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Simulation of a topological phase transition in a Kitaev chain with long-range
coupling using a superconducting circuit
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We report an experimental work on simulating the Kitaev chain of one-dimensional p-wave superconductivity
with long-range coupling using superconducting quantum circuits. The effective Hamiltonian of this model in
the momentum space is mapped onto that of a qubit driven by a tunable microwave control field. By monitoring
the dynamics of the qubit, we generate intuitive yet precise visualization of topological characteristics of
different quantum phases of the system. Topological invariants can be directly deduced from the experimental
results, without relying on indirect extraction from measurements such as microwave spectroscopy and temporal
averaging. Therefore a much enhanced efficiency of measurement can be realized compared to other methods
that are often used to simulate topological phase transitions. As a consequence, a comprehensive phase diagram
covering a wide range of the parameter space is obtained. Topological phase transitions and quantum multicritical
points are clearly demonstrated. In particular, new topological phases emerge as a consequence of long-range
coupling. The method used here can be readily generalized to simulate more complex systems on different
experimental platforms.
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I. INTRODUCTION

The Kitaev chain of a one-dimensional p-wave super-
conducting wire represents one of the simplest models ex-
hibiting symmetry-protected topological (SPT) order [1–3].
Depending on the relative strength of the chemical potential
and magnitudes of hopping and pairing of Cooper pairs,
the system assumes different topological phases that can be
differentiated by the number of Majorana zero-energy modes
localized at the open boundaries of the chain [4,5]. The Kitaev
chain can also be mapped onto the one-dimensional transverse
field Ising model (TFIM), which is an exemplary system for
the study of quantum phase transition and quantum criticality
[6–8]. The topological phases discussed above can be directly
linked to ferromagnetic and quantum disordered phases in the
TFIM, respectively. More recently, there has been substantial
interest in the generalization of the Kitaev model to include
long-range coupling [6–20]. Theoretical studies taking into
account such coupling have yielded many intriguing new
results. Among them are the emergence of new phases that are
topologically nontrivial and possibly beyond the current SPT
classification [7,17], topological phase transitions without
closing a gap [11], weakened bulk-edge correspondence [17],
massive Majorana zero-energy modes [16,19], violation of the
area law of the von Neumann entropy [11,17], and so on.

Simulation of quantum many-body systems such as the
Kitaev chain and the Ising model is important motivation for
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the research of quantum computation and simulation. Direct
simulation of targeted models usually involves sophisticated
engineering of the Hamiltonian of a tunable system con-
structed using, for example, cold atoms [21], trapped ions
[22–25], molecules in NMR experiments [26], or supercon-
ducting qubits [27–30]. Simulation done in this way requires
scalability and high-precision control, which are technically
challenging for today’s technology. Alternative methods have
thus been proposed for certain simplified scenarios. One
particularly interesting case arises if the Hamiltonian of a
targeted many-body system can be exactly diagonalized in the
momentum space. In this case, a single qubit is sufficient for
simulating the system. Implementations of this idea in various
ways, such as via adiabatic evolution, Autler-Towns splitting,
and quantum quench, have been used to simulate a variety of
topological matters and topological phase transitions [31–38].

The majority of existing experimental work on simulating
the Kitaev chain and the Ising model concern only short-range
coupling or interaction, i.e., nearest-neighbor (NN) hopping
and pairing of Copper pairs (the Kitaev chain) or NN interac-
tion between spins (TFIM). In a few exceptional experiments
conducted with trapped ions [25,39–42], long-range interac-
tion was generated via sophisticated laser-induced manipula-
tion of the internal vibrational modes of the ions. In general,
the tunability of relevant control parameters was rather limited
compared to what one would desire.

In this work, we report an experiment that simulates the
Kitaev chain with long-range coupling using superconducting
quantum circuits. By monitoring the evolution of a qubit
driven by precisely designed and tunable microwave pulses,
we map out the effective Hamiltonian of the Kitaev chain
with both NN and next-nearest-neighbor (NNN) coupling in
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momentum space. The topological invariant of the Hamil-
tonian is directly extracted from the experimental data. By
performing such measurements with several varied control
parameters, we obtain a comprehensive phase diagram where
topological phase transitions and quantum multicritical points
are clearly demonstrated. In particular, a new topological
phase emerges as a result of the presence of the NNN cou-
pling, which supports two Majorana zero-energy modes on
each end of the chain.

Our method generates intuitive yet precise visualizations
of topological characteristics of the system under study. It
does not rely on indirect measurements that use, for ex-
ample, microwave spectroscopy or extended time averaging.
In addition, as explained later, we implement the concept
of “shortcut to adiabaticity” to overcome the shortcoming
of long runtime associated with adiabatic evolutions. These
two factors combined lead to a much enhanced efficiency
of measurement compared to other methods that are often
used to simulate topological phase transitions using artificial
quantum systems. As a result, we are able to map out a phase
diagram in wide ranges of the control parameters, rather than
only focusing on a few demonstrative points in the parameter
space, typical in other methods.

II. THEORY

The Hamiltonian of the one-dimensional Kitaev chain with
both NN and NNN coupling can be written in the following
form:

H = − μ

N∑
i=1

c†
i ci − λ1

N−1∑
i=1

(c†
i ci+1 + cici+1 + H.c.)

− λ2

N−1∑
i=2

(c†
i−1ci+1 + ci+1ci−1 + H.c.). (1)

Here μ is the chemical potential, and λ1, λ2 are the
NN and NNN hopping and pairing strength, respec-
tively. In momentum space, the corresponding effec-
tive Hamiltonian is H (k) = �d (k) · �σ , where the Ander-
son pseudospin vector �d (k) = (dx, dy, dz ) = (0, 2λ1 sin k +
2λ2 sin 2k,−2λ1 cos k − 2λ2 cos 2k − μ) and Pauli matrices
�σ = (σx, σy, σz ). H (k) has a chiral symmetry as σxH (k)σ−1

x =
−H (k) and falls into the BDI class of the tenfold classification
of one-dimensional gapped systems [2]. It preserves the Z-
type topology, and the topological invariant is simply the
winding number of �d (k) in an auxiliary space as k is varied in
the first Brillouin zone [0, 2π ] [see Fig. 1(a)]. The winding
number can be calculated as W = ∮

dθ (k)/2π , where θ (k)
is the orientation angle of �d (k) and the integration is carried
out over the first Brillouin zone. Furthermore, the number
of Majorana zero-energy modes in each phase supported by
H (k) is equal to the topological invariant of that phase.

The effective Hamiltonian H (k) can be readily simulated
by a single qubit under an external drive �B(t ):

H (k) = �d (k) · �σ ↔ H (t ) = �B(t ) · �σ . (2)

A straightforward way is to set the external drive �B(t ) to be
�d (k). In order to do that, we link the momentum k to the
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FIG. 1. Topological characteristics of the effective Hamiltonian
of the Kitaev chain and the principle of simulation. (a) Trajectories of
the Anderson pseudospin vector �d (k) in different topological phases
of the Kitaev chain as k is varied across the first Brillouin zone.
The topological invariant of each phase is the winding number W
of �d (k) as defined in the main text. (b) Adiabatic evolution of a
qubit driven by the Hamiltonian given in Eq. (2). The red and green
arrows represent the two instantaneous eigenstates of H (k(t )), whose
orientation is aligned with the red arrow. (c) Evolution of the qubit
state in three different topological phases with W = 0, 1, 2. The
direction of the arrows indicates the orientation of the qubit in the yz
plane of the Bloch sphere: Pointing upwards corresponds to the state
|0〉, and downwards corresponds to |1〉. The number of completed
circles of the qubit rotating in the yz plane of the Bloch sphere, as
k is varied from 0 to 2π , is exactly the winding number W of the
pesudospin �d (k). The color gradient of 〈σz〉 will be used for better
visualization of different topological phases in the figures presented
later.

evolution time t by setting t = kT/π ∈ [0, 2T ]. As t evolves
from 0 to 2T , k varies from 0 to 2π , and the time-dependent
Hamiltonian H (t ) = �B · �σ = �d (k(t )) · �σ undergoes a cyclic
evolution, mapping out H (k(t )) in the first Brillouin zone.
The two instantaneous eigenstates of H (t ), indicated by red
and green arrows in Fig. 1(b), faithfully follow H (t ) during
the evolution. If such an evolution is adiabatic and the qubit
is initialized into one of the eigenstates of H (t = 0), the qubit
will stay in the corresponding instantaneous eigenstate during
the evolution. In other words, the state vector of the qubit will
also faithfully follow H (t ). In the current case, since H (t ) has
only y and z components, the qubit will also evolve in the yz
plane of the Bloch sphere. Therefore the state of the qubit can
be determined by simply measuring the expectation values of
〈σy〉 and 〈σz〉, rather than performing a standard quantum state
tomography measurement. Using such a relation between the
state of the qubit and H (k), one can deduce the topological
properties of H (k) by observing the evolution of the qubit
as k is varied. For example, the winding number W of the
pesudospin �d (k) will be the same as the number of completed
circles of the qubit rotating in the yz plane of the Bloch sphere
[see Fig. 1(c)].
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In the discussion above, adiabatic evolutions of the Hamil-
tonian were assumed in order to avoid unwanted transitions
between its instantaneous eigenstates. However, the adiabatic
condition requires a long runtime, which is not desirable due
to finite decoherence times of our qubits. To overcome this
problem, we employed a technique known as “shortcut to
adiabaticity” (STA) [43] to accelerate the evolutions in our
experiment. For the data reported here, T = 200 ns, so the
longest evolution time corresponding to the case of k = 2π

is only 400 ns, which is more than two orders of magnitude
shorter than a typical adiabatic evolution that can achieve the
same goal. In other words, the STA acceleration is crucial
for carrying out the experiment. Further discussion on this
acceleration can be found in Appendix B.

III. EXPERIMENT

We used the Xmon type of superconducting qubits to
carry out our simulation. All data reported in this work were
acquired using one qubit, and similar results were reproduced
on other qubits. The frequency of the qubit used here is around
ω10/2π = 5.42 GHz and can be fine-tuned by a bias current
on a Z control line. The relaxation and dephasing times are
T1 = 10.4 μs, T2 = 2.4 μs, respectively. The external drive �B
is realized by applying microwave pulses of specific shapes
through an XY control line. The qubit is capacitively cou-
pled to a λ/4 resonator (ωr/2π = 6.68 GHz, with a coupling
strength around 40 MHz), which is, in turn, coupled to a
transmission line. The state of the qubit can be deduced by
measuring the transmission coefficient S21 of the transmission
line using the dispersive readout scheme. Further details of the
samples can be found in Appendix A.

Figure 2(a) shows the experimental results for the case
of having only the NN coupling (λ1 = 1, λ2 = 0). The state
of the qubit, represented by arrows of different orientations,
is plotted as a function of the chemical potential μ and
momentum k. An arrow pointing upwards corresponds to |0〉;
one pointing downwards corresponds to |1〉, and an arbitrary
orientation corresponds to a linear superposition of |0〉 and
|1〉. For each specific combination of (μ, k), the qubit was
initialized to |0〉 at t = 0 (k = 0) and evolved under the
Hamiltonian of Eq. (2) for a time interval of t = kT/π ; then
its state was determined by measuring 〈σy〉 and 〈σz〉, as dis-
cussed above. Therefore the direction of an arrow represents
the orientation of the state vector of the qubit on the Bloch
sphere at that specific combination of (μ, k).

In the absence of the NNN coupling (λ2 = 0), the model
described by Eq. (1) reduces to the original one-dimensional
Kitaev chain. It has two topologically distinctive phases that
correspond to the weak-pairing BCS regime (|μ| < 2λ1) and
the strong-pairing Bose-Einstein condensate (BEC) regime
(|μ| > 2λ1) [5]. The weak-pairing phase is topologically
nontrivial and supports one Majorana zero-energy mode at
each end of the chain, whereas the strong-pairing phase is
topologically trivial and does not possess any Majorana zero-
energy modes.

From the experimental data, two distinctive regimes of
the parameter space can, indeed, be identified: |μ| > 2λ1 and
|μ| < 2λ1 (λ1 = 1 in Fig. 2). In the regime of |μ| > 2λ1, as
k varies from 0 to π , the state vector of the qubit first rotates
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FIG. 2. Experimental data for the case with only NN coupling.
For this specific measurement, we set λ1 = 1, λ2 = 0. Details of the
measurement are described in the main text. (a) Evolution of the
qubit as μ and k are varied. The meaning of the arrows and the color
scheme are the same as in Fig. 1(c). The two dashed lines mark the μ

values (±2) where topological phase transitions occur as predicted
by theory. (b) Winding number extracted from data in (a) using
W = ∮

dθ (k)/2π . For θ (k), we use the orientation angles of arrows
in (a) since they are identical to the angle of �d (k) as explained
in the text. (c) Energy-momentum dispersion relation E (k) at two
different values of μ where topological phase transition occurs, as
corroborated by the closing of the energy gap. E (k) is deduced from
the Rabi frequency of the microwave pulses used in measurements
that produced data in (a). For a two-band model as in this case,
the Rabi frequency gives the gap between the two symmetrically
distributed energy bands.

from |0〉 towards |1〉 but never reaches |1〉 and rotates back to
|0〉. When k varies from π to 2π , the qubit basically repeats
the above rotation, but in the opposite way. After one complete
cycle, the qubit returns to the initial state of |0〉. The trajectory
of the qubit during the cycle does not form a closed circle on
the yz plane of the Bloch sphere. In other words, the winding
number W is zero. This regime corresponds to the strong-
pairing BEC phase of the Kitaev chain and is topologically
trivial since W = 0. On the other hand, for |μ| < 2λ1, it is
obvious that the trajectory of the qubit does form a circle on
the yz plane of the Bloch sphere as k varies from 0 to 2π . This
regime thus corresponds to the weak-pairing BCS phase of
the Kitaev chain and is topologically nontrivial, with W = 1.
Topological phase transitions occur as μ is varied across the
borders of ±2λ1. Figure 2(b) plots the winding number W
extracted from data in Fig. 2(a). This plot gives a more direct
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FIG. 3. Experimental data for the case with both NN and NNN coupling. Here λ1 = 1, and λ2 = 0.2, 0.4, 0.6, 1.0 for (a)–(d), respectively.
In (a) and (b), where λ2 < 0.5λ1, only two distinctive topological phases (W = 0 and 1) are present. In (c) and (d), where λ2 > 0.5λ1, a third
phase of W = 2 emerges. (e) Winding numbers extracted for the data in (a)–(d) using the same method as in Fig. 2(b). (f) Energy-momentum
dispersion relation E (k) of two representative cases: Away from (left) and the occurrence of (right) phase transition. E (k) is deduced from the
Rabi frequency of microwave pulses that are used for obtaining the data in (a) and (d).

and simple demonstration of the topological phase transitions
in this case. In Fig. 2(c), the energy bands deduced from one
experimental control parameter, the Rabi frequency of the
microwave pulses, are plotted. It is obvious that topological
phase transitions occur only when the energy gap closes.

Next, we extended our simulation to include the NNN
coupling λ2. We fixed the NN coupling strength to be λ1 = 1
and measured the state of the qubit as λ2, μ, and k were varied.
Figures 3(a)–3(d) show the results for four representative
values of λ2. At λ2 = 0 (not shown in Fig. 3), the model
described by Eq. (1) simply reduces to the case of only having
the NN coupling, as shown in Fig. 2. As λ2 increases but
is still smaller than 0.5λ1 [Figs. 3(a) and 3(b)], the system
continues to have only two topological phases (W = 0 or 1).
However, the phase transitions now occur at μ = −2λ1 − 2λ2

and μ = 2λ1 − 2λ2. Once λ2 reaches 0.5λ1, a third phase with
W = 2 emerges, as shown in Figs. 3(c) and 3(d). When μ <

−2λ1 − 2λ2, the system is in a topologically trivial phase with
W = 0. As μ increases, the system first undergoes a transition
to a phase of W = 1 at μ = −2λ1 − 2λ2 and then another
transition to a phase of W = 2 at μ = 2λ1 − 2λ2. Finally,
when μ > 2λ2, the system undergoes yet another transition
to the phase of W = 0. Such phase transitions become more
obvious in the plots of extracted winding numbers shown in
Fig. 3(e). The two plots of energy bands in Fig. 3(f) corre-
spond to the data in Figs. 3(a) and 3(d), again demonstrating
that phase transitions occur only when the energy gap closes.

Due to the interplay of multiple parameters of λ1, λ2, and
μ, the phase diagram of the Kitaev chain with long-range
coupling is rather sophisticated. Nevertheless, by carefully
designing the control microwave pulses, we are able to map
out its enriched phase diagram. Without loss of generality,

Fig. 4 shows such phase diagram for a specific case of μ =
−2. Figures 4(a)–4(c) show the measured state of the qubit as
a function of λ2 and k at three representative λ1 values. In each
case, multiple phases with different topological invariants can
be identified. Figure 4(d) aggregates experimental data taken
at a collection of λ1 values. The evolution of the boundaries
between different phases can clearly be seen. In particular,
two quantum multicritical points can be identified where
three different topological phases coexist. The phase diagram
obtained experimentally agrees with the theoretical result very
well [6–8].

IV. SUMMARY AND DISCUSSION

In summary, we have simulated the topological phase
transition in the Kitaev chain with both NN and NNN coupling
using superconducting quantum circuits. By mapping the
effective Hamiltonian of the system in the momentum space
onto that of a qubit driven by a tunable control field, we
produce intuitive visualization of different topological phases.
The much enhanced efficiency of measurement makes it
possible to obtain a comprehensive phase diagram covering
a wide range of the parameter space. Topological phase
transitions and quantum multicritical points are clearly
demonstrated. In particular, new topological phases due to
long-range coupling are observed.

The method used in this work represents a simple yet
versatile way of simulating quantum phase transitions in
various topological matters and can be easily generalized to
study more complex systems with higher spatial dimensions
and more complex couplings, such as power-law decaying
pairing [11,16,44]. The current technique can also be used to
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FIG. 4. Quantum phase diagram and multicritical points of the Kitaev chain with NN and NNN coupling. Here λ1 = 0, 1, 2 for (a)–(c),
respectively. (d) Aggregation of experimental data for different λ1 values. Solid red lines mark the evolution of phase boundaries. (e)
Comparison of experimentally obtained and theoretically predicted phase diagrams. Solid red lines and W values in the text are theoretical
predictions. In all panels, black circles mark the quantum multicritical points where three phases coexist.

study nonequilibrium dynamics of certain systems, including,
for example, Floquet engineering of the Kitaev chain where
the chemical potential and pairing strength are time depen-
dent [45,46] and dynamical quantum phase transitions [47].
Moreover, topological systems at finite temperatures may be
simulated with this technique as well [48,49].

Since the current method relies on the effective Hamilto-
nian in the k space of the system under study, in general it
is not applicable to systems with interaction. However, we
do want to point out that under certain circumstances, an
interacting system may also be described by decoupled modes
in k space [50], thus becoming simulatable with the current
method. More generally, as long as a system can be described
by some effective Hamiltonian in k space, the complexity of
simulating the system has already been largely reduced. In
those cases, the current technique, together with a straight-
forward generalization to multiple qubits, can be very useful.
Another interesting extension may be the construction and
simulation of H (k) under various constraints of symmetry via
direct k-space engineering [51] and studying the topological
phases of the resultant systems.
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APPENDIX A: SAMPLE INFORMATION

Figure 5 shows optical images of one of the samples used
in this work. The Xmon qubit consists of a superconducting
quantum interference device loop with two symmetrically
designed Josephson junctions. The magnetic flux piercing the
loop can be fine-tuned by a bias current flowing through the Z
control line, which can adjust the spacing between the energy
levels of the qubit. Microwave control pulses are applied to
the qubit via an XY control line that is capacitively coupled to
the qubit.

APPENDIX B: MICROWAVE CONTROL
AND STA ACCELERATION

The effective Hamiltonian of a microwave-driven qubit in
the rotating frame is given by

H0(t ) = h̄

2

(
� �Me−iφ

�Meiφ −�

)
, (B1)
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FIG. 5. Optical images of an Xmon qubit used in this work.

where �M,�, φ are the frequency, detuning, and phase
of the envelope of the control microwave pulse, respec-
tively. It can be written in terms of Pauli matrices �σ =
(σx, σy, σz ): H0(t ) = h̄

2
�B(t ) · �σ . Here the effective control

field �B = |B|(sin θ cos φ, sin θ sin φ, cos θ ), and |B| is equal
to the Rabi frequency � =

√
�2

M + �2 and tan θ = �M/�.
The instantaneous eigenstates of H0(t ) are |ψ+〉 = cos θ

2 |0〉 +
sin θ

2 eiφ |1〉 and |ψ−〉 = − sin θ
2 e−iφ |0〉 + cos θ

2 |1〉.
By setting φ = π/2 and tuning �M (t ) and �(t ), the Hamil-

tonian described by Eq. (B1) can be used to simulate the
effective Hamiltonian of the Kitaev chain in the momentum
space. One example is given in Fig. 6(c), where �M (t ) and
�(t ) are plotted as functions of a normalized time t/T for

parameters (λ1, λ2, μ) = (1, 0, 1.8). A proper choice of T has
to take into account several factors such as anharmonicity of
qubits and adiabaticity of evolutions.

For the adiabaticity issue, as discussed in the main text, it
is usually required to drive a qubit to evolve adiabatically. In
other words, the evolutions must be kept slow enough to avoid
unwanted transitions between the instantaneous eigenstates
of the qubit. In order to find the proper time of evolution,
we run numerical simulations to study how the qubit evolves
at different values of T . A representative result is shown in
Fig. 6(d), where 〈σz〉 of the qubit during evolution is plotted
for different T . It is obvious that at short T (for example,
6 μs), the behavior of the qubit deviates from adiabatic evolu-
tion significantly. Only when T is close to 30 μs (correspond-
ing to a total evolution time of 2T = 60 μs) can one observe
reasonable behavior of the qubit approaching an adiabatic
evolution. Given the finite decoherence times of our qubits, it
is impossible to run our experiments with such long evolution
times. In fact, even with the best superconducting qubits
available today, running the experiment without any kind of
acceleration would still make it difficult, if not impossible, to
produce a data set of similar quality and to be comprehensive
enough for generating the phase diagram shown in the main
text.

Various STA techniques have been proposed and imple-
mented to accelerate adiabatic processes (for a general review
on this topic, see Ref. [52]). One way to implement STA is
known as counterdiabatic driving [43], which is used in the
current work and will be discussed in the following.

The essential idea of STA is to include an auxiliary term
Ha(t ) in the original Hamiltonian H0(t ): HSTA(t ) = H0(t ) +
Ha(t ), so that the temporal dynamics of HSTA(t ) are equivalent

-1 1

(a) (b)

(c) (d)

FIG. 6. (a) Frequency �M (t ), auxiliary frequency �a(t ), and detuning �(t ) of the envelope of the microwave control pulse with STA.
(c) �M (t ) and �(t ) of the envelope of the microwave control pulse without STA. Numerical simulations of 〈σz〉 at different values of T ,
(b) with and (d) without STA. For all panels, we use the parameter set (λ1, λ2, μ) = (1, 0, 1.8).
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FIG. 7. Detailed data used in Fig. 4 in the main text. λ1 = 0.0, 0.2, 0.4, . . . , 2.2 from left to right and top to bottom.

to adiabatic evolutions of the original Hamiltonian H0(t ) even
on a short timescale. The specific form of Ha(t ) can be found
via different approaches based on, for example, dressed states
and dynamical invariants. In this experiment, we used Ha(t ) =
i�a(eiφ|1〉〈0| + e−iφ |0〉〈1|) with an auxiliary frequency �a =
θ̇ . Figure 6(a) plots the relevant parameters as functions of a
normalized time t/T for parameters (λ1, λ2, μ) = (1, 0, 1.8)
[similar to Fig. 6(c)]. Figure 6(b) plots results of numeri-
cal simulations of 〈σz〉 at different values of T [similar to
Fig. 6(d)], but now with the STA acceleration applied. It
is obvious that, with STA, evolution of the qubit can be
effectively adiabatic even for a T as short as 200 ns, which
is about an order of magnitude shorter than the decoherence
times of our qubits and more than two orders of magnitude
shorter than the required time of evolution in the case without
STA.

In short, STA acceleration is crucial for carrying out the
experiment in this work. Without it, it is impossible to obtain
the comprehensive phase diagram reported here.

APPENDIX C: SUPPLEMENTAL DATA
FOR THE QUANTUM PHASE DIAGRAM

Figure 7 plots detailed data used in Fig. 4 in the main
text for generating the phase diagram. In each panel, at
certain values of λ2, strange behavior of the qubit evolution
can be identified. Such phenomena are a herald of quantum
phase transitions. At these values of λ2, the two energy
bands of the effective Hamiltonian H (k) touch each other
(closing the gap) at certain values of k, and the winding
number of the Anderson pseudospin �d (k) becomes ill defined,
thus the strange behavior of the qubit evolution.
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