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We explore generic “unnecessary” quantum critical points with minimal degrees of freedom. These quantum
critical points can be avoided with strong enough symmetry-allowed deformations of the Hamiltonian, but
these deformations are irrelevant perturbations below certain threshold at the quantum critical point. These
quantum critical points are hence unnecessary, but also unfine-tuned (generic). The previously known examples
of such generic unnecessary quantum critical points involve at least eight Dirac fermions in both two and three
spatial dimensions. In this work we seek for examples of generic unnecessary quantum critical points with
minimal degrees of freedom. In particular, in three-dimensional space, we identify two examples of such generic
unnecessary quantum critical points. The first example occurs in a 3d interacting topological insulator, and it
is described by two (3 + 1)d massless Dirac fermions in the infrared limit; the second example occurs in a 3d
topological superconductor, and it is formally described by only one (3 + 1)d massless Dirac fermion.
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I. INTRODUCTION

A quantum critical point (QCP) is usually found between
two different phases of matter with qualitatively different
properties. A generic QCP has only one symmetry allowed
relevant perturbation, which is the tuning parameter of the
quantum phase transition, in other words a generic QCP is
“unfine-tuned.” In fact, the existence of a generic QCP in
a phase diagram usually implies that the two phases on the
opposite sides of the QCP are both stable fixed points under
renormalization group (RG), and the QCP is unavoidable (or
“necessary”), meaning there does not exist a smooth adiabatic
route in the phase diagram that connects the two sides of the
QCP, no matter how the Hamiltonian is deformed as long
as certain symmetry is preserved. The simplest example that
illustrates this common wisdom is the transition of the quan-
tum Ising model in any spatial dimension. This Ising QCP
is sandwiched between a disordered phase which preserves
all the symmetries, and an ordered phase with spontaneous
Ising (Z2) symmetry breaking. The Ising QCP is “necessary,”
meaning if one tries avoiding this QCP by deforming the
Hamiltonian, then the best one can do is to drive the QCP
into a first-order transition across a tricritical point, i.e., there
is no smooth route that connects the disordered and ordered
phases.

The Ising QCP is a quantum analog of the classical Ising
transition, and it is sandwiched between two phases with clas-
sical analogues at finite temperature. The study of quantum
many-body systems have revealed that the quantum phases
are far richer than classical phases, examples include the topo-
logical phases [1] and symmetry protected topological phases
[2,3] (such as topological insulators), which in the Landau-
Ginzburg paradigm all correspond to the same disordered
phase. Then we may need to revisit the wisdom we learned
from classical critical phenomena as well. Exotic QCPs be-
yond the classic Landau-Ginzburg-Wilson-Fisher paradigm

have been extensively discussed both theoretically [4,5] and
numerically [6–8], including recently developed duality un-
derstanding of these QCPs [9,10]. Mostly recently, new possi-
bilities of QCPs have been pointed out [11]: There are generic
unfine-tuned but meanwhile unnecessary (avoidable) QCPs.
As generic unfine-tuned QCPs, each of them has only one
symmetry-allowed relevant perturbation. Yet, such QCPs are
unnessary in the sense that, for each of them, there exists
a symmetry allowed route which corresponds to a strong
enough deformation of the Hamiltonian in the phase diagram
that smoothly connects the two stable fixed points (phases) on
the two sides of the QCP, but the deformation is perturbatively
irrelevant at the QCP below certain threshold. The schematic
phase diagram and RG flow around the unnecessary QCP is
sketched in Fig. 1. The existence of generic unnecessary QCPs
has an important implication that the two phases separated by
a generic QCP does not necessarily determine the universality
class of the QCP.

The simplest generic unnecessary QCP examples discussed
in Ref. [11] require eight massless Dirac fermions with a
SO(7) symmetry, in both two and three spatial dimensions.
This phenomenon is deeply related to the interacting topo-
logical insulators, and it was understood that interaction can
reduce/collapse the classification of some of the topological
insulator (TI) or topological superconductor (TSC) [12–20].
For example, the TSC 3He-B phase has a Z classification
with time-reversal symmetry with T 2 = −1, but under time-
reversal allowed interaction the classification of this TSC
is reduced to Z16. This implies that for 16 copies of the
TSC, the topological nontrivial and trivial phases in the
noninteracting limit can be connected smoothly with strong
enough local interaction. However, in the noninteracting limit,
the topological-to-trivial transition of 16 copies of TSC is
described by 16 massless Majorana fermions (or mathemati-
cally equivalent to 8 massless Dirac fermions), then as long
as we impose an extra flavor symmetry (for example, the
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FIG. 1. The schematic phase diagram and renormalization group
flow of the generic unnecessary QCP. The horizontal axis is the
tuning parameter across the QCP, in the examples discussed in this
work it corresponds to the mass of either two or one (3 + 1)d Dirac
fermions; the vertical axis is the interaction, which is perturbatively
irrelevant at the QCP in the noninteracting limit. There exists a
adiabatic curve (dashed curve) in the entire phase diagram that
connects the two sides of the QCP.

SO(7) symmetry in Ref. [11]) to guarantee that the 16 Majo-
rana fermions all become massless simultaneously while the
reduction of classification is still valid with the extra flavor
symmetry, then this QCP in the noninteracting limit is still
a generic unfine-tuned QCP, because short range interactions
are irrelevant at the free massless Dirac fermion fixed point
for spatial dimensions higher than 1.

In this work we seek for much simpler examples of such
generic unnecessary QCPs. We discuss two examples which
happen in strongly interacting 3d TI and 3d TSC, respectively.
In the infrared limit, the first example is described by only two
massless (3 + 1)d Dirac fermion. In the noninteracting limit,
one side of the QCP is a trivial state, while the other side
is a 3d topological insulator with U(1) × Zn × P symmetry,
where n is an odd integer, and P is a spatial-reflection. In
the noninteracting limit, this TI has a Z classification, and the
trivial-to-topological transition is described by two (3 + 1)d
massless Dirac fermions. An extra time-reversal symmetry
T with T 2 = +1 will guarantee that there is only one direct
transition between the trivial and topological insulator phases.
However, we will demonstrate that this TI can always be
trivialized by local interactions, hence the QCP of the trivial-
to-topological transition in the noninteracting limit can be
avoided by strong enough interaction, which is perturbatively
irrelevant at the QCP in the nonnteracting case.

The second example of unnecessary QCP we find is even
simpler: It is formally described by only one massless Dirac
fermion (two massless Majorana fermions) in the infrared
limit, and one side of the QCP is a 3d TSC with (Z2n �

ZT
4 )/Z2 symmetry with an odd integer n (the ZT

4 refers to a
time-reversal symmetry with T 2 = −1), while the other side
is a trivial superconductor. In the noninteracting limit, the
TSC is topologically nontrivial with a classification Z2, while
this TSC is again trivialized by local interactions. Hence,
the trivial-to-topological transition is again unnecessary but
generic.

II. GENERIC UNNECESSARY QCP IN A 3d TI

A. Preparation: 2d TI with U(1) × Zn symmetry

To construct our 3d system, we need to first understand
the 2d TI with the U(1) × Zn symmetry, and we will focus
on the case with odd integer n. This TI was discussed in
Refs. [21,22] in different physics contexts, and for n = 3
this TI corresponds to the valley Chern insulator [22] that
is realized in Moiré systems [23–30]. In this section we will
review the understanding of interacting 2d TI with U(1) × Zn

symmetry. We will also impose another time-reversal sym-
metry T with T 2 = +1, hence the entire symmetry group is
[U(1) � ZT

2 ] × Zn. This time-reversal symmetry T is realized
in the spin-polarized correlated insulator at half-filling in
the miniband of the twisted double biayer graphene system
[31–34], and T corresponds to an ordinary time-reversal
symmetry of electrons times a spin flipping.

This TI can be naturally embedded into a nonchiral topo-
logical insulator (TI) with U(1)c × U(1)s symmetry. There are
only two elementary fermions with charge (1,1) and (1,−1)
under the U(1)c × U(1)s symmetry, and for the simplest case
they form Chern insulators with Chern number ±1, respec-
tively. At the free fermion level, the Hamiltonian of the 1d
edge state of this TI is

H =
∫

dx ψ†(−iσ 3∂x )ψ. (1)

The symmetries act on the boundary fermions as

U(1) : ψ1 → eiαψ1, ψ2 → eiαψ2,

Zn : ψ1 → e2π i/nψ1, ψ2 → e−2π i/nψ2,

T : ψ1 → ψ2, ψ2 → ψ1. (2)

The Zn symmetry guarantees that no fermion bilinear mass
term can be added to the boundary Hamiltonian. Also, for
arbitrary copies of the TI, fermion bilinear mass operators are
always forbidden. Hence, the classification of this TI in the
noninteracting limit is Z.

To describe the nonchiral TI with interaction, we can use
an Abelian Chern-Simons theory with a K-matrix, i.e., the
K-matrix formalism [35]. The Lagrangian of this system is
given by

L = i

4π

∑
A,B=1,2

KABaA ∧ daB, (3)

where aA with A = 1, 2 are two dynamical U(1) gauge fields
and K here is a 2 × 2 matrix:

K =
(

1 0

0 −1

)
. (4)

Based on this K-matrix description of the bulk of the
nonchiral TI, we can write down the Luttinger liquid theory
that describes the edge of this TI using two chiral boson fields
φ1, φ2 and the same matrix K given above [36,37]:

Ledge =
∑

A,B=1,2

KAB

4π
∂xφA∂tφB − V AB

4π
∂xφA∂xφB. (5)
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Here, V is a 2 × 2 positive-definite matrix that describes the
velocities of the chiral boson fields. Upon canonical quantiza-
tion, the chiral boson fields satisfy the commutation relations:

[φA(x), ∂yφB(y)] = 2π i(K−1)ABδ(x − y). (6)

The transformations of the chiral boson fields φ1 and φ2 under
the U(1) × Zn and time-reversal symmetry are given by

U(1) : φ1 → φ1 + α, φ2 → φ2 + α,

Zn : φ1 → φ1 + 2π

n
, φ2 → φ2 − 2π

n
,

T : φ1 → −φ2, φ2 → −φ1. (7)

Now, we show that this nonchiral TI has a Zn classification
for odd n under the U(1) × Zn and the time-reversal symme-
try. First, we show that a stack of n-copies of such nonchiral
TIs is topologically trivial, which can be demonstrated by con-
structing an interaction that gaps out the edge of this n-copy
system without spontaneous or explicit symmetry breaking.
To describe this n-copy edge theory, we start with n copies
of the Luttinger liquids introduced in Eq. (5). We denote the
chiral boson fields involved as φA,i where A = 1, 2 label the
two types of chiral bosons within each copy and i = 1, 2, ..., n
is the copy index. We can consider the following interactions:

L(1)
int = −

n−1∑
i=1

cos(φ1,i + φ2,i − φ1,i+1 − φ2,i+1)

− cos

(
n∑

i=1

(φ1,i − φ2,i )

)
. (8)

L(1)
int is invariant under the U(1) × Zn and the time-reversal

symmetry. The arguments of each of the cosine terms in L(1)
int

commute with each other according to Eq. (6). Following the
general analysis provided in Refs. [38,39], one can show that
the interaction L(1)

int can drive the n-copy edge theory into
a gapped ground state without any ground state degeneracy.
Such a gapped edge states hence preserves the full U(1) × Zn

and the time-reversal symmetry. The existence of a symmetric
gapped ground state in this n-copy edge theory indicates that
the stack of n copies of the nonchiral TI is topologically trivial
under the full [U(1) � ZT

2 ] × Zn symmetry.
Having shown that n copies of the nonchiral TI with

[U(1) � ZT
2 ] × Zn symmetry together is topologically trivial,

we now argue that the classification of such nonchiral TI has
to be Zn, with odd integer n. For k copies of such nonchiral
TI, we can consider, in the noninteracting limit, k copies of the
edge theory Eq. (1) residing on a circle. Every time a 2π flux
associate to the U(1) symmetry is threaded through the circle,
the total Zn charge of this k-copy edge theory is shifted by 2k.
Given that Zn charges are defined modulo odd integer n, if the
number of copies k is not a multiple of n, the shift of Zn charge
on the edge is nontrivial indicating that the edge theory is in
fact anomalous and further suggesting that its associated bulk
is topologically nontrivial. Therefore, n is the “minimal num-
ber” of copies needed for the edge to be nonanomalous. Com-
bined with the previous argument, the classification of the
nonchiral TI with [U(1) � ZT

2 ] × Zn symmetry has to be Zn.

For an odd integer n, we can make a general connection
between the [U(1) � ZT

2 ] × Zn symmetric nonchiral TI and
a bosonic symmetry protected topological (bSPT) state that
shares the same symmetry [2,3]. Since this nonchiral TI is
Zn-classified in the presence of interactions, a single copy
of the elementary nonchiral TI is topologically equivalent to
a stack of n + 1 (which is an even integer) copies of the
same elementary nonchiral TI. As is shown in Refs. [40–43],
an even number of such nonchiral TIs, each built out of
fermions, can be adiabatically deformed together (or “glued”)
into a bSPT state with the same symmetry such that the local
fermionic excitations at the edge are completely gapped out
and the symmetry protected local gapless edge modes are all
bosonic.

A variety of bSPT states and their edge states can also
be described using the K-matrix formalism [44]. The edge
state of the [U(1) � ZT

2 ] × Zn symmetric bSPT we focus on
is captured by the Luttinger liquid with the two chiral boson
fields ϕ and θ and the K-matrix:

KbSPT =
(

0 1

1 0

)
. (9)

Under the [U(1) � ZT
2 ] × Zn symmetry, the chiral boson field

transform as

U(1) : ϕ → ϕ + 2α, θ → θ,

Zn : ϕ → ϕ, θ → θ − 2π/n,

T : ϕ → −ϕ, θ → θ.

To show that the bSPT is topologically equivalent to the
nonchiral TI under the [U(1) � ZT

2 ] × Zn symmetry, we sim-
ply need to construct a symmetric and gapped interface be-
tween them. Before turning on any interactions, this interface
can be described by the gapless Luttinger liquid with four
boson fields φ1,2, ϕ, and θ . We can consider the following
interaction on interface:

L(2)
int ∼ − cos(φ1 − φ2 + 2θ ) − cos(φ1 + φ2 − ϕ), (10)

which is invariant under the [U(1) � ZT
2 ] × Zn symmetry. The

arguments of the two cosine terms in L(2)
int commute with

each other. Again, following the analysis of Refs. [38,39],
we can show that L(2)

int can drive the interface state into a
nondegenerate symmetric gapped ground state. The existence
of such a symmetric gapped interface implies the topological
equivalence between the (fermionic) nonchiral TI and the
bSPT state, the two states on the two sides of this interface.

Now we discuss the physical interpretation of the boson
fields ϕ and θ . Via their quantum numbers, we can identify
the local boson field eiϕ as the two-fermion bound state
ψ1ψ2. The quantum number of the boson field eiθ is identical
to that of (n + 1)/2 copies of the particle-hole pair ψ

†
1 ψ2.

Here, remember that Zn charges are defined mod n. We see
that eiθ can be viewed as a local boson field only when n
is an odd integer. Therefore, when n is an odd integer, the
[U(1) � ZT

2 ] × Zn symmetric nonchiral TI with T 2 = +1 is
equivalent to a bSPT constructed from local boson fields.

This result implies that, under interaction the 2d nonchiral
TI with [U(1) � ZT

2 ] × Zn symmetry can have fully gapped
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single electron excitation, but meanwhile symmetry protected
gapless local boson excitations at its boundary. This was
thought to be only possible for even copies of nonchiral
TI such as the quantum spin Hall insulator with spin Sz

conservation [40–43].

B. Generic unnecessary QCP in two dimensions

The result in the previous section is sufficient to predict a
generic unnecessary QCP in 2d . In the noninteracting limit,
the topological transition between the trivial state and the
nonchiral TI with [U(1) � ZT

2 ] × Zn symmetry is described by
two massless (2 + 1)d two-component Dirac fermions. The
time-reversal symmetry T guarantees that there is a single
transition between the trivial and topological state. Now, if
we consider n copies of the TIs, with extra assumptions of a
discrete cyclic symmetry between the n copies of TIs, and also
a fermion parity of each copy of the TI, then a single generic
direct trivial-to-topological transition of n copies of the TIs is
still guaranteed, which is described by 2n massless 2d Dirac
fermion.

One can check that the interaction Lagrangian Eq. (8)
also preserves the extra cyclic symmetry and fermion parity
of each copy, then n copies of the TI is still trivialized
by interaction. Though short range interaction is irrelevant
at the (2 + 1)d Dirac fermion, the generic direct trivial-to-
topological transition of n copies of the TI described above
becomes unnecessary under strong enough symmetry-allowed
local interaction. The minimum situation we find in 2d would
be n = 3, which may have been realized in Moiré systems
[31–34].

In this section we demonstrate that the generic unnecessary
QCP can be even simpler in 3d . In the noninteracting limit,
the topological transition between the trivial state and the
nontrivial 3d TI with U(1) × Zn × P symmetry is described
by two massless (3 + 1)d four-component Dirac fermions.
But we will demonstrate that this transition is unnecessary
under interaction.

C. Noninteracting 3d TI with U(1) × Zn × P symmetry

Now we switch gear to the 3d TI with U(1) × Zn × P
symmetry. The 2d boundary state of this TI is described by
the Hamiltonian

Hedge =
∫

d2x ψ†(iσ 10∂x + iσ 33∂y)ψ, (11)

σ ab = σ a ⊗ σ b. The symmetries act on the 2d boundary
fermions as

U(1) : ψ → eiαψ,

P : x → −x, ψ → σ 30ψ,

Zn : ψ → exp

(
i
2π

n
σ 03

)
ψ. (12)

One can check that all the mass terms at this 2d boundary,
such as

ψ†σ 20ψ, ψ†σ 23ψ, ψ†σ 31ψ, ψ†σ 32ψ, (13)

are forbidden by either the reflection, or the Zn symmetry. We
can also add another time-reversal symmetry T with T 2 =
+1:

T : ψ → σ 31ψ. (14)

Also, one can check that for arbitrary copies of the system,
all the fermion bilinear mass terms are still forbidden by either
the P or Zn symmetry, hence the classification of this 3d TI in
the free fermion limit is Z.

At the free fermion level, the bulk trivial-to-topological
phase transition of a single copy of this 3d TI is described
by the following Hamiltonian:

Hbulk =
∫

d3x ψ†(iσ 103∂x + iσ 333∂y + iσ 002∂z )ψ

+ mψ†σ 001ψ. (15)

Now ψ becomes an eight component fermion. All the sym-
metries act on the bulk fermions as

P : ψ → σ 300ψ, T : ψ → σ 310ψ,

U(1) : ψ → eiαψ, Zn : ψ → exp

(
i
2π

n
σ 030

)
ψ. (16)

One can check that, at the xy 2d boundary of the system,
the bulk Hamiltonian Eq. (15) reduces to the 2d boundary
Hamiltonian Eq. (11), which corresponds to a domain wall of
m long the ẑ axis in Eq. (15), and all the bulk symmetry actions
reduce exactly to the symmetry actions on the boundary
defined above.

There are other mass matrices in the 3d bulk:

σ 203, σ 233, σ 313, σ 323, σ 121, σ 111, σ 031. (17)

All these extra mass terms are forbidden, one way or another.
The most interesting, and probably important “extra” mass
term is the last one: ψ†σ 031ψ . This mass term, if it exists, does
not gap out the transition but splits the transition into two. But
this extra mass term is forbidden by T . So T is the symmetry
that guarantees a generic direct single trivial-to-topological
transition at the free fermion level. The mass mψ†σ 001ψ in
Eq. (15) is the only symmetry-allowed relevant operator at the
transition point. But later we will show that this transition will
be avoided under interaction.

D. Interacting TI and Unnecessary QCP in three dimensions

In Ref. [43], a general approach of understanding and
constructing 3d symmetry protected topological (SPT) state
(generalization of topological insulator) with a reflection
symmetry was proposed. To construct a 3d SPT state with
reflection P , one can start with a 2d system on the reflection-
invariant plane. The 3d SPT state can always be constructed
by stacking layers of 2d SPT states on the reflection plane.
But even when the 2d SPT state is a nontrivial SPT state, it
does not guarantee that the 3d SPT state is nontrivial, more
detailed analysis of the procedure of stacking is demanded.

The 2d boundary state of the 3d system can then be
constructed by stacking the 1d (wire) boundary state of the
2d layer SPT states. This construction is often referred to as
the coupled wire construction. Two sides of the 1d wire are
connected by reflection x → −x, hence in the noninteracting
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FIG. 2. The coupled wire construction of the 2d edge state
Hamiltonian Eq. (11) of the noninteracting 3d TI with U(1) × Zn ×
P symmetry. Each wire represents the 1d edge state of a 2d TI with
U(1) × Zn symmetry, which is described by Eq. (1). Each wire is
composed of a pair of counter-propagating 1d fermion modes that
carry opposite Zn charges. Symmetry allowed tunnellings between
the wires will drive the system into the 2d edge state Hamiltonian
Eq. (11).

limit this wire can be viewed as the domain wall of the mass
term m(x)ψ†σ 20ψ at the 2d boundary. The coupled wire
construction of the boundary states can be viewed as coupling
the domain wall states with oscillating sign of m along the x̂
direction, and the domain walls are along the ŷ direction. Let
us assume that each domain has width 1. At the domain wall
of m(x), the domain wall wave functions are eigenstates of
σ 30 = (−1)x for every other wire.

Since the wire states have eigenvalues σ 30 = ±1, the
Hamiltonian and the symmetries project on the wire states as
the followings (Fig. 2):

H (x)wire =
∫

dy (−1)xψ†iσ 3∂yψ,

P : ψ (x) → (−1)xψ (−x), T : ψ → (−1)xσ 1ψ,

Zn : ψ → exp

(
i
2π

n
σ 3

)
ψ. (18)

By turning on tunnellings between the wires, one can exactly
reproduce the free fermion Hamiltonian of the 2d boundary
state Eq. (11):

Hedge =
∑

x

∫
dy (−1)xψ†iσ 3∂yψ + itψ†

x σ 0ψx+1 + H.c.

∼
∫

d2x ψ†(itσ 10∂x + iσ 33∂y)ψ. (19)

An extra Pauli space emerges in the low energy theory because
there are two wires per unit cell in this wire construction. Here
we turned on a uniform tunneling between neighboring wires.
If instead a staggered tunneling

∑
x(−1)xit ′ψ†

x σ 0ψx+1 + H.c.
is turned on, then the reflection symmetry will be broken and
a mass term ψ†σ 20ψ will be generated at low energy.

However, by turning on interaction, one can show that the
entire system is trivialized, even for a single copy of the
3d system. In the following we will demonstrate this with
n = 3, but this argument can be generalized to any odd integer
n. Let us give index (+1) to a 1d wire described by one
pair of counterpropagating 1d fermion modes, with fermion

FIG. 3. The coupled wire construction for the symmetric gapped
edge state with n = 3. Each wire is the boundary state of a 2d layer,
and the wire with index (−1) can be adiabatically deformed into a
wire with index (+2) under interaction without any transition in the
2d layer, due to the Z3 classification of the layer. Hence, the wires
can be regrouped and gapped out by interactions that preserves all
the symmetries.

carrying charge ±1 under symmetry Z3 moving along the
±ŷ direction along the wire. First of all, quoting the results
from the previous section, each layer of the 2d SPT state
has a Z3 classification, hence each wire with index (±1) can
be deformed continuously through interaction into two pairs
of counter-propagating 1d fermion modes, and the fermions
carrying ±1 Z3 charges move along the ∓ŷ direction. Or,
in other words, a wire with index (±1) can be continuously
deformed in to a wire carrying index (∓2) through interaction.

Now again, using the fact that the 2d interacting TI with
[U(1) � ZT

2 ] × Z3 has a Z3 classification, we can group the
wires in to clusters as Fig. 3(b), and turn on inter-wire interac-
tion to gap out states within each cluster, and we can see that
this arrangement preserves all the symmetries including P
and T , and even translation symmetry. This means that under
interaction which preserves all the symmetries, the boundary
state of the 3d TI can be gapped out by interaction, hence
even a single copy of the 3d TI is trivialized by interaction.
The same construction can be generalized to other odd integer
n, for example the case with n = 5 is illustrated in Fig. 4(b).

Now because the TI is trivialized by interaction, the bulk
direct trivial-to-topological transition in the noninteracting
limit, which is described by two massless (3 + 1)d Dirac
fermions, becomes “unnecessary” under strong enough inter-
action.

FIG. 4. Illustration of the symmetric gapped edge state with
n = 5. Each wire with index (−1) can be deformed into a wire with
index (+4) under interaction, and again the wires can be regrouped
and gapped out by interactions that preserve all the symmetries.
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E. Interacting TI: mapping to bosonic system

Using the chiral boson language, we can still show that
each wire is equivalent to the edge state of a 2d bosonic
symmetry protected topological (bSPT) state, which can be
shown by coupling each wire to the boundary of a 2d bSPT
state. We can still describe this entire coupled 1d system
using chiral bosons, and this 1d system can be symmetrically
gapped by the same Lagrangian as L(2)

edge Eq. (10). The P , T
symmetries act on all the chiral boson fields as

P : φ1,2 → φ1,2 + 1 + (−1)x

2
π,

ϕ → ϕ, θ → θ ;

T : φ1,2 → −φ2,1 + 1 + (−1)x

2
π,

ϕ → −ϕ, θ → θ. (20)

exp(iϕ) and exp(iθ ) are still local bosons for odd integer n;
i.e., they are bound state of local fermions.

There are standard formalisms of describing and construct-
ing the potentially nontrivial 3d bSPT state, such as the group
cohomology [2,3], and the effective nonlinear sigma model
with a topological � term [45–47]. The bulk bosonic state
can be described by the action

Sbulk =
∫

d3xdτ
1

g
(∂μn)2

+ �i

4
εabcdena∂xnb∂ync∂zn

d∂τ ne, (21)

where � = 2π , 4 is the volume of a four-dimensional sphere
with unit radius. The unit-length five-component vector field
n(r, τ ) can be parameterized as

(n1, n2) = cos(β ) cos(γ )[cos(ϕ), sin(ϕ)],

(n3, n4) = cos(β ) sin(γ )[cos(θ ), sin(θ )],

n5 = sin(β ). (22)

Under symmetries, the vector n(r, τ ) transform as

U(1) : ϕ → ϕ + 2α, θ → θ, β → β,

Zn : ϕ → ϕ, θ → θ − 2π/n, β → β,

T : ϕ → −ϕ, θ → θ, β → β,

P : ϕ → ϕ, θ → θ, β → −β. (23)

Hence, n5 is invariant under [U(1) � ZT
2 ] × Zn symmetry, but

odd under reflection P . The action Eq. (21) is invariant under
all the symmetries.

Based on the CPT theorem, we can replace a field theory
with P and T symmetry, by the C and T symmetry, and C acts
on the fields as

C : ϕ → −ϕ, n5 → −n5. (24)

Thus, we can view b ∼ cos(ϕ) + i sin(ϕ) as a bosonic rotor
field, and n5 is the density of the boson. And C is the
particle-hole transformation of the bosonic rotor field. Now

all the symmetries are internal symmetries of the field theory
Eq. (21).

Now as a consistency check we need to show that the bSPT
is actually trivial. This can be shown using the same method
as Ref. [48]. We can first embed the Zn symmetry into another
U(1)s symmetry, and cos(θ ) + i sin(θ ) becomes a rotor under
the U(1)s symmetry. Then the 3d bSPT can be understood
using the “decorated vortex” picture. If we consider a vortex
of line of θ (the vortex configuration preserves the U(1), ZT

2 ,
and C), then the action Eq. (21) is reduced to the following
(1 + 1)d NLSM defined with a three component unit vector
ñ(x, τ ):

S1d =
∫

dxdτ
1

g
(∂μñ)2 + �i

4π
εabcña∂xñb∂τ ñc, (25)

again � = 2π . The three component vector ñ is

ñ = [cos(β ) cos(ϕ), cos(β ) sin(ϕ), sin(β )]. (26)

This implies that the vortex of U(1)s symmetry is decorated
with a 1d Haldane phase of ñ [49–51], which is known to have
a Z2 classification. Thus, the 3d bSPT state can be constructed
by first spontaneously breaking the U(1)s symmetry in the
3d bulk (developing a superfluid phase), then decorate the
vortex loop of this superfluid phase with the Haldane phase
described above, and then proliferate/condense the decorated
vortex loop.

Once we break U(1)s down to Zn with odd integer n, this
decorated vortex picture will yield a trivial 3d bulk state. This
can be perceived by the fact that the Zn vortex loop has a
“Zn classification,” i.e., the n copies of Zn vortex loop is a
trivial configuration in the space-time. The Zn classification
with odd n is incompatible with the Z2 classification of the
Haldane phase decorated on the vortex loop.

More explicitly, one can demonstrate that the 2d boundary
of Eq. (21) can be symmetrically gapped out without any
degeneracy with odd integer n. Again, let us start with the
U(1)s symmetry, a single vortex of U(1)s on the 2d boundary
is the termination of the vortex line in the bulk, which carries
the 0d boundary state of the Haldane phase discussed above,
and due to the Z2 classification of the Haldane phase, a double
vortex of U(1)s will carry trivial quantum number, and hence
can condense without breaking any symmetry.

After condensing the double vortex, the 2d boundary be-
comes a Z2 topological order, whose bosonic e and m anyon
excitations carry fractional quantum numbers. The e excita-
tion is the remnant of the single vortex of U(1)s symmetry
after condensing the double vortices, which carries a projec-
tive representation of U(1) � ZT

2 and U(1) � C. Here we pay
particular attention to the m excitation, which should carry
half-charge of U(1)s, or half-charge of Zn if we break U(1)s

down to its subgroup Zn. Hence, under the Zn transformation,
the m excitation acquires a phase factor

Zn : �m → exp

(
i
2π

2n

)
�m. (27)

Now consider a n-body bound state of �m, let us denote
it as B ∼ (�m)n. Under the Zn symmetry, B transforms as
B → −B. And because n is an odd integer, B ∼ (�m)n still
carries Z2 gauge charge −1, and the Zn transformation can be
canceled by a Z2 gauge transformation. B can also be viewed
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as the bound state between a single �m and (n − 1)/2 copies
of the local boson eiθ . Condensing B at the 2d boundary does
not break any symmetry, and it confines the nontrivial anyons,
hence the boundary is driven into a fully gapped symmetric
state without degeneracy. This completes the argument that
the bosonic SPT state is actually trivial, which is consistent
with our conclusions in the previous subsections.

III. GENERIC UNNECESSARY QCP IN A 3d TSC

An insulator has electron number conservation, hence it
must have a U(1) symmetry; while a superconductor breaks
the particle number conservation. In this section we discuss
a superconductor with (Z2n � ZT

4 )/Z2 symmetry, with an odd
integer n > 1. First of all, let us clarify the notation. The ZT

4
stands for a time-reversal symmetry with T 2 = −1, T 4 = +1.
But we need to mod out the common Z2 subgroup of both Z2n

and ZT
4 . At the free fermion level, there is a nontrivial TSC

with such symmetry, whose 2d edge state Hamiltonian and
the symmetry transformation is

Hedge =
∫

d2x ψ†(iσ 1∂x + iσ 3∂y)ψ,

Z2n : ψ → exp

(
i
2π

2n

)
ψ,

T : ψ → iσ 2ψ. (28)

Apparently, with these symmetries no fermion bilinear term
can be turned on at the boundary Hamiltonian which gaps out
the boundary spectrum for any integer n > 1. Hence, at the
free fermion level, Eq. (28) describes the boundary state of a
nontrivial TSC.

Our goal is to study the fate of this TSC under interaction.
The techniques we used in the previous section, i.e., the
coupled wire construction, is no longer obviously applicable
to this case. But apparently this TSC can be embedded into
the TI in the AII class with (U(1) � ZT

4 )/Z2 symmetry, we can
study the interaction effect by starting with the 2d boundary
topological order of the AII TI constructed in Refs. [52–55].
This boundary topological order is anomalous with the U(1)
symmetry of the AII class of TI, but we will show that this
topological order becomes nonanomalous and hence can be
driven into a fully symmetric gapped nondegenerate state,
once U(1) is broken down to Z2n.

According to (for example) Ref. [55], the boundary of the
AII TI can be driven into a topological order with in total
48 anyons (not including the electron itself). This topolog-
ical order can be constructed by first driving the boundary
into a superconductor by condensing Cooper pair ψ t iσ 2ψ ,
which spontaneously breaks the U(1) symmetry down to its
Z2 subgroup (the fermion parity of the electrons). Then the
symmetries an be restored by condensing the 8π vortex of the
superconductor, i.e., eightfold bound state of the elementary
vortex of the superconductor, and the 8π vortex is a boson.
Within these anyons there is a charge 1/4 boson b, which can
be viewed as a 1/8 “parton” of the Cooper pair. Now, if we
break the U(1) down to Z2n symmetry with odd integer n,
under the Z2n transformation, then this boson transforms as

Z2n : b → exp

(
i
2π

8n

)
b. (29)

b is also coupled to a gauge field, and under the gauge
transformation,

Gauge : b → exp

(
i
kπ

4

)
b, (30)

with any integer k.
Now let us form a bound state of b and (n2 − 1)/8 copies

of Cooper pair ψ t iσ 2ψ :

B ∼ b × (ψ t iσ 2ψ )(n2−1)/8. (31)

Notice that for odd integer n > 1, n2 − 1 is always an integer
multiple of 8. Then under the Z2n symmetry, B transforms as

Z2n : B → exp

(
i
2π

8n
+ i2 × 2π

2n
× n2 − 1

8

)
B

=
(

i
nπ

4

)
B. (32)

This implies that the symmetry transformation on B can be
canceled by a gauge transformation. b and hence B are both
invariant under time-reversal.

Also, Ref. [55] demonstrated that B has nontrivial statistics
with many of the anyons including the nonabelian Ising anyon
(B does not carry any gauge independent global quantum
numbers, and it carries the same gauge charge as b, because
Cooper pairs are gauge neutral). This implies that condensing
B would preserve all the symmetries, and confine all the
nontrivial anyons; i.e., the condensate of B is a fully gapped
symmetric 2d boundary state without ground state degener-
acy. In the condensate of B, b can be identified as multiples of
Cooper pair (ψ t iσ 2ψ )(n2−1)/8.

There is also one deconfined neutral fermion f that braids
trivially with boson B and b, but this fermion f is not a frac-
tionalized anyon in the condensate of B. f can be identified as
the bound state of the original local fermion ψ and multiple
of b [55]. Then when we break U(1) down to Z2n with odd
integer n, in the condensate of B, f can be viewed as the
bound state of ψ and multiple of Cooper pairs, which is also
a Kramers doublet local fermion. This implies that, once we
break U(1) to Z2n with odd integer n, interaction trivializes
the TSC. Then the bulk trivial-to-topological transition, which
at the free fermion level is formally described by a single
massless Dirac fermion, becomes a generic unnecessary QCP.

IV. DISCUSSION

In this work we propose two simple examples of generic
unnecessary QCPs, which are, respectively, described by two
and one massless (3 + 1)d Dirac fermions, while the previ-
ously known examples involve at least eight Dirac fermions.
This result is based on our analysis of classification of inter-
acting 3d TI and TSC. In both examples we demonstrated
that the systems are topological nontrivial without interaction,
but are both totally trivialized by local interactions. Local
interaction is perturbatively irrelevant at the noninteracting
(3 + 1)d Dirac fermion fixed point, but a continuous route
exists in the phase diagram with strong enough interaction
that connects the trivial and topological phase of the TI and
TSC in the noninteracting limit (Fig. 1). It will be worth
to investigate interaction effects on free fermionic SPT with
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arbitrary on-site symmetry G [56], and see if our result
can be further generalized. We also want to emphasize that
interaction-reduced classification along does not guarantee a
generic unnecessary transition. The reason is that the free SPT
phases that can be trivialized by interactions do not necessar-
ily have a direct generic transition to the trivial phase without
introducing other ingredients (for example, extra symmetries).
Each interaction-trivialized free SPT phases need to be stud-
ied case-by-case to determine if, by adding extra ingredient,
it can lead to a new example of generic unnecessary quantum
critical point.

The 2d boundary Hamiltonian Eq. (11) of the 3d TI in our
first example, as well as the transformation of the fermions
under symmetries are identical to the low energy theory of
spinless fermion at half-filling on the honeycomb lattice with
dominant nearest neighbor hopping. The fermion modes with
eigenvalue σ 03 = ±1 correspond to the Dirac fermion cones
expanded at the two valleys of the Brillouin zone of the hon-
eycomb lattice. The Z3 symmetry can be viewed as the transla-
tion of the honeycomb lattice, and the reflection P exchanges
the A and B sublattices of the honeycomb lattice. Our result
supports that there exists a fully gapped and symmetric state
for interacting spinless fermions on the honeycomb lattice;
i.e., there is no Lieb-Shultz-Matthis [57–59] like theorem for
spinless fermions on the honeycomb lattice at half-filling with
translation and reflection symmetry, while this is only possible
under strong enough interaction.

There is another potentially interesting extension of our
first example. The trivial-to-topological transition of many

bSPT systems in 3d , can be described by a (3 + 1)d QCP
with a dynamical SU(2) gauge field coupled with two flavors
of Dirac fermions [9]. This theory has a maximal SO(5)
global symmetry. Breaking the SO(5) down to our symmetries
would permit more local quartic fermion terms in the La-
grangian. The original trivial-to-topological transition of the
bSPT system is definitely “unnecessary” because we know
that this bSPT is trivial once we break the SO(5) down to
the symmetries considered here. There is a possibility that
this transition is also a generic QCP which corresponds to a
strongly interacting conformal field theory. If this is the case,
then the phase diagram Fig. 1 is even richer: There are two
generic unnecessary QCPs in the same phase diagram, but
they belong to different universality classes.

Last but not least, the nature of the multicritical point in the
phase diagram Fig. 1 which corresponds to the termination
of the line of unnecessary phase transition deserves further
investigation. It may correspond to a novel conformal field
theory, and we will leave this topic to future study.
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