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antiferromagnet with anisotropies
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We derive an S = 1 spin polaron model which describes the motion of a single hole introduced into the
S = 1 spin antiferromagnetic ground state of Ca2RuO4. We solve the model using the self-consistent Born
approximation and show that its hole spectral function qualitatively agrees with the experimentally observed
high-binding energy part of the Ca2RuO4 photoemission spectrum. We explain the observed peculiarities of
the photoemission spectrum by linking them to two anisotropies present in the employed model: The spin
anisotropy and the hopping anisotropy. We verify that these anisotropies, and not the possible differences
between the ruthenate (S = 1) and the cuprate (S = 1

2 ) spin polaron models, are responsible for the strong
qualitative differences between the photoemission spectrum of Ca2RuO4 and of the undoped cuprates.
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I. INTRODUCTION

Understanding the strongly correlated physics of transition
metal oxides constitutes a nontrivial task [1–5]. One reason
is that the simplest, but still realistic, effective models for the
electronic structure of these materials normally contain de-
grees of freedom of different type, such as charge, spin, lattice,
and orbital ones. Even the most boiled-down versions of such
interacting models are rarely solvable in the thermodynamic
limit. In practice, the sweet spot is hit by theoretical models
that can be solved without severe approximations and at the
same time can explain certain salient experimental features
of a correlated oxide. One such case, already known since
the end of the 1980’s, involves the so-called spin polaron
problem in which a propagating charge couples to magnetic
degrees of freedom [6–13]. Spin polaron physics explains
dispersive features observed in the photoemission spectrum
of the (spin S = 1

2 ) antiferromagnetically ordered and Mott
insulating copper oxides [14–18]. It turns out that the elec-
tronic dispersion found in the spectra of the insulating parent
compounds of the high-temperature superconductors can be
well explained using a t-J or Hubbard model that is mapped
onto a (spin) polaron problem.

It is remarkable that despite the still unresolved mystery of
high-temperature superconductivity in doped copper oxides,
undoped cuprates are by far the simplest class of materials to
model as far as correlated oxides go. This is because the very
starting point, the uncorrelated model Hamiltonian, is well
described by a single, partially filled band [3,19], a situation
only most rarely encountered in the manganites, vanadates,
nickelates, or, in fact, the ruthenates that we investigate here
[2,5]. In almost all oxides the effective models are more
involved and go far beyond the single-band t-J or Hubbard
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variety that is relevant for the cuprates. The question arises
as to how spin polaron physics fares in such a more complex
situation.

In this context we take a close look at the intensively
investigated ruthenium oxide Ca2RuO4 [20–36] which is the
Mott insulating analog of the unconventional superconductor
Sr2RuO4 [37]. At low temperature the insulating state is an or-
dered spin S = 1 antiferromagnet [22,26,28,32,35]. Recently,
the detailed photoemission spectrum of this Mott insulator
was not only studied experimentally, but also successfully
modeled using a multiband Hubbard Hamiltonian [30]. But,
since this theoretical approach relies on treating the multiband
Hubbard model within single-site dynamical mean-field the-
ory, it is not clear in what shape or form spin polaron physics
remains relevant.

Here we specifically investigate the origin of the incoherent
and almost momentum-independent part of the Ca2RuO4

photoemission spectrum: Its high-binding energy part [see the
yellow rectangle of Fig. 1(a)] associated with a single-hole
motion in the xz and yz orbitals [30]. The reason for leaving
the xy orbital out of our analysis is that the highly disper-
sive, quasiparticlelike part of the photoemission spectrum
stretching from low- to high-binding energy [see Fig. 1(a)]
can be easily understood as free hole motion within the xy
orbitals. This conclusion follows from the observation that the
relatively large energy gap between the xy and xz/yz orbitals
leads to the xy orbital being fully occupied while at the same
time mixing between xy and xz/yz orbitals is absent from
either the nearest-neighbor hopping or the Coulomb part of
the Hamiltonian. This being understood, there is not much to
be gained by including the xy orbitals in our analysis and thus
from here on we concentrate on the physics emerging from
the xz/yz ones.

To summarize, our aim is altogether twofold: We wish to
understand the high-binding energy part of the photoemission
spectrum of Ca2RuO4 from a realistic S = 1 spin polaron
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FIG. 1. Comparison between the experimental and theoretical
spectral functions of Ca2RuO4: (a) angle-resolved photoemission
(ARPES) spectrum of Ca2RuO4 as published in Ref. [30]; (b) hole
spectral function A(k, ω) calculated for the spin S = 1 t-J Hamilto-
nian (1) and (2) with exz = x̂, eyz = ŷ and using the mapping onto the
spin polaron Hamiltonian (6) and the SCBA method (see text) with
model (6) parameters: t = 22J , ε = 5.6J , γ = 0.25J , J = 5.6 meV,
numerical broadening of A(k, ω) δ = 0.22J; (c) hole spectral func-
tion A(k, ω) calculated as in (b) but convoluted with a Gaussian with
the half-width at half-maximum equal to 0.5t , in accordance with the
approximate experimental resolution of the ARPES measurements
[30]. The yellow rectangles mark the high-binding energy parts of
the spectra that are incoherent and almost momentum independent.
They are identified in ARPES as having a dominant xz/yz orbital
character [30], and are theoretically modeled by (b). [The dispersive
branch visible in (a), both inside and outside of the yellow rectangle
and not discussed here, is associated with the xy orbital [30]. See
main text of the paper.] Theoretical spectra (b) and (c) are normalized
in the same manner as the ARPES spectrum (a) of Ref. [30].

model for this material which then is to offer insight into the
more general question as to which extent such an S = 1 spin
polaron problem is different from the “standard” (i.e., S = 1

2 )
spin polaron physics known from the cuprates.

The paper is organized as follows. In Sec. II we introduce
the t-J model that describes the motion of a single hole in
the ground state of Ca2RuO4. Next, in Sec. III we map the
t-J model onto a S = 1 spin polaron model. The latter is
solved using the self-consistent Born approximation (SCBA)
in Sec. IV. Finally, we discuss the obtained results in Sec. V
and end the paper with conclusions in Sec. VI. The paper is
supplemented by an Appendix which contains details on the
mapping of the t-J to the polaron model.

II. t-J MODEL

In order to model (the high-binding energy part of) the
photoemission spectrum of Ca2RuO4, we follow the well-
developed scheme mentioned in the Introduction, which was
successfully used to describe, inter alia, the photoemission
spectra of several undoped copper oxides [14–18]. Thus, we
consider an appropriate t-J-like Hamiltonian constructed as a
sum of two parts H = HJ + Ht .

The first part, HJ , describes the low-energy physics of
Mott insulating Ca2RuO4 in terms of the interaction between
the localized S = 1 magnetic moments. The relevant mag-
netic Hamiltonian is well known in this case and reads as
[26,28,29],

HJ = J
∑
〈i,j〉

Si · Sj + ε
∑

i

(
Sz

i

)2 + γ
∑

i

(
Sx

i

)2
, (1)

where the summation runs over all nearest-neighbor pairs
on a two-dimensional (2D) square lattice, J is the spin
exchange constant, and Si are the spin S = 1 operators.
As already discussed in Refs. [26,28,29] the spin model is
highly anisotropic, with the suggested values of the ẑ (x̂)
axis anisotropy being equal to ε = 5.6J (γ = 0.25J), respec-
tively, with J = 5.6 meV reproducing the spin wave disper-
sion observed in the inelastic neutron scattering experiment
[26,28,29]. We note that such a large spin anisotropy orig-
inates from the substantial spin-orbit coupling of ruthenium
which is, however, not strong enough to stabilize the S = 0
ground state [22,26,28,32,35]. Although the latter result can
naively be understood as a consequence of the crystal-field
splitting (between the xz, yz, and the xy orbitals) being about
twice larger than the spin-orbit coupling [32] and therefore the
spin S = 0 states having considerably higher energy than the
spin S = 1 states (see Fig. S1 of [29]), it has been postulated
[29,36,38,39] that nevertheless the “excitonic magnetism” can
be at play here. In particular, in Ref. [40] the authors suggest
the latter scenario for Ca2RuO4 although they also advocate
that a pronounced orbital polarization is present in the system.

The second part of the Hamiltonian, Ht , is the kinetic term.
It describes the motion of charge carriers within the ruthenium
oxide plane, for instance, the motion of a single hole created
by the photoemission process. As discussed above, we restrict
our model to the xz and yz orbitals and end up with

Ht = −t
∑
i,σ

(
c̃†

i+exz,xz,σ c̃i,xz,σ + c̃†
i+eyz,yz,σ c̃i,yz,σ + H.c.

)
, (2)

where the first (second) term describes the hoppings of an
electron with spin σ between the nearest-neighbor ruthe-
nium xz (yz) orbitals along the exz = x̂ (eyz = ŷ) direction
in the 2D square lattice, respectively. The effectively one-
dimensional (“directional”) hoppings follow from the Slater-
Koster scheme [41] applied to the square-lattice geometry
of the ruthenium oxide plane [24] and is a common feature
of systems with active {xz, yz} orbital degrees of freedom
[42]. For the value of the hopping element t in Ca2RuO4 we
take t = 123 meV [25], i.e., t = 22J when J = 5.6 meV. To
simplify the analysis, we do not take into account the spin-
orbit coupling between holes in the xz and yz orbitals. This
simplification is not a priori justified for a realistic situation
in Ca2RuO4 but is rationalized by the intuitive understanding
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of its spectral functions presented in Ref. [30], which relies
on the Hund’s coupling and does not include the spin-orbit
coupling as an essential part. Moreover, the (surprisingly)
good agreement between the theoretical results presented
below and the experimental results (cf. Fig. 1) legitimizes
this assumption a posteriori. Possible intrinsic differences
between the S = 1

2 and S = 1 spin polaron models which we
wish to identify should also be considered irrespective of the
spin-orbit coupling.

Two projections are used in the kinetic Hamiltonian (2).
First, due to the strong onsite Coulomb repulsion U , and
since we confine ourselves to the low-energy physics valid
for energies smaller than the Hubbard U , we restrict the hole
motion to the Hilbert space spanned by the local ruthenium d2

and d1 multiplets. [Note that since the xy orbital is considered
to be “always” occupied by two electrons in the studied model
[22,25,30], the xy electrons are integrated out and effectively
the nominal occupancy of the ruthenium ions is not d4 (d3)
but d2 (d1) in the undoped (single-hole) case, respectively.]
As typical to any t-J-like model [43], we use the tildes above
the electron creation and annihilation operators to formally
denote this constraint. Second, just as in the case of the ground
state (see discussion above), we project out the local spin
singlet S = 0 states. Altogether, the t-J Hamiltonian is rather
complex, for it contains the S = 1 operators in the spin part
as well as the two projection operators in the kinetic part.
Therefore, in Appendix A we rewrite the above model using
the convenient representation of the Hubbard operators [44]
(for a more recent application, see also [45,46]), which allows
one to express the projections explicitly.

Having discussed the t-J Hamiltonian for the doped
Ca2RuO4 in detail, let us stress that the above model can be
regarded to a large extent as a proper microscopic model for
the doped ruthenate. In particular, this concerns the t part of
the model, which basically follows from the tight-binding de-
scription of the LDA bands (see above and Ref. [25]). We note
that Ca2RuO4 is not a charge-transfer but a Mott-Hubbard
insulator [21,47] and therefore the Zhang-Rice singlet con-
struction [19] is not needed, for both the doped holes as well
as electrons go to the ruthenium d orbitals. On the other hand,
the situation with the J part is a bit more subtle. In principle,
the spin model for Ca2RuO4 was originally proposed by
Kunkemoeller et al. [28] on the phenomenological grounds,
for its form was postulated by comparing the calculated spin
wave spectrum to the observed inelastic neutron scattering
spectrum. However, a similar model was discussed also in
Ref. [29] and in the Supplemental Material of that reference
it was suggested that such a phenomenological model may be
obtained from a realistic electronic structure of Ca2RuO4 (in
the limit of strong correlations and relatively large spin-orbit
coupling with respect to the crystal-field splitting).

Finally, as we are interested in the photoemission spectrum,
we define the following orbitally resolved hole spectral func-
tion:

Aα (k, ω)=− 1

π
Im〈0|c̃†

k,α,σ

1

ω − H + E0 + iδ
c̃k,α,σ |0〉, (3)

where |0〉 is the ground state of the undoped t-J model (1), (2)
with energy E0, δ is the infinitesimally small broadening that
is nevertheless finite in the numerical calculations below, and

we explicitly keep the orbital index α ∈ {xz, yz} but suppress
the spin index σ (the spectral function is spin independent).
In what follows, we are also interested in the orbitally inte-
grated spectral function which is defined in the usual way as
A(k, ω) = ∑

α Aα (k, ω).

III. FROM t-J TO POLARON MODEL

Stimulated by the successful description of the photoemis-
sion spectra of the undoped cuprates [8,10,11,14–18] and to
gain a better insight into the physics of the photoemission
problem, we perform a mapping of the S = 1 t-J problem onto
an S = 1 spin polaron problem. This is done in two steps.

First, we introduce the slave fermions

c̃i,α,↑ → Â h†
i,α, (4)

c̃i,α,↓ → Â h†
i,α S+

i /
√

2, (5)

where h†
i,α is the creation operator for a spinless hole on

site i and orbital α, S+
i is the spin S = 1 operator on site i,

and Â is an operator yet to be determined. The factor 1/
√

2
in Eq. (5) normalizes the spin operator. It can be shown
that in the Hilbert space being considered, the Â operator is
diagonal and an explicit expression for it can be found. On the
left-hand side of the mapping [Eqs. (4) and (5)], there is an
implicit projection on the S = 1 spin triplet, which introduces
factors of 1/

√
2 each time the annihilation operator acts on the

Sz = 0 states. This leads to the eigenvalue of Â equal to
√

2 for
the Sz = 0 states and equal to 1 otherwise. Second, we rotate
spins on one of the antiferromagnetic sublattices and express
the spin operators through bosonic operators by way of the
Holstein-Primakoff transformation. Finally, we use the linear
spin wave approximation and the Bogoliubov transformation
to diagonalize the resulting spin Hamiltonian (see Appendix B
for details).

In the end we are left with a diagonal magnon term and
a vertex coupling spinless holes to magnons in the following
S = 1 spin polaron Hamiltonian:

H = Ht + HJ ≈
∑

q

	q β†
qβq + E0

+
√

2 t√
N

∑
k,q

[(
γkx vq + γkx−qx uq

)
h†

k,xzhk−q,xzβq

+ (
γkyvq + γky−qy uq

)
h†

k,yzhk−q,yzβq + H.c.
]
, (6)

where γki = cos(ki ) and βq are the Bogoliubov boson
(magnon) annihilation operators. uq, vq are the Bogoliubov
coefficients (see Appendix B for details). The above transfor-
mations also lead directly to the expression for the spectral
function in terms of the spinless hole Green’s function (see
Appendix B for details):

Aα (k, ω)=− 1

π
Im〈0|hk,α

1

ω − H + E0 + iδ
h†

k,α|0〉. (7)

IV. METHODS AND RESULTS

We calculate the hole spectral function Aα (k, ω) using the
self-consistent Born approximation (SCBA) (see Ref. [7]).
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ADAM KŁOSIŃSKI et al. PHYSICAL REVIEW B 101, 035115 (2020)

Such approach has been successful in obtaining the cuprate
spectral functions [7–11,13] and amounts to neglecting the
so-called crossing diagrams and summing all the other (“rain-
bow diagrams”) to infinite order. The resulting self-consistent
expressions for the self-energies and the Green’s function
are given in Appendix B. These equations are then solved
numerically on a finite lattice of 36 × 36 k points. The re-
sulting orbitally integrated hole spectral function A(k, ω) is
calculated for the realistic parameters of the model (see above)
and is shown in Fig. 1(b).

The calculated hole spectral function qualitatively re-
produces the incoherent and almost momentum-independent
spectrum observed in the high-binding energy part of
Ca2RuO4 photoemission results found in Ref. [30] and repro-
duced in Fig. 1(a). Although the onset of several horizontal
“stripes” in the theoretical spectrum (see below) make the
similarities between the theoretical and experimental spectral
functions less apparent at first sight [Fig. 1(b)], a convolution
of the theoretical spectral function with the available exper-
imental resolution of ca. 0.5t yields a spectrum [Fig. 1(c)]
which surprisingly well resembles the high-binding energy
part of the observed experimental spectrum [Fig. 1(a)]: Both
spectra have an incoherent character, without a clear quasi-
particle band emerging, and only very weak dependence of
its intensity on the momentum. (A weak dependence on the
momentum of the intensities in the high-binding energy part
of the observed experimental spectrum [Fig. 1(a)] originates
in the xy orbital spectral function, not considered here but
explained in detail in Ref. [30].) What is more, the low-
and high-energy edges of both broad spectra are basically
momentum independent. Finally, also the overall energy scale,
which is given by the width of the broad spectrum estimated at
the half-maximum intensity, is of the same order of magnitude
in both cases and amounts to about 0.5 eV.

V. DISCUSSION

A. Spectral functions

The first question that arises concerns the origin of the
onset of the incoherent, almost momentum-independent and,
apart from the horizontal stripes, rather featureless spectrum
of Fig. 1(b). Looking first at models (1) and (2) we can
immediately note what distinguishes it from the “standard”
S = 1

2 t-J model, that has been widely used to describe the
photoemission spectra of the undoped cuprates [6–11] and for
which such a broad and flat incoherent band has not been ob-
served. The most apparent are the two anisotropies. The spin
anisotropy reflects the distortion of the lattice and leads to the
γ and ε terms in Eq. (1). The perfect hopping anisotropy, on
the other hand, which has its origin in the nominal valence of
the ruthenium ions and the geometry of the ruthenium-oxide
plane, leads to an effectively one-dimensional hole motion
[cf. Eq. (2)]. On top of that, a more subtle distinction is related
to the larger value of the spin S = 1 in the studied model. The
latter leads to the onset of additional projection operators in
the hopping part of the Hamiltonian. We explore the above-
listed differences in detail by comparing the spectral function
A(k, ω) calculated for the distinct versions of the relevant
t-J models (cf. Fig. 2). We see that (i) both hopping and

FIG. 2. The hole spectral functions A(k, ω) obtained for distinct
versions of the relevant t-J models and calculated by mapping onto
the spin polaronic model and using the SCBA method (see text):
(a) the standard spin S = 1

2 t-J model but with twice larger magnon
energy (cf. Ref. [7]); (b) spin S = 1 t-J model with neither the spin
nor the hopping anisotropy, i.e., models (1) and (2) with ε = γ ≡ 0
and exz ≡ eyz ∈ {x̂, ŷ}; (c) the spin S = 1 t-J model with the hopping
anisotropy as suggested for Ca2RuO4 but no spin anisotropy, i.e.,
models (1) and (2) with exz = x̂, eyz = ŷ, and ε = γ ≡ 0; (d) the spin
S = 1 t-J model with only the spin anisotropy, i.e., (1) and (2) with
ε, γ �= 0 and exz ≡ eyz ∈ {x̂, ŷ}. All spectra normalized as in Fig. 1.

spin anisotropies qualitatively change the spectrum of the
S = 1 t-J model; (ii) the hopping anisotropy [see Fig. 2(c)]
leads to the formation of a ladderlike spectrum with a rel-
atively well-visible, momentum-dependent, incoherent part;
(iii) the spin anisotropy [see Fig. 2(d)] leads to the onset
of a well-visible ladderlike spectrum. Moreover, including
both anisotropies in the calculations leads to the spectrum
already presented in Fig. 1(b), which is qualitatively the same
as the spectrum of the S = 1 t-J model with only the spin
anisotropy [see Fig. 2(d)]. This shows that, for realistic values
of model parameters, the spin anisotropy plays a dominant
role in shaping the A(k, ω) spectral function. Albeit, if one
were looking at the orbitally resolved spectral function, the
impact of the hopping anisotropy would be more pronounced
(see discussion of Fig. 3).

The formation of the ladderlike spectrum in the case of
the spin anisotropy can be understood when one considers
the fact that the very large anisotropy limit leads, in this
case, to the dominant Ising-type interactions between spins.
This triggers the hole confinement in a linear string potential
and leads to a well-known ladderlike spectrum with the hor-
izontal stripes [1,7,13]. On the other hand, for the hopping
anisotropy, the emergence of a partially ladderlike spectrum
is a consequence of the fact that the spin waves are still two
dimensional, but the hopping is already one dimensional. This
amplifies the coupling between holes and magnons, leading
to an effectively smaller ratio of J/t in Fig. 2 case (c) vs case
(b) and the stronger tendency toward the ladderlike spectrum
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FIG. 3. The one-dimensional character of the orbitally resolved
hole spectral function: (a) constant-energy cut of the spectral func-
tion Axz(k, ωc ) for a hole introduced into the xz orbital (ωc =
−2.1 eV); (b) constant-energy cut of the spectral function Ayz(k, ωc )
for a hole introduced into the yz orbital (ωc = −2.1 eV); (c), (d) a
schematic view of the ruthenium-oxygen plane explaining the dom-
inant one-dimensional character of the electronic hopping processes
on the single-particle level that is also inherited by the many-body
hopping processes of Eq. (2). For the xz (yz) orbital, only hopping in
the x̂ (ŷ) direction is possible (cf. panel (c) [(d)] [41,42]). The oxygen
(ruthenium) orbitals are shown in blue (red).

[7]. In order to better illustrate the one-dimensional character
of the spectral function in Figs. 1 and 2(c), in Fig. 3 we
present the constant energy cuts of two spectral functions,
one describing a hole in the xz orbital, the other a hole in
the yz orbital. We see that the one-dimensional hole motion, a
consequence of the geometry of the ruthenium-oxygen plane
and the vanishing of the transfer integrals between the oxygen
p orbitals and some of the t2g orbitals [42], is reflected in
the hole spectral functions. They both show a manifestly
one-dimensional dispersion, very much unlike what we see,
for instance, in the copper oxides [14–18]. We note that, while
including a finite spin-orbit coupling for holes in the xz or yz
orbitals would naturally lead to the “mixing” between the one-
dimensional bands, a good agreement between the theoretical
and experimental spectra suggests that such an effect should
be small in Ca2RuO4.

Finally, with all other parameters equal, the fact that we
do not consider here a spin S = 1

2 (which would be formed
by a single hole or electron per site) but a spin S = 1 anti-
ferromagnet (two holes on each site) does not influence the
spectral function qualitatively, thus, the difference between
these two cases is purely quantitative [cf. Figs. 2(a) and 2(b)].
To understand why it is so, let us compare the possible hole-
hopping processes in the S = 1

2 and S = 1 antiferromagnet,
which are represented schematically in Fig. 4. What we can
conclude by looking at the process represented on the bottom

FIG. 4. A schematic view of the possible nearest-neighbor hole
hoppings in the S = 1 and S = 1

2 antiferromagnet (AF). (Top panel)
A hopping process in the S = 1 antiferromagnet that, according to
the here studied t-J Hamiltonian (1), (2), leads to the creation of
one magnon in the effective S = 1 spin polaron model (6). (Middle
panel) An analogous hopping process as above but in the S = 1

2
antiferromagnet which, according to the standard t-J Hamiltonian
[43], leads to the creation of one magnon in the spin polaron
model of Ref. [7]. (Bottom panel) A hopping process in the S = 1
antiferromagnet that, according to the here studied t-J Hamiltonian
(1), (2), leads to the creation of three magnons and is neglected in the
S = 1 spin polaron model (6) for it goes beyond the linear spin wave
approximation.

panel is that all the more complex processes, which have no
analog in the single hole per site case, involve more than one
magnon. In fact, they involve either three or five magnons,
which is why we exclude them in the spin wave approximation
employed here and why they are absent from Hamiltonian
(6). Consequently, only the simplest process remains, the one
analogous to the only process possible in the spin S = 1

2
case (cf. the first two panels of Fig. 4). We stress that such
a similarity between the hole moving in the S = 1

2 and the
S = 1 antiferromagnet would not be achieved in the classical
double-exchange picture [48], for the latter one would not
allow for the existence of the |1, 0〉 states on any site.

B. Spin polaron ground state

In order to shed more light on the ground states of all
the t-J models considered so far, we carried out an analysis
of the spin polaron as it appears in each of the models,
following Ref. [8]. In Fig. 5 we show the contributions
(spectral weights) An

k of the first four n-magnon wave func-
tions to the full ground-state wave function in the SCBA
approximation, the so-called Reiter’s wave function [49].
For the sake of numerical convergence, which could not be
obtained for the small value of J � 0.05t , all the results
were calculated for the “canonical value” of J = 0.4 t . Thus,
Fig. 5 only serves the purpose of comparing all the relevant
models and does not give the quantitatively correct values
for Ca2RuO4.

We observe that, as we include the additional anisotropies,
the overlap between the ground state and the 0-magnon
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FIG. 5. The n-magnon contributions to the ground-state wave
function in the SCBA approximation An

k (probabilities that the
ground-state wave function at momentum k contains n magnons).
Each line represents a different t-J model: (a) the standard S = 1

2
model but with twice larger magnon energy [cf. Fig. 2(a)]; (b) the
S = 1 model with neither the spin nor the hopping anisotropy [cf.
Fig. 2(b)]; (c) the S = 1 model with the hopping anisotropy but no
spin anisotropy [cf. Fig. 2(c)]; (d) the S = 1 model with only the
spin anisotropy [cf. Fig. 2(d)]; (e) the S = 1 model as proposed
for Ca2RuO4, i.e., with both the hopping and spin anisotropy [cf.
Fig. 1(b)]. All results obtained for J = 0.4 t and all other parameters
as in Figs. 1 and 2.

wave function increases, while the 1-, 2- and 3-magnon
contributions decrease. The increasing spectral weight of the
0-magnon term in the ground-state wave function, and there-
fore the increasing quasiparticle spectral weight, has two
origins. First, looking at the S = 1

2 and S = 1 t-J models, we
note that the quasiparticle gains weight as we move from the
former to the latter model. Interestingly, the twofold increase
in the value of magnon energy as one goes from the S = 1

2 to
S = 1 does not explain this behavior since we have doubled
the magnon energy in the S = 1

2 t-J model to compensate
for this phenomenon. Instead, this difference in quasiparticle
weights is a result of the lower hole hopping energy in the
S = 1 with respect to the S = 1

2 t-J model: In the former
the vertex acquires an additional factor of 1/

√
2 due to the

projection onto the S = 1 triplet. This is a consequence of
Hund’s coupling (see Appendix B for details) and is also
visible in Fig. 2 [compare (a) vs (b)] as an overall narrowing
of the spectral function. Second, the quasiparticle weight
increases as we introduce the hopping and spin anisotropies.

In case of the hopping anisotropy, this is also a consequence of
the lower hopping energy: For the 1D hopping the hole kinetic
energy is twice smaller than in the 2D case. Finally, in the case
of the spin anisotropy, the increased quasiparticle weight can
be understood using an analogy to the t-Jz model since the
anisotropy parameters ε and γ both introduce a magnon gap
and make the magnon dispersion flatter. This makes it more
costly for the terms with magnons to appear in the ground-
state wave function, thus decreasing the probabilities An

k for
n �= 0. In the t-Jz model the magnon energy is always finite
and independent on the lattice momentum and, consequently,
the quasiparticle has more weight [8].

Regarding a more realistic value of J , one expects that
the lower the magnon energy, the greater the average number
of magnons 〈nk〉 = ∑

n nAn
k in the spin polaron ground state.

Indeed, for the standard S = 1
2 t-J model, Ramšak and Horsch

[8] have shown that as J decreases the quasiparticle weight
decreases and the maximum of An

k shifts toward higher values
of n. Thus, for a realistic value of J � 0.045t in Ca2RuO4 we
expect the quasiparticle weight to be much smaller than the
ones shown in Fig. 5 and the An

k, n �= 0, to be respectively
larger. However, the general trend of decreasing 〈nk〉 as one
goes from S = 1

2 to S = 1 and introduces the spin and hopping
anisotropies will prevail. Finally, the spin polaron will, by
“adiabatic continuity,” always have a nonzero quasiparticle
component as long as J �= 0 for all the discussed models
in this subsection. Thus, we can conclude that the ground-
state wave function of the model describing Ca2RuO4 can
indeed be regarded as a “genuine” spin polaron and that its
quasiparticle weight should be large with respect to the value
of the spin exchange J , mostly due to the spin and hopping
anisotropies.

VI. CONCLUSIONS

We have shown how a relatively simple spin S =
1 t-J model, that was mapped onto an S = 1 spin po-
laron model, can qualitatively reproduce the high-binding
energy part of the observed Ca2RuO4 photoemission spec-
trum. In particular, we were able to explain the observed
incoherent and almost momentum-independent photoemis-
sion spectrum by linking these peculiar features of the
spectrum to two anisotropies present in the employed spin
polaron model: The spin anisotropy [28] and the hopping
anisotropy [30,42].

Interestingly, the differences between the spectral func-
tions of the standard spin polaron model well known from the
cuprates (i.e., spin S = 1

2 ) and the model for Ca2RuO4 should
not be regarded as being intrinsic to the S = 1 spin polaron
model: They are all related to the above-mentioned strong
anisotropies present in the model suggested for Ca2RuO4 and
not to the potential differences between the hole moving in
the S = 1

2 and the S = 1 antiferromagnets. These turn out
to be basically irrelevant in the linear spin wave approxi-
mation. Such a result can naturally be expected following
basic quantum mechanics but would not be achieved in the
well-known double-exchange picture [48], for in that classical
approach the hole would not be able to hop at all in the S = 1
antiferromagnet.
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APPENDIX A: S = 1 t-J MODEL HAMILTONIAN
EXPRESSED USING HUBBARD OPERATORS

The Hubbard operator notation [44] (for a more recent
application see, for example, [45,46]) is sometimes used to

obtain an alternative expression for the t-J model Hamilto-
nian. The advantage of this representation is that it is more
explicit, i.e., every matrix element linking any two local
(onsite) states has a different Hubbard operator associated
with it.

It follows that the maximum number of Hubbard operators
for a given model is the same as the square of the dimension
of the local (single-site) Hilbert space (for instance, for the
S = 1

2 Heisenberg model, the dimension of the Hilbert space
is 2 and the number of Hubbard operators is 4). In the case of
the model (1), (2) the dimension of the local Hilbert space is
7, which gives 49 possible Hubbard operators. As it turns out,
only 33 out of 49 operators are needed to express the Hamil-
tonian in terms of the Hubbard operators. The remaining 16
matrix elements are zero.

The Hamiltonian we are considering consists of two parts,
H = Ht + HJ . Expressed in terms of the Hubbard operators
these two parts read as

Ht = − t
∑
i,σ

[( ∑
o,S

X o S
i+exz

)(∑
o′,S′

X S′o′
i

)
+

( ∑
o,S

X o S
i+eyz

)(∑
o′,S′

X S′o′
i

)]
Ao S

S′o′ ,

HJ = J
∑
〈i,j〉

[( ∑
S

X S S
i S

)( ∑
S

X S S
j S

)
+

( ∑
S<1

X S S+1
i

)( ∑
S>−1

X S S−1
j

)
+

( ∑
S>−1

X S S−1
i

)(∑
S<1

X S S+1
j

)]

+ 1

2

∑
i

{
(ε + γ )

(
X −11

i + X 1−1
i

)
+ (ε − γ )

[( ∑
S<1

X S S+1
i

)( ∑
S>−1

X S S−1
i

)
+

( ∑
S<1

X S S−1
i

)( ∑
S>−1

X S S+1
i

)]}
,

where the Hubbard operators X o S
i , o = u, d, μ, δ, S =

−1, 0, 1, link the three S = 1 states with the four single-
hole states u = (↑, xz), d = (↓, xz), μ = (↑, yz), δ = (↓, yz),
while the Hubbard operators X S S′

i , S, S′ = −1, 0, 1, link dif-
ferent S = 1 states. Only 32 of the matrix elements Ao S

S′o′ are
nonzero (see Table I in Appendix B below for details).

APPENDIX B: DERIVATION OF THE POLARON MODEL

1. Mapping onto a polaronic model: Spin Hamiltonian (HJ)

To diagonalize the spin S = 1 Hamiltonian discussed in
the paper [cf. Eq. (1) of the main text of the paper] we
start by performing two rotations of spins. First, we make a
different choice of the spin quantization axis ẑ: In this case
we pick the axis without an anisotropy term. Second, we
perform a π rotation of spins around the x̂ axis on one of
the two sublattices: such transformation maps the anticipated
antiferromagnetic ground state onto a ferromagnetic state. The
result is the rotated spin Hamiltonian

H̃J =
∑
〈i,j〉

J

[
− Sz

i Sz
j + 1

2

(
S+

i S+
j + S−

i S−
j

)]

+ γ
∑

i

(
Sy

i

)2 + ε
∑

i

(
Sx

i

)2
. (B1)

The next step is to utilize the Holstein-Primakoff trans-
formation and the linear spin wave approximation using

the assumption that the ground state is ferromagnetic and
dressed with magnons. The thus-obtained Hamiltonian is then
diagonalized using the successive Fourier and Bogoliubov
transformations. The resulting spin Hamiltonian reads as

HJ =
∑

q

	qβ
†
qβq, (B2)

where the magnon energies 	q are given by

	q = Y

√
1 −

(
Zq

Y

)2

, (B3)

with

Y = 4J + ε + γ ,

Zq = 4Jγq + ε − γ ,
(B4)

with

γq = 1
2 [cos(qx ) + cos(qy)]. (B5)

The Bogoliubov coefficients uq and vq are expressed
through the magnon energies 	q via the standard formulas
(cf. Ref. [7]).

2. Mapping onto a polaronic model: Kinetic Hamiltonian (Ht )

a. Dealing with projection operators

The implicit projection operators in Eq. (2) in the main
text have a relatively complex form. The easiest way to deal
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with them is to construct the projected form of the two single-
orbital, two-site kinetic Hamiltonians(

Hxz
t

)
i,i+exz

= −t
∑

σ

c̃†
i,xz,σ c̃i+exz,xz,σ + H.c., (B6)

(
Hyz

t

)
i,i+eyz

= −t
∑

σ

c̃†
i,yz,σ c̃i+eyz,yz,σ + H.c., (B7)

step by step, that is by considering every possible hopping
process and the matrix element associated with it.

We consider a single hole introduced into the half-filled
ground state and Ht conserves the number of electrons in
the system. Moreover, the “no double occupancy” constraint
implies that there can never be three electrons on one
site in the xz/yz orbitals. As a result, a single hole introduced
into the system propagates leaving the number of electrons
in the xz/yz orbitals on all other sites unchanged and equal
to two. It follows that the only nonzero matrix elements of
the two-site Hamiltonians (B6) and (B7) describe processes
in which a hole hops between a doubly occupied site and a
singly occupied site. Furthermore, these hoppings obey two
rules:

(1) The hole can hop to the neighboring site, albeit only to
an unoccupied orbital.

(2) The hole can hop to the neighboring site, albeit only if
the resulting onsite wave function is not a spin singlet.

The first rule is simply the “no double occupancy” con-
straint and the second rule follows from the exclusion of the
S = 0 sector of the Hilbert space discussed in the main text.

All of the above means that on each site we have either the
spin triplet or one spin S = 1

2 fermion on the xz/yz orbitals.
This in turn implies that for each pair of neighboring sites i, j
we can use the following basis:

{|↑_ 〉
i,

∣∣↓
_

〉
i,

∣∣_
↑
〉
i,

∣∣_
↓
〉
i

} ⊗
{∣∣↓↓〉

j,
∣∣↑↑〉

j,
1√
2

(∣∣↑↓〉 + ∣∣↓↑〉)
j

}
, (B8)

where the upper and lower positions are the two (xz/yz)
orbitals, the arrows show spin, and the two particle states
form the standard triplet. The main task now is to consider
the matrix elements of (B6) and (B7) in the basis (B8).

Because the Hilbert space is 12 dimensional, there are 144
different matrix elements. However, it is easy to see that only
a small number of them are nonzero. In order to find them,
one can use a graphical technique illustrated in Table I.

The matrix elements listed in Table I and their complex
conjugates constitute all nonzero matrix elements. In total,
there are 32 of them. There are, however, some symmetries
that help us write the Hamiltonian in a simpler form.

First, (M1, M2, M5, M6, M9, M10, M13, M14) and conju-
gates come from (Hxz

t )i,i+exz , the rest come from (Hyz
t )i,i+eyz .

We only need to consider one of these Hamiltonians. From
now on, we will only consider (Hxz

t )i,i+exz .
Second, let us look at M4 and M∗

11 or M11 and M∗
4 , where a

star denotes complex conjugation. They represent exactly the
same process but happening in the opposite direction on the
lattice. M4 and M11 on the other hand represent the inverse
processes happening in opposite directions on the lattice. This
means we need only calculate one of these matrix elements.
The same is true for the pair (M8, M16) and their conjugates.
This leaves us with (M3, M4, M7, M8, M12, M15).

TABLE I. Columns 1–3: a graphical technique illustrating how to
find all nonzero matrix elements for the two-site Hamiltonians (B6)
and (B7). We have extended the basis and split the 1√

2
(|↑↓〉 + |↓↑〉) state

into the two “classical” states |↑↓〉 and |↓↑〉. After finding all nonzero
matrix elements, one needs to project those back onto the triplet state.
In this basis, the action of the Hamiltonian is simply to move one spin
(i.e., one arrow) to the empty orbital on the right. For each initial state
there is therefore only one final state. It is then enough to consider
the action of the Hamiltonian on all possible initial states, as shown
in the table. Each of these matrix elements has its conjugate, which
represents the inverse process. Columns 4–6: the Hubbard operators
associated with each of the possible processes and their respective
matrix elements, as introduced in Appendix A. See there for detailed
discussion.

Label Initial state Final state Xi operator Xj operator Matrix element

M1 |↑↑〉i|↑_ 〉j | ↑
_ 〉i|↑↑〉j X 1u X u1 A1u

u1

M2 |↑↑〉i|↓_ 〉j |↑_ 〉i|↓↑〉j X 1u X d0 A1u
d0

M3 |↑↑〉i|_↑〉j |_↑〉i|↑↑〉j X 1μ X μ1 A1μ

μ1

M4 |↑↑〉i|_↓〉j |_↑〉i|↑↓〉j X 1μ X δ0 A1μ

δ0

M5 |↓↓〉i|↓_ 〉j |↓_ 〉i|↓↓〉j X −1d X d−1 A−1 d
d −1

M6 |↓↓〉i|↑_ 〉j |↓_ 〉i|↑↓〉j X −1d X u0 A−1 d
u 0

M7 |↓↓〉i|_↓〉j |_↓〉i|↓↓〉j X −1δ X δ−1 A−1 δ
δ −1

M8 |↓↓〉i|_↑〉j |_↓〉i|↓↑〉j X −1δ X μ0 A−1 δ
μ 0

M9 |↑↓〉i|↑_ 〉j |↑_ 〉i|↑↓〉j X 0u X u0 A0u
u0

M10 |↑↓〉i|↓_ 〉j |↑_ 〉i|↓↓〉j X 0u X d−1 A 0 u
d −1

M11 |↑↓〉i|_↑〉j |_↓〉i|↑↑〉j X 0δ X μ1 A0δ
μ1

M12 |↑↓〉i|_↓〉j |_↓〉i|↑↓〉j X 0δ X δ0 A0δ
δ0

M13 |↓↑〉i|↑_ 〉j |↓_ 〉i|↑↑〉j X 0d X u1 A0d
u1

M14 |↓↑〉i|↓_ 〉j |↓_ 〉i|↓↑〉j X 0d X d0 A0d
d0

M15 |↓↑〉i|_↑〉j |_↑〉i|↓↑〉j X 0μ X μ0 A0μ

μ0

M16 |↓↑〉i|_↓〉j |_↑〉i|↓↓〉j X 0μ X δ−1 A 0 μ

δ −1

Third, (M3, M7) are the same but have all spins flipped,
which is a symmetry of the Hamiltonian. The same is true
for (M4, M8) and (M12, M15). Altogether, this leaves us with
the classification of the nonzero matrix elements shown in
Table II.

In order to obtain the second quantized form of (B6) and
(B7) we need to calculate all matrix elements and construct
the projected two-site Hamiltonian using(

Hxz
t

)
i,i+exz

=
∑
k,l

(
Hxz

t

)k,l

i,i+exz
|k〉〈l|, (B9)

TABLE II. All nonzero matrix elements of the Hamiltonians
(B6) and (B7) divided into symmetry classes.

Matrix elements Representative

M1, M3, M5, M7 + c.c. M3

M2, M4, M6, M8, M10, M11, M13, M16 + c.c. M4

M9, M12, M14, M15 + c.c. M15
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TABLE III. The calculated values of matrix elements in each
symmetry class.

Matrix elements Rep. Value

M1, M3, M5, M7 + c.c. M3 t

M2, M4, M6, M8, M10, M11, M13, M16 + c.c. M4
t√
2

M9, M12, M14, M15 + c.c. M15
t
2

where the vectors |k〉, |l〉 are written in the second quantized
form. (Hxz

t )k,l
i,i+exz

≡ Mj are the matrix elements that have been
discussed above and need to be explicitly calculated (see
below).

b. Calculation of the matrix elements

The matrix elements Mj can be calculated in a straightfor-
ward way. As an example, we calculate M3:

M3 = (〈0|c̃i,yz,↑c̃j,xz,↑c̃j,yz,↑)(−t c̃†
j,xz,↑c̃i,xz,↑)

× (c̃†
j,yz,↑c̃†

i,yz,↑c̃†
i,xz,↑|0〉)

= t 〈0|0〉. (B10)

M4 and M15 are calculated in a similar manner. The result
is shown in Table III. Once all the matrix elements are
calculated, one can easily write the projected form of Eq. (2)
from the main text in the second quantized form.

c. Polaronic mapping

In order to map our model onto a polaronic one, we need
to introduce slave fermions (cf. Ref. [7]) using a general
mapping

c̃i,α,↑ → Â h†
i,α, c̃i,α,↓ → Â h†

i,α S+
i , (B11)

where Â is an operator to be determined. The spinless hole op-
erators hi,α obey the Pauli exclusion principle and the standard
anticommutation relations. The spin S = 1 operators obey
the standard commutation relations. Finally, the spinless hole
operators commute with the spin operators, which introduces
an extra term in the Hamiltonian (see below). The onsite basis
after this mapping is {|nxz, nyz, Sz〉}, where nxz (nyz) are the
number of holes on the xz (yz) orbitals and Sz is the eigenvalue
of the Sz operator.

d. Restricting the Hilbert space

We observe that after the polaronic mapping there are four
states that do not map to any states in the old basis, namely,

{|1, 0,−1〉, |0, 1,−1〉, |1, 1, 0〉, |1, 1,−1〉}. (B12)

Evidently, these need to be projected out. One could achieve
this using projection operators, but it would complicate the
formula for the Hamiltonian. Another approach, presented in
Ref. [7] for the S = 1

2 case, is to include an extra term in the
Hamiltonian with a very large energy constant ζ > 0, in the
spirit of the Lagrange multipliers. In our case, this term takes

the form

Hζ = ζ
∑

i

[(h†
i,xzhi,xzh

†
i,yzhi,yz(Sz

i − 1)2)

+ (h†
i,xzhi,xz + h†

i,yzhi,yz )Sz
i (Sz

i − 1)]. (B13)

Following the authors of Ref. [7] we will neglect this part
of the Hamiltonian. It is clear that this is not without conse-
quence. For simpler models it was shown [13] that including
such constraints in the diagrammatic expansion of the Dyson
equation leads to quantitative differences. We believe that the
same situation happens for the S = 1 case studied here.

e. Linear spin wave (LSW) approximation

To arrive at the formula (5) in the main text we need to find
the expressions for the operators |k〉〈l| appearing in Eq. (B9).
We look for them in the LSW approximation. After introduc-
ing magnons via the Holstein-Primakoff transformation, the
spin quantum number Sz maps onto the number of magnons
quantum number nmag:

Sz = 1, 0,−1 → nmag = 0, 1, 2, (B14)

respectively, while the fermionic quantum numbers {nxz, nyz}
remain the same.

In this basis, let us examine the projection operator (P3)
associated with the matrix element M3 that was discussed
above (the other cases are analogous, see below). After the
sublattice rotation we obtain

P3 = ∣∣−↑ 〉
i

∣∣↓↓〉
j

〈−
↓
∣∣
j

〈↑
↑
∣∣
i

=
√

2 |1, 0, 0〉i|0, 0, 2〉j〈1, 0, 1|j〈0, 0, 0|i
=

√
2 (hj,yzhj,xzhi,yza

†
j a†

j |1, 1, 0〉i|1, 1, 0〉j)

⊗ (〈1, 1, 0|j〈1, 1, 0|iajh
†
j,yzh

†
i,xzh

†
i,yz ). (B15)

First, we notice that the projection onto the double-vacuum
state, which represents two empty sites, is obsolete. Indeed,
if a state survives the action of the spinless fermion creation
operators on the right it survives it as one of two states:

(1) A state with four spinless holes, two on each site,
in which case the projection is obsolete as this is a unique
property of the vacuum.

(2) A state with three spinless holes, two on the ith site and
one on the (i + 1)st site. In this case the annihilation operators
on the left annihilate it because two of them act on the (i + 1)st
site.

It is easy to see that the same is true for any of the 16
operators multiplying the matrix elements in Table I and their
Hermitian conjugates.

Using this we can write P3 as

P3 =
√

2 hj,yzhj,xzhi,yzh
†
j,yzh

†
i,xzh

†
i,yza

†
j a†

j aj

≈
√

2 h†
i,xzhj,xza

†
j a†

j aj, (B16)

where we have neglected the normal-ordered terms with three
or more spinless hole operators which go beyond our diagram-
matic expansion (see Appendix B 4).

We see that P3 is of order three in the bosonic operators.
Performing similar calculations for the other 15 operators one
can show that they can be divided into three groups:
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(1) of order one in bosonic operators,
(2) of order three in bosonic operators,
(3) of order five in bosonic operators.
In the LSW approximation we only consider the first group

of terms. Consequently, only 4 amongst the 16 operators
are non-negligible. These are {P2, P4, P10, P16}. Together with
their respective matrix elements the four operators and their
Hermitian conjugates give the projected kinetic Hamiltonian
in the LSW approximation [see last two lines of Eq. (6) in the
main text].

3. Mapping onto a polaronic model: Spectral functions

As discussed in the main text of the paper we are interested
in calculating the following spectra function:

Aα (k, ω) = − 1

π
Im{Gα (k, ω)}

= − 1

π
Im〈0|c̃†

k,α,σ

1

ω − H + E0 + iδ
c̃k,ασ |0〉,

(B17)

where c̃k,α,σ = ck,α,σ (1 − c†
k,α,σ̄ ck,α,σ̄ ) are the restricted hole

annihilation operators. It is therefore not a one-particle
Green’s function.

The relation between the above-defined hole spectral func-
tion and the spinless hole spectral function is nontrivial (cf.
Appendix of Ref. [7]). The latter one, that is natural to
the polaronic language, is calculated from the single-particle
spinless hole Green’s function and reads as

Aα (k, ω) = − 1

π
Im{Gα (k, ω)}

= − 1

π
Im〈0|hk,α

1

ω − H + E0 + iδ
h†

k,α
|0〉. (B18)

Fortunately, it was shown that for the S = 1
2 t-J model the

spinless hole spectral function and the hole spectral function
almost coincide [11]. We assume that the same also holds also
for the S = 1 t-J model investigated here.

4. Self-consistent Born approximation to the Dyson equation

To obtain the Green’s function Gα (k, ω) of Eq. (B18),
and thus calculate the spectral function Aα (k, ω), we use the
Dyson equation

Gα (k, ω) = G0
α (k, ω) + G0

α (k, ω)
α (k, ω)Gα (k, ω),
(B19)

where α is an orbital index. The self-energy 
α (k, ω) is
defined as the sum of all nonreducible diagrams starting and
ending with the same vertex with an external line representing
a spinless hole with momentum k and orbital index α.

We calculate the self-energy 
α (k, ω) approximately, us-
ing the self-consistent Born approximation (SCBA):


α (k, ω) ≈
∫ ∞

−∞
dω′ ∑

q

D0(ω′)Gα (k − q, ω − ω′)Vα (k, q)

×Vα (k, q)∗, (B20)
where the vertex is defined as

Vα (k, q) =
√

2 t√
N

(γk·eα
vq + γ(k−q)·eα

uq), (B21)

and the magnon Green’s function is

D0(ω) = δ(ω − 	q). (B22)

Using Eqs. (B21) and (B22) we obtain the self-consistent
equation for the self-energy (B20) in the SCBA approximation


α (k, ω) =
∑

q

Gα (k − q, ω − 	q)Vα (k, q)Vα (k, q)∗

=
∑

q

Vα (k, q)Vα (k, q)∗

ω + J − 	q − 
α (k − q, ω − 	q)
.

(B23)

Finally, the above equation is solved numerically for the self-
energy 
α (k, ω) on a finite mesh of k and ω points (see main
text of the paper).
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