive Lyapunov exponent, such as
the pink area in Fig. 2(b) which emerge by tuning γTL. These
states are not predicted by the effective Hamiltonian (5).

We have yet to consider the x-y plane environment poten-
tial in the lattice model. The integrability of the model is lost
if it is turned on and then the fast scrambling of the OTOC and
the Ehrenfest time identify the quantum chaos.

VII. CONCLUSIONS

We pointed out that there are emergent ESs which coin-
cides with acoustic event horizons under certain conditions
in the TL between type-I and type-II WSMs. And the cor-
responding Hawking temperature may be measurable. When
the Weyl nodes of type I and type II mismatch, the quasipar-
ticles moving inside the ES may be quantum chaotic, even if
the event horizon and ES do not coincide. We confirm this
quantum chaotic behavior in a lattice model by calculating
the OTOCs of the system. Two diagnostic quantities, the
quantum Lyapunov exponent and the Ehrenfest time, which
characterize the quantum chaos, were determined.
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APPENDIX A: DETAILS ON SOLVING EQ. (13) IN THE
MAIN TEXT AND ITS CLASSICAL POINCARÉ SECTION

The equations of motion (13) in the main text for the wave
function ψ = (χ, λ)T read

(qx + Bxz)λ − i(qy + Byz)λ + (−i∂z + Bzz)χ

−αx(qx + Bxz)χ − αz(z)(−i∂z + Bzz)χ = i∂tχ, (A1)

(qx + Bxz)χ + i(qy + Byz)χ − (−i∂z + Bzz)λ

−αx(qx + Bxz)λ − αz(z)(−i∂z + Bzz)λ = i∂tλ. (A2)

Without loss of generality, we take qy = 0. Notice that the
Bzz term is a pure gauge and can be gauged away by a
gauge transformation ψ → exp(−i Bzz2

2 )ψ . Solving Eq. (A1),
we have λ = λ(χ ) and then substitute it into Eq. (A2),

{[(
1 − α2

x

)
(qx + Bxz)2 + B2

yz2] − ∂2
z + 2iαx(qx + Bxz)(αz∂z − ∂t ) − 2αz∂z∂t + α2

z ∂
2
z + ∂2

t

}
χ

− 1

qx + (Bx − iBy)z

{
αx(1 + αz )Byqx + (

α2
z Bx − Bx + iBy − iα2

z By
)
∂z + [(1 − αz )Bx + i(1 + αz )By∂t ]

}
χ = 0. (A3)

When qx + Bxz � 1, the second line of Eq. (A3) can be neglected. Making a transformation χ → exp(i αxαz (qx+Bxz)2

2Bx (1−α2
z ) )χ , Eq. (A3)

becomes

{
iαxαz

(
1 − α2

z

)
Bx + α2

x (qx + Bxz)2 − (
1 − α2

z

)[
(qx + Bxz)2 + B2

yz2
]}

χ

+ (
1 − α2

z

)2
∂2

z χ + 2iαx(qx + Bxz)∂tχ + 2αz
(
1 − α2

z

)
∂t∂zχ − (

1 − α2
z

)
∂2

t χ = 0. (A4)
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z

qz

(a) (b) (c)

z

qz

z

qz

FIG. 4. The Poincaré section for Hamiltonian (A10). For simplicity, we choose Bx = −1, By = 1, αx = 2, αz = 0, ε3 = 0, ε4 = 4, and
εx = 4. The colors in the diagrams represent the KAM (Kolmogorov–Arnold–Moser) tori for different initial conditions: qz(0) = 0.3, 0.25, 0.2,
z(0) = 0.6, and x(0) = 0. The energies are chosen as follows: (a) E = 1, (b) E = 1.2, and (c) E = 1.4. The breaking down of the KAM tori
indicates the existence of classical chaos.

Defining z̃ = qx+Bxz

Bx
√

1−α2
z

, Eq. (A4) reads

∂2
t χ − ∂2

z̃ χ +
[(

1 − α2
x − α2

z

)
B2

x z̃2 + B2
y

(√
1 − α2

z z̃ − qx

Bx

)2]
χ − iαxαzBxχ − 2αz

√
1 − α2

z ∂0∂z̃χ − 2iαxBxz̃√
1 − α2

z

∂tχ = 0. (A5)

Equation (A5) describes a harmonic oscillator when ω2 = (1 − α2
x − α2

z )B2
x + (1 − α2

z )B2
y > 0 or an inverted one with positive

Lyapunov exponent λL when −λ2
L = (1 − α2

x − α2
z )B2

x + (1 − α2
z )B2

y < 0. The leading-order terms are the first line of Eq. (A5),
and the last three terms only shift the oscillating center and the zero point energy. Since we have treated the slow-varying
functions α = αII − �α z

L as constants in the derivation of Eq. (A5), the Lyapunov exponent �L can be expressed as

λ2
L(z̃) =

[
α2

II − 2αII · �α
z

L
+

(
�α

z

L

)2

− 1

]
B2

x +
[
α2

zII − 2αzII�αz
z

L
+

(
�αz

z

L

)2

− 1

]
B2

y

=
[(

α2
II − 1

) +
(

2αII · �αqx

BxL
+ �α2q2

x

B2
xL2

)
−

2
√

1 − α2
zII (Bx�α · αII L + �α2qx )z̃

BxL2
+

(
α2

zII− 1
)
�α2z̃2

L2

]
B2

x

+
[(

α2
zII − 1

) +
(

2αzII�αzqx

BxL
+ �αz

2q2
x

B2
xL2

)
−

2
√

1−α2
zII (Bx�αzαzII L + �αz

2qx )z̃

BxL2
+

(
α2

zII− 1
)
�αz

2z̃2

L2

]
B2

y . (A6)

Therefore the chaos-related terms in Eq. (A5) read

∂2
t χ − ∂2

z̃ χ − λ2
LII z̃

2χ − 2B2
yB−1

x

√
1 − α2

z qxz̃χ + B2
yB−2

x q2
xχ + ε3z̃3χ + ε4z̃4χ + · · · = 0, (A7)

where

ε3 =
2
√

1 − α2
zII

[
(Bx�α · αII L + �α2qx )B2

x + (Bx�αzαzII L + �αz
2qx )B2

y

]
BxL2

, (A8)

ε4 =
(
1 − α2

zII

)(
�α2B2

x + �α2
z B2

y

)
L2

. (A9)

The first three terms in Eq. (A7) represent an inverted os-
cillator if �2

LII > 0. The z̃3 and z̃4 terms are the quantum
perturbations, and the qxz̃ term is the coupling between z̃ and
qx, the “environment.” Therefor Eq. (A7) can be viewed as an
intrinsic quantum open system and chaos raises.

To be more specific about the emergence of chaos, we
consider the Poincaré section of the classical limit of Eq. (A7)
up to the z̃4 terms, i.e., the classical Hamiltonian reads,

H = q2
z̃ − λ2

LII z̃
2 + ε3z̃3 + ε4z̃4 − 2B2

yB−1
x

√
1 − α2

z qxz̃

+ B2
yB−2

x q2
x + εxx2, (A10)

where qz̃ is the momentum for z̃, and we also add a har-
monic potential along the x direction which simulates the
effects of disorders. We draw its Poincaré section numerically
in Fig. 4 which clearly shows the existence of classical
chaos.

APPENDIX B: BAND STRUCTURE AND FERMI ENERGY

We give the band structures of the lattice model. Fig-
ure 5(a) is for γI = γII = γTL = 1 and Fig. 5(b) is for γI =
γII = γTL = 1. Corresponding zero-energy Fermi arcs and
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(a)

(b)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

kx

k y

(c)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

kx

k y

(d)

FIG. 5. The band structures of the Hamiltonian (17) in the main text with LI = LII = L = 100. The first panel is for γI = γII = γTL =
1 with kx = 1.8, 2.15, 3 (see the vertical dashed lines in the third panel). The second panel is for γI = γII = 1 and γTL = 0.7 with kx =
1.8, 2.15, 3. The third panel is the original data images of Fig. 2 in the main text. The zero-energy state projections crossing with the vertical
dashed lines can be read out from the first and second panels. The states in the red (green and blue) bands belong to the transition layer (the
bulk of type-I WSM and the bulk of type-II WSM).

pockets projected to the kx-ky are shown in Fig. 5(c) and
Fig. 5(d), respectively, and they are the original data for
sketching Figs. 2(a) and 2(b).

APPENDIX C: WEYL POINTS AND ES

Writing the lattice Hamiltonian (16) in the main text
explicitly

Hl = dl
μσμ, (C1)

where

dl
μ =

⎧⎪⎨
⎪⎩

dl
μ,II , γ = γII , for nz < nII ,

dl
μ,II + ξ

(
dl

μ,I − dl
μ,II

)
, γ = γTL, for nII < nz < nI ,

dl
μ,I , γ = γI , for nz > nI ,

(C2)

and

dI/II,x = 2t̃
(

cos kx − cos KI/II
x

) + 2t̃
[
1 − cos

(
ky − KI/II

y

)]
+ t̃

2

(
cos 3kx − cos 3KI/II

x

) + 2t̃γ (1 − cos kz ),
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dI/II,y = 2t̃ sin
(
ky − KI/II

y

)
, dI/II,z = −2t̃γ sin kz,

dI,0 = 0, dII,0 = −2ηII
(

cos kx − cos KII
x

)
, (C3)

where nz is the lattice site index in the z direction and ξ =
nz−LII

L . Then the Weyl points are determined by

dl
i = 0, i = x, y, z. (C4)

At Weyl points,

∂id
l
j = 0, if i �= j. (C5)

The Weyl points in the transition layer are running as ξ and
their projection to the kx-ky plane is depicted in Fig. 6(a).
Notice that these Weyl points do not lie on the Fermi surface
because of the interlayer coupling. If the transition layer is
replaced by an insulating layer with a large band gap, then
there will be ordinary Fermi arcs that connect Weyl nodes
with opposite chiralities in the type-I (-II) WSM on the top
(bottom) surface of the insulating layer. After turning on
the hopping term between the type-I and type-II WSMs in
the transition layer, the Fermi arcs will reconstruct from the
surface Fermi arcs into the ones connecting type-I and type-II
Weyl nodes with the same chirality inside the transition layer
[see the red Fermi arcs in Fig. 6(a)].

Expanding the Hamiltonian (C2) around the Weyl points
and comparing the result with the effective Hamiltonians (3)
and (4) in the main text, one obtains,

|α| =
√ ∑

i=x,y,z

(
∂id l

0/∂id l
i

)2 = ∣∣∂xdl
0/∂xdl

x

∣∣. (C6)

The ES can be obtained by solving |α| = 1, which is at ξh ≈
0.18, reading out from 6(b).

3 2 1 0 1 2 3
3

2

1

0

1

2

3

kx

k y

(a)

0.2 0.4 0.6 0.8 1.0 ξ
0.5

1.0

1.5

2.0

2.5

3.0

α

(b)

FIG. 6. (a) The Weyl points in the transition layer (black curves).
We copy the zero-energy regions in Fig. 2(b) of the main text for the
reference. (b) The function |α| of ξ . |α(ξh )| = 1 determines the ES.
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