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Antiferromagnetic quantum spin systems can exhibit a transition between collinear and spiral ground states,
driven by frustration. Classically this is a smooth crossover and the crossover point is termed a Lifshitz point.
Quantum fluctuations change the nature of the transition. In particular, it has been argued previously that in the
two-dimensional (2D) case a spin liquid (SL) state is developed in the vicinity of the Lifshitz point, termed a
Lifshitz SL. In the present work, using a field theory approach, we solve the Lifshitz quantum phase transition
problem for the 2D frustrated XY model. Specifically, we show that, unlike the SU (2) symmetric Lifshitz case,
in the XY model, the SL exists only at the critical point. At zero temperature we calculate nonuniversal critical
exponents in the Néel and in the spin spiral state and relate these to properties of the SL. We also solve the
transition problem at a finite temperature and discuss the role of topological excitations.
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I. INTRODUCTION

The Lifshitz point is the classical (nonquantum) crossover
between a collinear antiferromagnet and a spin spiral state.
The crossover is driven by frustration. Some time ago Ioffe
and Larkin pointed out that if a frustrated 2D antiferromag-
net is tuned to the Lifshitz point, long wavelength quantum
fluctuations destroy the long-range order and lead to the
formation of a quantum disordered phase, a spin liquid (SL).
[1] In the present paper, we term this phase a Lifshitz SL.
It has properties which are different from other known types
of SL. Locally it maintains antiferromagnetic or spin spiral
correlations. For this reason quantum field theory is the most
natural technique to describe the state, and this technique
was used already in the pioneering work [1]. After the first
work the idea of Lifshitz quantum criticality and Lifshitz
SL was almost forgotten. However recently it has attracted
more attention. Lifshitz quantum criticality arises in frustrated
quantum magnets with competing interactions [2–6] and in
underdoped cuprates where the effective frustration is due to
itinerant holes [7,8]. Interestingly, the XY-type Lifshitz field
theories arise also in Rokhsar-Kivelson dimer models [2,9], as
well as in liquid crystals [10], Bose-Einstein condensates of
ultracold atoms [11], and even in some cosmological models
[12,13]. A Lifshitz point in a classical frustrated XY model at
a finite temperature was also considered in Ref. [14] Lifshitz-
type quantum criticality may arise in thin films of manganite
oxide materials Tb(Dy)MnO3, where the criticality could be
tuned by La-doping or pressure [15–18].

In the present work we study 2D frustrated magnets with
competing interactions and solve the problem of a Lifshitz
quantum phase transition in the 2D frustrated XY model. We
derive a field theoretical description for the O(2) symmetric
model in the vicinity of the Lifshitz transition. This allows us
to calculate nonunversal critical exponents in the Néel and in
the spin spiral state and relate these to properties of the SL.

We also study the Lifshitz transition at a finite temperature,
accounting for both quantum and thermal fluctuations. We
discuss the relative importance of the perturbative and the
topological (vortex) excitations. We also underline differences
between Lifshitz criticalities for the XY and the SU(2)-
symmetric case.

The paper is organized as follows. In Sec. II, we discuss
the J1-J3 Heisenberg model on the square lattice, S = 1/2, as
an example of Lifshitz criticality. Here we present results of
numerical series expansion calculations that motivate further
analytical analysis. Section III presents analytical solution of
the problem at zero temperature. finite-temperature properties
are considered in Sec. IV. Section V summarizes our conclu-
sions.

II. J1-J3 MODEL, SERIES EXPANSIONS

Before presenting the general solution in the framework of
a quantum field theory, we consider a specific lattice model.
One of the simplest 2D spin systems with frustration induced
by competing interactions is J1-J3 Heisenberg antiferromagnet
on the square lattice,

H = J1

∑
α〈i j〉

Sα
i Sα

j + J3

∑
α〈〈〈i j〉〉〉

Sα
i Sα

j , (1)

where Si is spin 1/2 at the lattice site i. Antiferromagnetic
interactions, J1,3 > 0, account for the nearest neighbor sites,
and the third neighbor sites. If the summation over α is
performed over all components of spin, α = x, y, z, the model
is SU(2)-symmetric, or O(3)-symmetric. The case α = x, y
corresponds to the XY model, with O(2) symmetry.

Frustrated J1-J2 and J1-J2-J3 models have been discussed
in numerous studies, see, e.g., Refs. [19–25]. In the J1-J2

model the nontrivial regime is realized around J2/J1 ∼ 0.5.
In this regime energies of the Néel state, the spin spiral
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FIG. 1. The O(2) J1-J3 model. At J3/J1 < 0.4. the ground state
is the Néel state, and at J3/J1 > 0.4 the ground state is the spin spiral
state. The spin liquid is realized at one point, J3/J1 ≈ 0.4. (a) Energy
of the ground state vs J3/J1. (b) The spin spiral wave vector squared
vs J3/J1. (c) Static magnetization M vs J3/J1.

state, and the spin stripe state are close. The spin stripe state
“spoils” the situation. It has very different short-range spin
structure and this structure is strongly mixed up by quantum
fluctuations. Therefore the J1-J2 model definitely does not
belong to the Lifshitz class. However in J1-J3 model the
situation is different. In the classical limit, S � 1, there is a
Lifshitz point at J3 = J1/4 with a smooth formation of the spin
spiral at J3 > J1/4. The spin stripe phase with the different
short-range order has a significantly higher energy, and does
not play a role at low temperature. So the J1-J3 model likely
belongs to the Lifshitz class.

We have performed extensive series expansion calculations
[26] both in the Néel phase and the spin-spiral phase. Un-
fortunately the series expansion method is not able to probe
properties of the SL phase directly. However, the method
allows us to find the range of parameters where the SL exists.
In the Néel phase the series starts from the simple Ising
antiferomagnetic state. In the spin spiral phase the calculation
is more tricky. We first impose a classical diagonal spiral with
some wave vector Q and find the total energy of this state
E (Q). This includes the classical energy and the quantum
corrections calculated by means of series expansions. We
perform this calculations for many values of Q and then find
numerically the minimum of E (Q). Such procedure gives us
the ground-state energy Egs and the physical wave vector Q.
Plots of the ground-state energy Egs, the spiral vector Q, and
the static on-site magnetization M for the XY J1-J3 model are
presented in Fig. 1. For comparison, in Fig. 2, we present
the same quantities calculated in Ref. [6] for the O(3) J1-J3

model.
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FIG. 2. The O(3) J1-J3 model, results of Ref. [6] At J3/J1 <

0.33, the ground state is the Néel state, and at J3/J1 > 0.55 the
ground state is the spin spiral state. The quantum disordered (spin
liquid) phase is realized within the range 0.33 < J3/J1 < 0.55.
(a) Energy of the ground state vs J3/J1. (b) The spin spiral wave
vector squared vs J3/J1. (c) Static magnetization vs J3/J1.

Note that according to our series calculations the period
of the incommensurate spin spiral is quite long. For exam-
ple, Q2 = 2 implies that Qx = Qy = 1 = 1/(2π )r.l.u. So, the
period in each direction is 2π ≈ 6 lattice spacing. While the
series expansion method does not have a problem with this, it
can be quite hard to obtain such a long period in a finite cluster
calculation. Moreover, the ground state is fourfold degenerate,
Q = 1√

2
(±Q,±Q). This is on the top of the continuous O(N)

degeneracy that results in a well understood rotational tower
of quantum states in a finite system [27,28]. In the spiral
case, the continuous group tower must consist of fourfold
split (or degenerate) states due to the Q degeneracy, and the
splitting depends on the geometry of the cluster. It could be
nontrivial to disentangle such a spectrum in a finite size cluster
numerically.

Concluding this section, the most important qualitative
difference between O(3) and O(2) is the size of the “window”
in the parameter space occupied by the SL phase. In the O(3)
case this is finite interval and in the O(2) case it is likely that
the interval shrinks to a point. Remarkably the problem of
the critical behavior of the O(2) Lifshitz model can be solved
exactly. Now we proceed to the solution.

III. ZERO-TEMPERATURE SOLUTION

In the vicinity of the Lifshitz point, the spin dynamics
is described by an effective nonlinear σ model with the
Lagrangian [1]

L = χ⊥
2

(∂t nμ)2 − 1

2
nμK (∂i )nμ . (2)

Here, nμ is the vector of staggered magnetization, with n2 =
1, ∂i are the spatial gradients (i = x, y), χ⊥ is the transverse
magnetic susceptibility. The general form of the “elastic en-
ergy” operator K (∂i ) assuming that the n-field is sufficiently
smooth is

K (∂i ) = −ρ(∂i )
2 + b1

(
∂4

x + ∂4
y

) + 2b2∂
2
x ∂2

y + O
(
∂6

i

)
. (3)

The elastic energy has been derived in Ref. [1], see also
Refs. [6,31]. The energy arises after rewriting Hamiltonian
(1) in the Fourier representation and performing expansion
cos q = 1 − q2/2 + q4/24 up to the fourth power in momen-
tum. The terms cos q (cos 2q) originate from J1 (J3) Heisen-
berg interactions. The kinematic form of the Lagrangian (2)
is dictated by global symmetries of the system. In the O(3)
case, the vector n has three components and in the O(2) case
two components. Hereafter, we consider O(2) and hence the
vector can be parameterized by the single angle θ

n = (cos θ, sin θ ). (4)

The spin stiffness ρ is the tuning parameter that drives the sys-
tem across the Lifshitz transition. The spin stiffness is positive
in the Néel phase, negative in the spiral phase and vanishes at
the Lifshitz point. The fourth-order spatial derivative b terms
are necessary for stabilisation of the spiral order at negative ρ,
and we assume b1,2 > 0.
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FIG. 3. Single loop self-energy diagram for θ -field generated by
the quartic term in Eq. (5).

The Lagrangian (2) can be rewritten in terms of the angle
θ :

L = χ⊥
(∂tθ )2

2
− ρ(∂iθ )2

2

− b1

2

[(
∂2

x θ
)2 + (

∂2
y θ

)2 + (∂xθ )4 + (∂yθ )4
]

− b2

[(
∂2

xyθ
)2 + (∂xθ )2(∂yθ )2

]
. (5)

Classically the ground state of this Lagrangian is the collinear
Néel state at ρ > 0, θ = const and the ground state is the spin
spiral at ρ < 0, θ = Qr, where Q is the wave vector of the
spiral. For b1 � b2, the spiral wave vector is directed along x
or y, and for b1 > b2, the wave vector is directed along the
main diagonals.

b1 � b2 : Q = (±Q, 0), (0,±Q),

Q2 = |ρ|/(2b1),

b1 > b2 : Q = 1√
2

(±Q,±Q),
1√
2

(±Q,∓Q),

Q2 = |ρ|/(b1 + b2). (6)

Parameters of the effective Lagrangians (2) and (5) can
be expressed in terms of the parameters of the Heisenberg
model. These are expansions in powers of spin S. For the J1-J3

Heisenberg model on the square lattice in the leading order in
S, the parameters are [1,6]

ρ = S2(J1 − 4J3),

b1 = S2

24
(−J1 + 16J3),

b2 = 0,

χ⊥ = 1/(8J1). (7)

The Lagrangian (5) contains quartic in θ terms. These
terms lead to the self-energy of the field θ . The single loop
self-energy diagram is shown in Fig. 3. The self-energy Fig. 3
has an ultraviolet part that is not singular at ρ → 0 and it also
has an infrared part singular at ρ → 0. The ultraviolet part
just gives subleading corrections in S to Eqs. (7). For example,
the quartic terms result in the positive ultraviolet correction to
ρ which extends the region of the Neel phase in Fig. 1. The
Lifshiz point shifts to J3/J1 ≈ 0.4 from the classical Lifshits
point J3/J1 = 0.25 that follows from Eqs. (7). It is interesting
to note that quantum fluctuations extend the region of the Néel
phase, this is the general property of Lifshitz criticality. [6]
On the other hand in the J1-J2 model quantum fluctuations
shrink the region of the Néel phase. The classical critical point
is J2/J1 = 0.5 and the quantum critical point is J2/J1 = 0.38
[20]. This observation confirms our point that the J1-J2 model
does not belong to the Lifshitz class. Thus the renormalization

due to the ultraviolet part of Fig. 3 significantly changes
parameters of the model and shifts the position of the Lifshitz
critical point. However, from the point of view of a field
theory, the ultraviolet part of Fig. 3 can be renormalized out
(eliminated).

The infrared part of the self energy is more interesting, as it
influences critical properties, and we discuss this point below.
The transverse susceptibility χ⊥ does not have an infrared
divergent correction, and in the single loop approximation,
Fig. 3, the correction is actually zero. Therefore hereafter we
set χ⊥ = 1 and hence use dimensionless parameters

ρ → χ⊥ρ,

b1,2 → χ⊥b1,2,

T → χ⊥T . (8)

The last line defines a dimensionless temperature that we use
in the next section.

The values of the coefficients b1 and b2 depend on the
specific choice of the lattice model. The special case b1 = b2

corresponds to the situation when the ground-state energy
is degenerate with respect to the direction of Q. In this
degenerate case, one has to account for higher-order terms
in the powers of the spatial gradients O(∂6

i ) in the expansion
of the elastic energy K (∂i ). In this work, we assume that the
system is far away from the degeneracy point, b1 = b2.

A. Spin stiffness renormalization

Let us approach the Lifshitz point from the Néel phase,
ρ > 0. Quadratic in θ terms of the Lagrangian (5) result in the
following dispersion:

ωq =
√

ρq2 + b1
(
q4

x + q4
y

) + 2b2q2
x q2

y , (9)

where q is the momentum. At the Lifshitz point, ρ = 0,
the dispersion is quadratic in momentum, and the dynamical
critical exponent is z = 2,

ω0q =
√

b1
(
q4

x + q4
y

) + 2b2q2
x q2

y . (10)

To calculate the self-energy Fig. 3, we decouple the nonlinear
terms in the Lagrangian (5)

(∂iθ )4 → 6(∂iθ )2〈(∂iθ )2〉 = 3(∂iθ )2
∫

d2q

(2π )2

q2
i

ωq
. (11)

Thus the self-energy results in a correction to the spin stiff-
ness. First we perform the ultraviolet renormalization. To do
so consider the Lifshitz point, ρ = 0. Here the correction is


ρ =
(

3b1 + b2

2

) ∫
d2q

(2π )2

q2
x

ω0q
. (12)

The integral is convergent in the infrared limit (q → 0) in
spite of the quadratic dispersion. Hence, 
ρ is just a constant
that has to be added to the relation (7). We absorb this shift in
the definition of ρ. Away from the Lifshitz point in the Néel
phase the self-energy leads to a logarithmic renormalization
of the spin stiffness, ρ → ρr . Similar to (12), we find

ρr = ρ +
(

3b1 + b2

2

) ∫
d2q

(2π )2
q2

x

[
1

ωq
− 1

ω0q

]
. (13)
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For self-consistency in the dispersion ωq in this formula, we
must replace ρ → ρr , see Eq. (9). Evaluation of the integral in
(13) with logarithmic accuracy is straightforward. This leads
to the following equation for the renormalized spin stiffness
ρr :

ρr = ρ

1 + 3κ0

8π
√

b1

(
1 + b2

6b1

)
ln

(
�2b1
|ρr |

) . (14)

Here, � ∼ π/a is the ultraviolet momentum cutoff, a is the
lattice spacing, and the number κ is the following angular
integral:

κ0 =
∫ 2π

0

dα/(2π ) cos2 α

[(cos4 α + sin4 α) + 2(b2/b1) sin2 α cos2 α]3/2
.

(15)

The logarithmic correction to the spin stiffness can not
depend on the sign of ρ, so (14) is valid also for ρ < 0. This
point is obvious since the logarithmic correction comes from
quantum fluctuations in the momentum range Q ∼ √|ρ|/b1 <

q < �. This range is insensitive to formation of the spin
spiral. This implies that in Eqs. (6) one must replace ρ → ρr

and the correct scaling of the wave vector is

Q ∝ √
ρr ∝

√
J3 − J3c

1 + A ln
(

B
J3−J3c

) , (16)

where the constants A and B are given by Eq. (14). So,
there is a logarithmic correction to the power scaling of Q.
Besides the general scaling arguments one can check the
relation Q ∝ √

ρr by a detailed calculation. To do so, we
substitute θ = Qr + φ in the Lagrangian (5) and expand it up
to cubic terms (∂iφ)3. A straightforward decoupling procedure
(∂iφ)3 → 3(∂iφ)〈(∂iφ)2〉 leads directly to Eq. (14). The loga-
rithmic correction in Eq. (16) is small. Therefore the deviation
of Fig. 1(b) from a straight line is due to the higher powers of
J3 − J3c that cannot be captured by the field theory.

It is interesting to note that nonlinear terms in the La-
grangian (5) do not renormalize the higher derivative terms
b1,2(∂2θ )2. Such corrections can only be generated by sub-
leading terms, e.g., (∂2θ )4 or (∂2θ )2(∂θ )2.

In the spin spiral phase it is convenient to describe excita-
tions in terms of the field φ. The substitution θ = Qr + φ in
the Lagrangian (5) results in the following quadratic form:

1

2
ρ̃i j∂iφ∂ jφ + b1

2
[(∂xxφ)2 + (∂yyφ)2] + b2(∂xyφ)2. (17)

Hence the effective spin stiffness tensor ρ̃i j , which determines
the spectrum of excitations in the spin spiral phase, reads

ρ̃i j = 2|ρr |
(

1 0
0 b2

b1
− 1

)
, b1 � b2;

ρ̃i j = 2|ρr |
(

b1
b1+b2

b2
b1+b2

b2
b1+b2

b1
b1+b2

)
, b1 > b2. (18)

Hence the excitation spectrum in the spin spiral phase is

ω̃q =
√

ρ̃i jqiq j + b1
(
q4

x + q4
y

) + 2b2q2
x q2

y . (19)

B. Spin-spin correlator

From Eq. (9), we conclude that the phase fluctuation in the
Néel phase reads

〈θ2(r)〉 − 〈θ (r)〉2 =
∫

d2q

(2π )2

1

2ωq
. (20)

The fluctuation remains finite everywhere except of the point
ρ = 0 where the integral in (20) is infrared divergent. This
confirms the hint given by Fig. 1(c) that the spin liquid is
realized only at one point. Everywhere else the long-range
order is preserved. To calculate the spin-spin correlator in the
SL phase we follow the method of Ref. [2]. The equal time
correlator of the n-field can be expressed in terms of the θ

correlation function, G(x − y) = 〈θ (x)θ (y)〉:
C(r) = 〈nμ(r)nμ(0)〉 = Re〈eiθ (r)e−iθ (0)〉 = eG(r)−G(0). (21)

The θ -field Green’s function reads

G(r) = 〈θ (r)θ (0)〉 =
∫

d2q

(2π )2

eiqr

2ω0q
. (22)

Hence

G(r) − G(0)

=
∫ �

0

d2q

(2π )2

eiqr − 1

2ω0q

=
∫ �r

0

dη

η

∫ 2π

0

× dα[eiη cos(ψ−α) − 1]/(8π2
√

b1)√
(cos4 α + sin4 α) + 2(b2/b1) sin2 α cos2 α

(23)

Here the angle ψ describes the orientation of the radius vector
r = r(cos ψ, sin ψ ) in the 2D plane {x, y}. The first term in
the square brackets is convergent at large η while the second
term is logarithmically divergent. Therefore the first term just
provides the lower limit of integration, η ∼ 1, for the second
one. Hence, at �r � 1,

G(r) − G(0) ≈ − κ1

4π
√

b1

∫ �r

1

dη

η
= −ζ ln(�r) , (24)

where

ζ = κ1

4π
√

b1
,

κ1 =
∫ 2π

0

dα/(2π )√
(cos4 α + sin4 α) + 2(b2/b1) sin2 α cos2 α

.

(25)

Thus the spin-spin correlator at the critical point, ρ → 0,
decays algebraically

C(r) =
(

1

�r

)ζ

. (26)

Interestingly, this correlator decay for the XY-Lifshitz spin
liquid is similar to that in the dimer models at the Rokhsar-
Kivelson critical point [2,29].
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C. Static magnetization

The staggered magnetization in the Neel phase, ρ > 0, is

〈nx〉 = Re〈eiθ 〉 = e−(〈θ2〉−〈θ〉2 )/2 . (27)

We choose the x-axis as the direction of spontaneous sym-
metry breaking in the Neel phase. The fluctuation of phase θ

is given by Eq. (20). According to Eq. (9) there is a regime
crossover at

qmin ∼
√

ρr/b . (28)

At q > qmin the dispersion is quadratic in q, and at q < qmin

the dispersion is linear in q. Therefore, qmin is the infrared
cutoff in the logarithmically divergent integral in (20). Hence

〈θ2〉 − 〈θ〉2 =
∫ �

qmin

d2q

(2π )2

1

2ωq
= ζ ln(�/qmin) . (29)

This results in the following critical behavior of the static
magnetization

M ∝ 〈nx〉 ∝ ρζ/4
r . (30)

It is easy to check that the static magnetization in the spin-
spiral phase has the same scaling M ∝ |ρr |ζ/4.

It would be interesting to understand how an external
magnetic field and a quenched disorder can influence the
derived behavior. Obviously a weak magnetic field orthogonal
to the xy plane does not influence Goldstone excitations and
hence does not influence the behavior. On the other hand a
field in the plane, say along the x axis, aligns the staggered
magnetization along the y axis and opens a gap in the spectrum
of excitations in the collinear phase. Most likely such a
field would change the continuous Lifshitz quantum phase
transition to a weak first-order transition.

A weak quenched disorder, say removal of a small fraction
of spins, is a more complex issue. We believe that the O(3)
case, where SL exists in a finite window of J3/J1, will not
be significantly affected by the disorder. On the other hand
in the O(2) case this is not true. In this case the SL exists
only in Lifshitz point where excitations are gapless with
quadratic dispersion. Obviously the disorder is not important
deep in the collinear phase and deep in the spin spiral phase.
However in a vicinity of the Lifshitz point it could effect the
system. A likely scenario is a SL with superimposed spin glass
component in a narrow vicinity of the Lifshitz point. Analysis
of such state is a complex problem outside of the scope of the
present work.

Thus we come to the following conclusions of this section.
(i) The SL is realized only at the critical point, ρr = 0. (ii)
The spin-spin correlator in the SL phase decays algebraically
∝ r−ζ . (iii) The static magnetization away from the SL point
scales as ρζ/4

r . The critical index is not a universal number,
but it depends on parameters of the system, see Eq. (25). For
the J1-J3 model, the critical point is J3c ≈ 0.4, see Fig. 1(c).
Hence using Eq. (7), we estimate ζ/4 ≈ 0.25. (iv) Because of
the logarithmic correction in Eq. (14) the critical scaling is not
just a power, but there is a logarithmic dependence. (v) The
incommensurate wave vector scaling in the spin spiral phase
also has a logarithmic correction, Eq. (16).

IV. FINITE-TEMPERATURE PROPERTIES

A. Spin stiffness renormalization

In this section, we consider the effects of finite temperature
T on Lifshitz criticality. We assume that the temperature is
much smaller than the energy ultraviolet cutoff, T � √

b�2,
but it can be larger or comparable with ρ. It is obvious
that with these conditions temperature does not influence
the ultraviolet renormalization (12). However, the infrared
renormalization (13) is changed. The 1/ωq term in the square
brackets in (13) should be replaced by a term containing a
bosonic occupation number factor 1

ωq
→ 1

ωq
(1 + 2nq), where

nq = 1

eωq/T − 1
. (31)

Hence Eq. (13) modified for the case of finite T reads

ρr = ρ +
(

3b1 + b2

2

) ∫
d2q

(2π )2
q2

x

[
1

ωq
− 1

ω0q

]
+

(
3b1 + b2

2

)∫
d2q

(2π )2
q2

x

2nq

ωq
. (32)

This equation is written for the Néel phase. For low tempera-
ture, T � ρ, the last line in Eq. (32) is negligible and we return
back to (13). However, for ρ � T � √

b�2 temperature is
significant and evaluation of (32) gives

ρr =
ρ + 3T κ2

2π

(
1 + b2

6b1

)
ln

(√
b1T

|ρr |
)

1 + 3κ0

8π
√

b1

(
1 + b2

6b1

)
ln

(
�2b1
|ρr |

) , (33)

where

κ2 =
∫ 2π

0

dα/(2π ) cos2 α

(cos4 α + sin4 α) + 2(b2/b1) sin2 α cos2 α
. (34)

An equation similar to (33) was obtained in Ref.[29] for
a particular case ρ = 0. Note that Eq. (33) has a positive
solution, ρr > 0, for small negative ρ. This means that the
stability region of the commensurate fluctuating “Neel” phase
at finite temperatures extends towards negative ρ, as shown in
the phase diagram in Fig. 4.

FIG. 4. Sketch of the T -ρ phase diagrams of the quantum Lif-
shitz transition in XY model for a finite system size L. Neel and Spin
spiral phases at T > 0 possess a quasi-long-range order and algebraic
spin-spin correlations.
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FIG. 5. Two-loop self-energy diagram that generates width of the
magnon.

B. Magnon lifetime effect

When considering Eq. (33) at very small ρr we will face
a serious problem. The equation (33) does not have a solu-
tion ρr = 0. Hence the transition line in Fig. 4 between the
fluctuating Néel state and the fluctuating spin spiral state is
undetermined. To resolve this problem, we need to consider
perturbative and nonperturbative (topological) fluctuations. In
this section, we consider perturbative fluctuations. Equation
(33) is derived in the single loop approximation, see Fig. 3.
In this approximation, the self-energy does not have an imag-
inary part. The imaginary part arises due to the double loop
diagram shown in Fig. 5. The four-magnon vertex in Fig. 5 is
generated by quartic terms b(∂θ )4 in Eq. (5). In what follows,
we denote by q the momentum of the probe magnon, and k1,
k2, k3 are momenta of magnons from the heat bath. There
are three types of the scattering processes contributing to
the width: (i) decay: q = k1 + k2 + k3, (ii) Raman: q + k1 =
k2 + k3, and (iii) fusion: q + k1 + k2 = k3. We consider the
most important Raman process, the corresponding width reads
(see, e.g., Ref. [30])

�q ∼ (1 − e−ωq/T )

ωq
b2q2

∫
d2k1

2ω1

d2k2

2ω2

d2k3

2ω3
k2

1k2
2k2

3

× n1(1 + n2)(1 + n3) δ(ωq + ω1 − ω2 − ω3)

× δ(2)(q + k1 − k2 − k3) . (35)

We are interested in the case ρr = 0, hence the dispersion is
ωq = √

bq2 � T , ωi = √
bk2

i � T . The occupation numbers
can be replaced as ni → T/ωi. Evaluation of the integral in
(35) is straightforward, the result is

�q ∼ T 2

√
b

q2

ω2
q

. (36)

This estimate is valid if �q � ωq. At very small q → 0 this
condition is violated and hence in the right hand side of (36)
we have to replace ωq → �q. This immediately gives the
following estimate for �q at very small q

�q ∼ T 2/3

b1/6
q2/3 . (37)

This width results in the effective infrared cutoff in the q
integration in the last line of Eq. (32). Hence, with account
of the width, Eq. (33) is replaced by

ρr = ρ + 3T κ2
2π

ln
√

b

1 + 3κ0

8π
√

b1

(
1 + b2

6b1

)
ln

(
�2b1
|ρr |

)
→ ρ + CT

1 + 3κ0

8π
√

b1

(
1 + b2

6b1

)
ln

(
�2b1
|ρr |

) . (38)

The q integral in the numerator of this equation has been
calculated with logarithmic accuracy, ln(qT /qmin) � 1, where
qmin is the lifetime infrared cutoff that follows from Eq. (37).
However, in the end, the logarithm proved to be not large.
Therefore, we must replace it by a constant C that we cannot
calculate within accuracy of the method. We can only claim
that the constant is positive since the integral in the second line
of Eq. (32) is positive. The transition line in Fig. 4 between
the fluctuating Néel state and the fluctuating spin spiral state
is given by the condition ρr = 0, that results in the condition

ρ = −CT . (39)

C. Finite-temperature spin-spin correlators

Let us consider the spin-spin correlator at the transition
line ρr = 0, see Fig. 4. At a finite temperature, Eq. (23) is
transformed to

G(r) − G(0) =
∫ �

0

d2q

(2π )2

eiqr − 1

2ω0q
(1 + 2nq)

≈ T
∫ qT

0

d2q

(2π )2

eiqr − 1

ω2
0q

+
∫ �

qT

d2q

(2π )2

eiqr − 1

2ω0q
,

(40)

where qT = √
T /b1/4. The first integral in this equation is

infrared logarithmic divergent. As was discussed in the previ-
ous subsection the integral has to be regularized by the finite
width, ω2

0q → ω2
0q + �2

q . Evaluation of the integrals in (40) is
straightforward. At qT r � 1 the correlator C(r) decays with
distance exactly like that in the zero temperature SL, Eq. (26),
and at qT r � 1 it very quickly decays to zero.

Away from the critical line, ρr 
= 0, at sufficiently large
distances, r � √

b/|ρr |, the spin-spin correlator decays ac-
cording to the standard XY-model algebraic law

C(r) ∝ 1

rT/(2π |ρr |) . (41)

D. The role of vortices

A single vortex in the XY model has energy

Evortex = Ecore + πρ ln(L/a) , (42)

where L is the size of the vortex (size of the sample) and Ecore

is the energy of the vortex core. Hence at a finite temperature,
the free energy per vortex reads

Fvortex = Ecore + πρ ln

(
L

a

)
− T ln

(
L2

a2

)
. (43)

The third term in this equation is due to the entropy of the vor-
tex gas Sv ∼ ln ( L2

a2 ). In the usual unfrustrated XY model (J3 =
0), the core energy Ecore ∼ ρ ∼ J1. Therefore the core energy
does not play a significant role. In the limit L → ∞ the vortex
proliferation is energetically favorable (Fvortex < 0) at the
temperatures above the BKT temperature T > TBKT = π

2 ρ.
Formally near the Lifshitz point the situation is similar and
we can write the following equation for TBKT.

TBKT = π

2
|ρ| . (44)
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In particular TBKT = 0 at ρ = 0. Obviously Eq.(44) is not
consistent with Fig. 4. The explanation is that this equation
represent a rather formal statement. While at the Lifshitz
point the spin stiffness is approaching zero due to frustra-
tion, ρ → 0, the core energy remains finite, Ecore ∼ J1, see
Ref. [31] According to Eq. (43) in the limit L → ∞ and at
ρ = 0 vortices proliferate at any nonzero temperature. This is
consistent with Eq. (44). However, to make this point valid the
entropy in Eq. (43) must dominate over the core energy, hence
the sample size must be sufficiently large, L > a × eEcore/2T .
This can be a huge number, thousands, millions, or billions of
lattice spacings that is never achieved in a real sample or in
numerical experiments on a finite cluster.

Thus formally mathematically the transition line in Fig. 4
originating from ρ = 0 consists of two diverging phase
boundary lines that are exponentially close to each other. The
intermediate phase between the lines is the deconfined vortex
phase. However, in a real sample, say 1000 × 1000 sites, still
there is single transition line that at a certain temperature
starts to diverge into two BKT lines as it is shown in Fig. 4.
The position of the divergence point depends on the sample
size dramatically, so the notion of the phase diagram near the
divergence point is poorly defined.

To summarize this subsection, at finite system size and at a
sufficiently low temperature the O(2) topological excitations
(vortices) are irrelevant near the Lifshitz point. This is because
the vortex core energy remains finite even if the spin stiffness
is zero. Interestingly, in the O(3) case (isotropic Heisenberg
model), the energy of the topological excitation, skyrmion,
scales proportionally to the spin stiffness. Therefore, in this
case, topological excitations are relevant near the Lifshitz
point.

V. DISCUSSION AND CONCLUSION

We have considered the Lifshitz quantum phase transition
problem for the 2D frustrated XY model. Here are the conclu-
sions.

(i) We have performed numerical series expansion calcu-
lations for J1-J3 model on the square lattice (S = 1/2). The
calculations indicate that the Lifshitz point behavior is very
different for the XY- and for the SU (2)-symmetric versions of
the model.

(ii) Motivated by the numerics we performed field theory
analysis of the XY-Lifshitz criticality. This analysis results in
the following points.

(iii) The Lifshitz spin liquid phase exists only at the Lif-
shitz point. This is different from the SU(2) case where the
spin liquid phase occupies a finite interval in the parameter
space.

(iv) At zero temperature we calculate nonuniversal critical
exponents in the Néel and in the spin spiral state and relate
them to properties of the spin liquid.

(v) We also solve the transition problem at a finite tem-
perature, calculate the critical exponents, and discuss the
role of the magnon lifetime on the finite-temperature critical
behavior.

(vi) We show that the topological excitations are irrelevant
at low temperature even near the critical point.

ACKNOWLEDGMENTS

We thank Matthew O’Brien for discussions and Anders
Sandvik for important communications. The work has been
supported by the Australian Research Council Project No.
DP160103630.

[1] L. B. Ioffe and A. I. Larkin, J. Mod. Phys. B 02, 203 (1988).
[2] E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. 310, 493

(2004).
[3] L. Capriotti and S. Sachdev, Phys. Rev. Lett. 93, 257206

(2004).
[4] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd

ed. (Cambridge University Press, 2013).
[5] L. Balents and O. A. Starykh, Phys. Rev. Lett. 116, 177201

(2016).
[6] Y. A. Kharkov, J. Oitmaa, and O. P. Sushkov, Phys. Rev. B 98,

144420 (2018).
[7] Y. A. Kharkov and O. P. Sushkov, Phys. Rev. B 98, 155118

(2018).
[8] Y. A. Kharkov and O. P. Sushkov, Phys. Rev. B 100, 224510

(2019).
[9] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[10] P. M. Chaikin, and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, 1995).
[11] H. C. Po and Q. Zhou, Nat. Commun. 6, 8012 (2015).
[12] P. Horava, Phys. Rev. D 79, 084008 (2009).
[13] C. Hoyos, B. S. Kim, and Y. Oz, J. High Energy Phys. 03 (2014)

029.

[14] H. Schenck, V. L. Pokrovsky, and T. Nattermann, Phys. Rev.
Lett. 112, 157201 (2014).

[15] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y.
Tokura, Nature (London) 426, 55 (2003).

[16] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura,
Phys. Rev. Lett. 92, 257201 (2004).

[17] K. Hirota, N. Kaneko, A. Nishizawa, and Y. Endoh, J. Phys.
Soc. Jpn. 65, 3736 (1996).

[18] A. I. Milstein and O. P. Sushkov, Phys. Rev. B 91, 094417
(2015).

[19] J. Ferrer, Phys. Rev. B 47, 8769 (1993).
[20] O. P. Sushkov, J. Oitmaa, and Zheng Weihong, Phys. Rev. B 63,

104420 (2001).
[21] L. Capriotti, D. J. Scalapino, and S. R. White, Phys. Rev. Lett.

93, 177004 (2004).
[22] P. Sindzingre, N. Shannon, and T. Momoi, J. Phys.: Conf. Ser.

200, 022058 (2010).
[23] J. Reuther, P. Wölfle, R. Darradi, W. Brenig, M. Arlego, and J.

Richter, Phys. Rev. B 83, 064416 (2011).
[24] Z. Zhu, D. A. Huse, and S. R. White, Phys. Rev. Lett. 110,

127205 (2013).
[25] R. F. Bishop, P. H. Y. Li, O. Götze, J. Richter, and C. E.

Campbell, Phys. Rev. B 92, 224434 (2015).

035114-7

https://doi.org/10.1142/S0217979288000160
https://doi.org/10.1142/S0217979288000160
https://doi.org/10.1142/S0217979288000160
https://doi.org/10.1142/S0217979288000160
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1103/PhysRevLett.93.257206
https://doi.org/10.1103/PhysRevLett.93.257206
https://doi.org/10.1103/PhysRevLett.93.257206
https://doi.org/10.1103/PhysRevLett.93.257206
https://doi.org/10.1103/PhysRevLett.116.177201
https://doi.org/10.1103/PhysRevLett.116.177201
https://doi.org/10.1103/PhysRevLett.116.177201
https://doi.org/10.1103/PhysRevLett.116.177201
https://doi.org/10.1103/PhysRevB.98.144420
https://doi.org/10.1103/PhysRevB.98.144420
https://doi.org/10.1103/PhysRevB.98.144420
https://doi.org/10.1103/PhysRevB.98.144420
https://doi.org/10.1103/PhysRevB.98.155118
https://doi.org/10.1103/PhysRevB.98.155118
https://doi.org/10.1103/PhysRevB.98.155118
https://doi.org/10.1103/PhysRevB.98.155118
https://doi.org/10.1103/PhysRevB.100.224510
https://doi.org/10.1103/PhysRevB.100.224510
https://doi.org/10.1103/PhysRevB.100.224510
https://doi.org/10.1103/PhysRevB.100.224510
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1038/ncomms9012
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1007/JHEP03(2014)029
https://doi.org/10.1007/JHEP03(2014)029
https://doi.org/10.1007/JHEP03(2014)029
https://doi.org/10.1007/JHEP03(2014)029
https://doi.org/10.1103/PhysRevLett.112.157201
https://doi.org/10.1103/PhysRevLett.112.157201
https://doi.org/10.1103/PhysRevLett.112.157201
https://doi.org/10.1103/PhysRevLett.112.157201
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1103/PhysRevLett.92.257201
https://doi.org/10.1103/PhysRevLett.92.257201
https://doi.org/10.1103/PhysRevLett.92.257201
https://doi.org/10.1103/PhysRevLett.92.257201
https://doi.org/10.1143/JPSJ.65.3736
https://doi.org/10.1143/JPSJ.65.3736
https://doi.org/10.1143/JPSJ.65.3736
https://doi.org/10.1143/JPSJ.65.3736
https://doi.org/10.1103/PhysRevB.91.094417
https://doi.org/10.1103/PhysRevB.91.094417
https://doi.org/10.1103/PhysRevB.91.094417
https://doi.org/10.1103/PhysRevB.91.094417
https://doi.org/10.1103/PhysRevB.47.8769
https://doi.org/10.1103/PhysRevB.47.8769
https://doi.org/10.1103/PhysRevB.47.8769
https://doi.org/10.1103/PhysRevB.47.8769
https://doi.org/10.1103/PhysRevB.63.104420
https://doi.org/10.1103/PhysRevB.63.104420
https://doi.org/10.1103/PhysRevB.63.104420
https://doi.org/10.1103/PhysRevB.63.104420
https://doi.org/10.1103/PhysRevLett.93.177004
https://doi.org/10.1103/PhysRevLett.93.177004
https://doi.org/10.1103/PhysRevLett.93.177004
https://doi.org/10.1103/PhysRevLett.93.177004
https://doi.org/10.1088/1742-6596/200/2/022058
https://doi.org/10.1088/1742-6596/200/2/022058
https://doi.org/10.1088/1742-6596/200/2/022058
https://doi.org/10.1088/1742-6596/200/2/022058
https://doi.org/10.1103/PhysRevB.83.064416
https://doi.org/10.1103/PhysRevB.83.064416
https://doi.org/10.1103/PhysRevB.83.064416
https://doi.org/10.1103/PhysRevB.83.064416
https://doi.org/10.1103/PhysRevLett.110.127205
https://doi.org/10.1103/PhysRevLett.110.127205
https://doi.org/10.1103/PhysRevLett.110.127205
https://doi.org/10.1103/PhysRevLett.110.127205
https://doi.org/10.1103/PhysRevB.92.224434
https://doi.org/10.1103/PhysRevB.92.224434
https://doi.org/10.1103/PhysRevB.92.224434
https://doi.org/10.1103/PhysRevB.92.224434


KHARKOV, OITMAA, AND SUSHKOV PHYSICAL REVIEW B 101, 035114 (2020)

[26] J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion Methods
for Strongly Interacting Lattice Models (Cambridge University
Press, 2006).

[27] P. W. Anderson, Phys. Rev. 86, 694 (1952).
[28] G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur.

Phys. J. B 26, 167 (2002).

[29] P. Ghaemi, A. Vishwanath, and T. Senthil, Phys. Rev. B 72,
024420 (2005).

[30] H. D. Scammell and O. P. Sushkov, Phys. Rev. B 95, 024420
(2017).

[31] Y. A. Kharkov, O. P. Sushkov, and M. Mostovoy, Phys. Rev.
Lett. 119, 207201 (2017).

035114-8

https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1140/epjb/e20020078
https://doi.org/10.1140/epjb/e20020078
https://doi.org/10.1140/epjb/e20020078
https://doi.org/10.1140/epjb/e20020078
https://doi.org/10.1103/PhysRevB.72.024420
https://doi.org/10.1103/PhysRevB.72.024420
https://doi.org/10.1103/PhysRevB.72.024420
https://doi.org/10.1103/PhysRevB.72.024420
https://doi.org/10.1103/PhysRevB.95.024420
https://doi.org/10.1103/PhysRevB.95.024420
https://doi.org/10.1103/PhysRevB.95.024420
https://doi.org/10.1103/PhysRevB.95.024420
https://doi.org/10.1103/PhysRevLett.119.207201
https://doi.org/10.1103/PhysRevLett.119.207201
https://doi.org/10.1103/PhysRevLett.119.207201
https://doi.org/10.1103/PhysRevLett.119.207201

