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Superconductor-insulator transition in Josephson junction chains
by quantum Monte Carlo calculations
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We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain.
Namely, we determine the critical Josephson energy below which the chain becomes insulating as a function of
the ratio of two capacitances: the capacitance of each Josephson junction and the capacitance between each
superconducting island and the ground. We develop an imaginary-time path integral quantum Monte Carlo
algorithm in the charge representation, which enables us to efficiently handle the electrostatic part of the chain
Hamiltonian. We find that a large part of the phase diagram is determined by anharmonic corrections which are
not captured by the standard Kosterlitz-Thouless renormalization group description of the transition.

DOI: 10.1103/PhysRevB.101.024518

I. INTRODUCTION

Josephson junction (JJ) chains are essential elements of
many superconducting circuits, where microwave signals can
propagate with little or no dissipation [1]. They are interesting
both for applications, such as metrological current standard
[2], qubit protection from charge noise [3], building high-
impedance environments [4–6], and parametric microwave
amplification [7–9], and for studying fundamental phenom-
ena, such as macroscopic quantum tunneling [10–13], phase-
charge duality [4], and strong-coupling quantum electrody-
namics [14].

At the same time, JJ chains have been predicted to undergo
a transition to an insulating state if the Coulomb energy asso-
ciated with the transfer of a single Cooper pair is sufficiently
high [15,16]. Subsequently, such a transition was observed
experimentally [17–22]. Random pinning of the insulator by
disorder was suggested to be a fundamental obstacle [23]
to realization of a metrological current standard based on
quantum phase slip junctions [24,25].

Given the importance of the problem and the high degree
of control achieved in JJ chain fabrication, precise information
about the insulating region in the parameter space would
be highly desirable. Surprisingly, a quantitative theoretical
prediction for the phase diagram is still lacking. Mappings
between the quantum JJ chain, the classical two-dimensional
(2D) XY model, the 2D Coulomb gas, and the sine-Gordon
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model [15,16,26–33], yielding an effective description of the
system at long distances and low energies, established that
the transition belongs to the Kosterlitz-Thouless universality
class [34,35]. However, to precisely relate the parameters of
an effective theory (e.g., the Coulomb gas fugacity) to those
of the physical JJ chain, one has to properly account for all
short-distance contributions. This is possible only in some
limiting cases.

In the present paper, we start to fill this gap in the theoreti-
cal knowledge and numerically calculate the zero-temperature
phase diagram of an isolated JJ chain in the absence of any
disorder and dissipation. We adopt the standard description of
such chains as a long array of identical superconducting is-
lands with Josephson and capacitive coupling between neigh-
boring islands (characterized by the Josephson energy EJ and
capacitance C) and capacitive coupling between each island
and a nearby ground plane (capacitance Cg), as schematically
shown in Fig. 1 (inset). The critical value of EJ was previously
known only for C/Cg → ∞ [16,29,36], and numerical results
were available for C = 0 [37–39]; here we calculate it for
an arbitrary ratio C/Cg (Fig. 1). We find that for C/Cg � 1
the critical EJ is determined by the weak Kerr nonlinearity
of the Josephson coupling [40,41], a short-distance effect not
captured by the standard Kosterlitz-Thouless renormalization
group (RG) approach to the transition [15,16,30,33,35].

To detect the transition, we develop a quantum Monte
Carlo (QMC) algorithm which evaluates directly the
imaginary-time path integral in the charge representation, in
contrast to the phase representation [38,42] or Coulomb gas
representation [27,32] used in previous works. Our QMC
scheme efficiently treats the Coulomb interaction and can
easily be extended to include more complex electrostatic
coupling [41] or random offset charges [30,33,43–45].
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FIG. 1. The zero-temperature phase diagram in the variables
�s = √

C/Cg and g = π
√

EJ/Eg, where Eg ≡ (2e)2/Cg. The dots
show our QMC results (the error bars are smaller than the symbol
size). The horizontal dotted line g = 2 is the �s → ∞ asymptote
[16], and the dashed line corresponds to g = 2 + π/(8�s ), discussed
in Sec. III C. The inset shows schematically the JJ chain, described
by Hamiltonian (1).

II. THE QMC SCHEME

A. Hamiltonian

We consider a linear JJ chain consisting of N + 1 iden-
tical superconducting islands labeled by an integer n =
0, 1, . . . , N . The superconducting phase φ̂n of island n and
the charge q̂n on the island are canonically conjugate and
satisfy the commutation relation [q̂n, φ̂n′ ] = 2ieδnn′ (e < 0 is
the electron charge). We assume the chain is fully isolated
from the outside world, so the phases are compact, and the
charges are discrete (coupling the system to a dissipative bath
may significantly change the result [16,26,27,46–49]). The
chain is described by the Hamiltonian

Ĥ =
N∑

n,n′=0

C−1
nn′

2
q̂nq̂n′ +

N∑
n=1

EJ [1 − cos(φ̂n − φ̂n−1)]. (1)

While the last term represents the Josephson coupling be-
tween neighboring islands characterized by the Josephson
energy EJ , the first term describes the Coulomb interaction be-
tween the island charges. C−1

nn′ is the inverse of the capacitance
matrix; the latter is taken to be tridiagonal. The main diagonal
is given by C00 = CNN = Cg + C and Cnn = Cg + 2C for n =
1, . . . , N − 1, while the first diagonals are Cn,n−1 = Cn−1,n =
−C for n = 1, . . . , N . Here Cg and C are the capacitances
between each island and the ground and between neighboring
islands, respectively (Fig. 1, inset). For n, n′ sufficiently far

from the chain ends, the interaction falls off exponentially:

C−1
nn′ ≈ 1√

4CCg + C2
g

⎛
⎝1 + Cg

2C
−

√
Cg

C
+ C2

g

4C2

⎞
⎠

|n−n′|

. (2)

At C = 0, the interaction is strictly local (C−1
nn′ is proportional

to the unit matrix). For C � Cg, Eq. (2) becomes

C−1
nn′ ≈ e−|n−n′ |/�s√

4CCg
, �s ≡ √

C/Cg � 1, (3)

with the screening length �s determining the interaction range.
It is convenient to pass from the phases φ̂0, . . . , φ̂N defined

on islands to phase differences defined on junctions, labeled
by half-integers j = 1/2, 3/2, . . . , N − 1/2:

θ̂1/2 = φ̂1 − φ̂0, θ̂N−1/2 = φ̂N − φ̂N−1, �̂ = φ̂N , (4)

with �̂ being the global phase. The corresponding conjugate
variables, P̂1/2, . . . , P̂N−1/2, Q̂, are

P̂j = −
∑
n< j

q̂n, Q̂ =
N∑

n=0

q̂n. (5)

P̂j are the lattice analogs of the dielectric polarization field P
(since q̂n = P̂n−1/2 − P̂n+1/2, analogous to the charge density
in a continuous medium, ρ = −∇ · P), while Q̂ is the total
charge of the chain.

In the following we focus on the sector Q = 0, assuming
the chain is overall neutral. This assumption deserves some
discussion. The operators q̂n represent the charge of the
Cooper pair condensate, relative to the background charge
of the grain, so they have positive and negative eigenval-
ues, integer multiples of 2e, since each island can host an
integer number of Cooper pairs. Here we assumed that the
background charge of each grain is also an integer multiple
of 2e. This assumption can be relaxed by adding a term
−∑

n V g
n q̂n, where the gate voltages V g

n can be the same for
all islands or random. This gives rise to a rich variety of pos-
sible phases, whose study is beyond the scope of the present
paper. Restricted to the Q = 0 sector, Hamiltonian (1) can be
written as

ĤQ=0 =
N−1/2∑
j, j′=1/2

Dj j′

2
P̂j P̂j′ + EJ

N−1/2∑
j=1/2

(1 − cos θ̂ j ), (6)

where

Dj j′ =
∑

σ,σ ′=±1

σσ ′C−1
j+σ/2, j′+σ ′/2 (7)

is the dipole-dipole interaction matrix.

B. Path integral

To construct the imaginary-time path integral, we follow
the standard procedure. Introducing a finite temperature 1/β

(which will eventually be extrapolated to zero) and splitting
the imaginary-time interval 0 � τ < β into M � 1 slices of
length ε ≡ β/M, we write the partition function as

Tr{e−βĤQ=0} = Tr{e−εĤQ=0 · · · e−εĤQ=0} (8)
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and at each slice insert the unit operator in the Q = 0 sector,

N−1/2∏
j=1/2

∞∑
Pj=−∞

|Pj〉〈Pj |,

and approximate e−εĤQ=0 = e−εĤC/2e−εĤJ e−εĤC/2 + O(ε3),
where ĤC and ĤJ are the Coulomb and Josephson terms of
the Hamiltonian in Eq. (6), in order to evaluate the matrix
element between different |Pj〉, the eigenstate of P̂j . The
Coulomb Hamiltonian ĤC is diagonal in the Pj basis, so
e−εĤC/2 gives just a numerical factor. The matrix element
of e−εĤJ splits into a product over all junctions, each one
contributing a factor

〈P|eεEJ cos θ̂ |P′〉 =
∫ 2π

0

dθ

2π
ei(l−l ′ )θ+εEJ cos θ

= Il−l ′ (εEJ ), l ≡ P

2e
, l ′ ≡ P′

2e
, (9)

where Il−l ′ (z) is the modified Bessel function; note that l, l ′
are integers. We do not make the Villain approximation,
eεEJ (cos θ−1) → ∑

m e−(εEJ /2)(θ−2πm)2
[50,51], often used to

simplify the Josephson term [26,27,36,47]. Working directly
with Bessel functions, although formally beyond the O(ε3)
precision, eliminates at least one source of errors at essentially
no computational cost: since Il (εEJ ) quickly decreases with l
for εEJ � 1, only a few first orders l of Il (εEJ ) are needed;
they are calculated and stored before each QMC run.

As a result, for each given M, the approximate partition
function can be written as an NM-fold sum over integer
variables l jm:

Tr{e−βĤQ=0} = e−βNEJ lim
M→∞

∞∑
{l jm}=−∞

WCWJ , (10a)

WC = exp

⎛
⎝− (2e)2β

2M

M−1∑
m=0

N−1/2∑
j, j′=1/2

Dj j′ l jml j′m

⎞
⎠, (10b)

WJ =
N−1/2∏
j=1/2

M−1∏
m=0

Il jm−l j,m+1 (βEJ/M ), (10c)

where we defined l jM ≡ l j0 so that the configurations are ef-
fectively on a cylinder. This construction is schematically rep-
resented in Fig. 2. It is straightforward to represent imaginary-
time correlators of P̂j operators in a similar way; for example,
Tr{e−βĤQ=0 eτ ĤQ=0 P̂je−τ ĤQ=0 eτ ′ĤQ=0 P̂j′ e−τ ′ĤQ=0} is given by the
same sum (10a), but with the summand WCWJ (2e)2l jml j′m′ ,
where m and m′ are such that mβ/M and m′β/M are close to τ

and τ ′, respectively. Correlators of e±iθ̂ j can also be calculated
by inserting extra time slices and evaluating the corresponding
matrix elements between the eigenstates of P̂j .

The NM-fold sum over the configurations {l jm} is evalu-
ated by Monte Carlo sampling of WCWJ with the standard
Metropolis algorithm. To update the configuration, we use
the following rule. First, we choose at random a junction j
and a segment m1 � m � m2 on the imaginary-time circle
(that is, one may have m2 < m1, in which case the variables
concerned are l j,m�m2 and l j,m�m1 ). The proposed configu-

FIG. 2. A pictorial representation of Eqs. (10). Each pink circle
represents an integer summation variable l jm with periodic boundary
conditions in the imaginary time, l j0 ≡ l jM . Each blue segment
corresponds to the Bessel function Il jm−l j,m+1 (βEJ/M ). Horizontal red
dotted boxes represent Coulomb dipole sums for each given m. The
vertical black solid box shows an interval where the variables are
shifted, l jm → l jm + σ , during one update; the Bessel functions are
modified only where the box crosses the blue segments.

ration is obtained by shifting l jm → l jm + σ on the chosen
interval, with σ = ±1 chosen randomly but the same for all
m in the interval. It is important that in such an update only
two Bessel functions constituting the weight WJ are modified:
the differences l jm − l j,m+1 remain the same inside the interval
and change only at the ends. Since Il−l ′ (εEJ ) ∼ (εEJ )|l−l ′ | at
small εEJ , an update modifying many Bessel functions would
be likely to produce many small factors, resulting in very low
acceptance probability. Our rule results in acceptance ratios
of a few percent; however, many rejections are done before
the expensive evaluation of the Coulomb weight. The change
in the weight WC is calculated straightforwardly; it represents
the main computational cost. For the largest systems we
considered (N = 200, M = 3200), it takes ∼109 proposed
steps to forget the initial conditions; a typical Monte Carlo
run takes ∼1011 proposed steps. The statistical error bars are
estimated from several (20–30) independent runs.

Finally, we note that our QMC scheme is much less suit-
able if the JJ chain does not have ends but is closed into a
ring. The details are given in Appendix A. Adapting cluster
or worm updates [52] for this situation could be a promising
strategy for improving the efficiency but is beyond the scope
of the present paper.

III. DETECTING THE TRANSITION

A. Transition indicator

Having set up the QMC scheme, one should choose an
observable Ô whose average,

〈Ô〉 ≡ Tr{Ô e−βHQ=0}
Tr{e−βHQ=0} , (11)

can distinguish between the superconductor and insulator
phases. The first excitation energy gap, which shrinks to
zero at N → ∞ in the superconductor but remains finite
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in the insulator, can be calculated from the imaginary-time
correlators; however, the gap goes to zero exponentially as
the transition is approached from the insulating side, so the
transition point cannot be determined precisely. Charge stiff-
ness, which might seem to be a natural order parameter of the
insulating phase, also turns out to be rather inconvenient (the
detailed arguments, which we find quite instructive, are given
in Appendix B).

We find the most suitable observable to be the total dipole
moment of the chain,

d̂ ≡
N−1/2∑
j=1/2

P̂j, (12)

whose average is zero, but the zero-temperature fluctuations
behave differently in the two phases:

lim
β→∞

〈d̂2〉 ∼
N→∞

{
N2, superconductor,
N, insulator,

(13)

where the limit β → ∞ is taken first. To see the origin of this
scaling, let us first assume to be deep in the superconducting
phase. Then in Eq. (6) one can expand 1 − cos θ̂ j ≈ θ̂2

j /2

and evaluate 〈d̂2〉 in the harmonic approximation (see Ap-
pendix C):

〈d̂2〉
(2e)2

=
N∑

k=1

1 − (−1)k

2

EJ

(N + 1)ωk
cot2 μk

2
coth

βωk

2
, (14)

where the normal-mode frequency ωk and wave vector μk are
given by

ωk =
√

4(2e)2EJ sin2(μk/2)

Cg + 4C sin2(μk/2)
, μk = πk

N + 1
. (15)

Taking the limit β → ∞, we set coth(βωk/2) → 1. If at large
N one replaces the k sum by an integral, it will diverge at the
lower limit as

∫
dμ/μ3; in fact, the sum is dominated by the

first few values of k and indeed scales as N2. In the insulating
phase, the normal modes are gapped, so the frequencies ωk

saturate to a finite value as N → ∞. This removes one factor
of N from the correlator.

To see how fast the limit β → ∞ is reached for a large
but finite N , let us go back to Eq. (14) with coth(βωk/2) and
evaluate the sum focusing on the lowest frequencies:

〈d̂2〉
(2eN )2

= g
7ζ (3)

2π4
B
(

N + 1

β
√

EJEg

)
, (16a)

B(x) ≡ 8

7ζ (3)

∞∑
m=1

1

(2m − 1)3
coth

π (2m − 1)

2x
, (16b)

where ζ (x) is the Riemann ζ function and we defined

g ≡ π
√

EJ/Eg, v ≡ π
√

EJEg, Eg ≡ (2e)2/Cg. (17)

Here v is the velocity of the low-frequency dispersion ωk ≈
vμk (since the distances are measured in units of the lattice
spacing, the velocity has the dimensionality of energy). While
B(0) = 1 strictly at zero temperature, B(1/4) = 1.00001,
B(1/2) = 1.00356, and B(1) = 1.08589, so in practice the
extrapolation β → ∞ can be done by taking the temperature

C/Cg = 0

EJ = 0.93 Eg
EJ = 0.92 Eg
EJ = 0.9 Eg
EJ = 0.88 Eg
EJ = 0.85 Eg

 d
 2
 /

(2
eN

)2

0.07

0.075

0.08

0.085

0.09

N
10 100

FIG. 3. N dependence of 〈d̂2〉/(2eN )2 for C/Cg = 0 and different
EJ/Eg: from top to bottom, 0.93, 0.92, 0.9, 0.88, 0.85. The data were
obtained with βEg = 4N , βEg/M = 1/4. The horizontal dashed line
indicates the limiting critical value 7ζ (3)/π4.

an order of magnitude smaller than the first mode frequency
ω1 ≈ π

√
EJEg/N . In the insulating phase, the limit is reached

even faster since the lowest excitation energy is finite as
N → ∞.

The average 〈d̂2〉, being a specific case of the imaginary-
time polarization correlator discussed at the end of the pre-
vious section, is very suitable for evaluation by our QMC
scheme. Additional error suppression is achieved by averag-
ing over the imaginary time.

B. Kosterlitz-Thouless scaling

We start with the short-range case C = 0 and plot in Fig. 3
the average 〈d̂2〉/(2eN )2 as a function of N for different
EJ/Eg, with the statistical error bars being comparable to the
symbol size. The plotted values were obtained for βEg = 4N ,
βEg/M = 1/4; we checked that increasing β or M by a factor
of 2 did not change the results, so the limits β → ∞ and
M → ∞ have been reached. The N dependence in Fig. 3
is very slow, which is typical for the Kosterlitz-Thouless
transition. Then, it is helpful to analyze the data using the
Kosterlitz-Thouless scaling [53–56].

To establish the scaling of 〈d̂2〉, we adopt the low-energy
description of the JJ chain in terms of the sine-Gordon model
[28,30,33]. Its Hamiltonian can be written as [57]

ĤsG = v

∫
dx

[
K

2π
�̂2 + π

2K

(
1

2e

∂P̂

∂x

)2

+ y

a2

(
1 − cos

2π P̂

2e

)]
. (18)

Here �̂ = ∂φ̂/∂x [where φ̂(x) is the smoothly varying phase
of the superconducting order parameter], −∂P̂/∂x is the
charge density, and [P̂(x), �̂(x′)] = 2ieδ(x − x′). Model (18)
is ill defined unless a short-distance regularization is specified.
This defines a short-distance cutoff length a. To match the
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lattice model (1) the short-distance scale should be taken
as a ∼ max{1, �s}; at this scale the parameters v and K of
Hamiltonian (18) are determined by Eq. (17) with K = g. The
parameter y is known in the limit C � Cg,

y ∼
√

g�3
s e−(8/π )g�s , (19)

with the exact value depending on the precise regularization
procedure, while for C � Cg one can say only that ln(1/y) ∼
g. Equation (19) can be understood by choosing a segment
x0 < x < x0 + a where the polarization is constant and treat-
ing the rest of the chain at x < x0 and x > x0 + a as external
voltage probes with polarization P (see Appendix B). Then,
integrating Eq. (18) over x between x0 and x0 + a, we obtain
the energy (yv/a) cos(πP/e), which can be interpreted as
the lowest Bloch band dispersion with P playing the role
of the quasicharge [28,30]. The instanton calculation of the
bandwidth [36,58–60], valid for �s � 1, gives Eq. (19).

It is possible to coarse grain the system by increasing
the cutoff a → ã > a and eliminating the modes with high
frequencies v/ã < ω < v/a. The coarse-grained system is
still described by Hamiltonian (18), but with renormalized
coefficients K and y. Their flow with increasing cutoff is
governed by the RG equations [35,57]:

dK

d ln a
= −αy2,

dy

d ln a
= (2 − K )y. (20)

Here α ∼ 1 is an unknown numerical factor, whose uncer-
tainty stems from that in the definition of the short-distance
cutoff a [since we have not specified the precise short-range
regularization procedure, the scale a is defined up to a nu-
merical factor, and so is the coefficient y at the cosine term
in Eq. (18)]. These RG equations should be integrated from
a = a0 ∼ max{1, �s} with the initial conditions K = g and
Eq. (19), up to a ∼ N on the superconducting side. On the
insulating side, the flow should be stopped at the soliton size
determined by the condition 4πKy ∼ 1 (see Appendix C). The
critical trajectory is given by

y(a) = y(a0)

ln(ea/a0)
, K − 2 =

√
α y(a0)

ln(ea/a0)
. (21)

As mentioned in the previous section, 〈d̂2〉 is determined
by the few lowest modes, so on the superconducting side and
at the transition itself, it can be found by using Hamiltonian
(18) with the cosine expanded to the harmonic order and
with renormalized parameters K, y corresponding to the scale
a ∼ N . Performing the standard harmonic calculation (see
Appendix C), at zero temperature we obtain

〈d̂2〉
(2eN )2

=
∞∑

m=1

4K/π4

(2m − 1)2
√

(2m − 1)2 + y(a ∼ N )
. (22)

On the critical trajectory (21), y(a ∼ N ) ∝ 1/ ln N while
K flows to 2, so 〈d̂2〉/(2eN )2 attains a universal value
of 7ζ (3)/π4 = 0.086 . . .. Therefore, in the superconducting
phase, 〈d̂2〉/(2eN )2 monotonously increases with N to some
limiting value exceeding 7ζ (3)/π4; in the insulating phase,
the flow turns downwards at some value of N which is
exponentially large in the distance to the critical point, and the
value of 〈d̂2〉/(2eN )2 at the downturn must be smaller than

C/Cg = 16

EJ/Eg = 0.45
EJ/Eg = 0.44
EJ/Eg = 0.42
EJ/Eg = 0.4
EJ/Eg = 0.45
EJ/Eg = 0.44
EJ/Eg = 0.42
EJ/Eg = 0.4

 d
 2
 /

(2
eN

)2

0.082

0.084

0.086

0.088

N
10 100

FIG. 4. Solid circles: N dependence of 〈d̂2〉/(2eN )2 for C/Cg =
16 (�s = 4) and different EJ/Eg: from top to bottom, 0.45, 0.44, 0.42,
0.4. The data were obtained with βEg = 4N , βEg/M = 1/4. Open
circles: the same data after subtraction of δN (see text for details). The
horizontal dashed line indicates the limiting critical value 7ζ (3)/π4.

7ζ (3)/π4. Generally, one can imagine four types of curves
〈d̂2〉/(2eN )2 versus N : (i) monotonously growing and satu-
rating to a limiting value above 7ζ (3)/π4, (ii) monotonously
growing and saturating to a limiting value below 7ζ (3)/π4,
(iii) turning downwards after reaching a maximum value
above 7ζ (3)/π4, and (iv) turning downwards after reaching
a maximum value below 7ζ (3)/π4. According to the scaling
arguments above, curves of types (i) and (iv) correspond to
superconducting and insulating phases, respectively, while
curves of types (ii) and (iii) are impossible in the scaling
region.

In Fig. 3, the curves for EJ/Eg = 0.92 and 0.88 fall into
cases (i) and (iv), respectively. The curve for EJ/Eg = 0.90
is uncertain, and larger N is needed to draw a definite con-
clusion. This determines the error bars of our procedure.
As a result, we obtain the critical value for C = 0, gc =
2.98 ± 0.03. This value is fully consistent with 2.97 ± 0.03
of Ref. [38]. Reference [37] gives gc = 3.024 with a statistical
error of ±0.004; at the same time, a systematic error of about
3% favoring the insulating phase was discussed in that paper,
making the result also consistent with ours. These values
are incompatible with 2.50 ± 0.08, where a minimum of the
ground-state fidelity was observed in Ref. [39].

C. Behavior at large �s

Upon increasing �s, one needs larger and larger sizes to
resolve the asymptotic behavior at N → ∞. In Fig. 4 we
show the N dependence of 〈d̂2〉/(2eN )2 for a few values
of EJ/Eg at �s = 4 (solid circles). This dependence shows
a contribution on top of the slow Kosterlitz-Thouless scal-
ing, which prevents us from applying directly the method
discussed in the preceding section. This contribution appears
to be noncritical, so its origin can be understood using the
superconducting expression (14): At finite C, it contains a
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subleading correction ∼(�s/N )2 ln(N/�s). Let us denote by
δN the difference between expression (14) at finite N and its
limit at N → ∞ for EJ = (2/π )2Eg (giving g = 2). Assuming
different contributions to scaling are additive near the critical
fixed point, we simply subtract δN from the data. The result
is shown in Fig. 4 by the open circles. The corrected data are
rather flat, so we determine the critical value of EJ as the one
giving 〈d̂2〉/(2eN )2 = 7ζ (3)/π4 (in practice, we interpolate
from the four sets shown in Fig. 4). This gives EJ/Eg = 0.444
for �s = 4. Other points in Fig. 1 with �s > 1 are also obtained
using this procedure.

At �s → ∞, the critical value gc → 2. How is this asymp-
tote approached? Looking at Eqs. (19) and (21), one could
think that this approach is exponential in �s [16]. However,
the �s dependence in Fig. 1 is clearly slower than exponential.
This points towards another contribution to renormalization of
K not accounted for by the Kosterlitz-Thouless RG where K
is renormalized by bound vortex-antivortex pairs.

If one goes beyond the harmonic approximation in Hamil-
tonian (6) and expands the Josephson term to the next order,
1 − cos θ̂ j ≈ θ̂2

j /2 − θ̂4
j /24, the harmonic mode frequencies

are shifted by the Kerr effect [40,41]. At zero temperature,
averaging −θ̂4

j /24 over the zero-point oscillations for a single
junction produces an effective correction to the Josephson
energy, δEJ = −(1/4)

√
EJ (2e)2/C, which can be translated

into a correction to the initial condition for K : instead of
K = g, it should be K = g − π/(8�s). The transition occurs
when the renormalized K is equal to 2, which gives the critical
value

gc = 2 + π

8�s
+ O(1/�2

s ). (23)

This expression is plotted in Fig. 1 by the dashed line and
matches remarkably well the QMC result down to �s ≈ 1. We
emphasize that this Kerr renormalization is a short-distance
effect and is not captured by the Kosterlitz-Thouless RG.

IV. CONCLUSIONS

We have developed an imaginary path integral QMC
scheme in the charge representation which can efficiently han-
dle quantum phase models with arbitrary electrostatic interac-
tions. We applied this method to the superconductor-insulator
transition in a dissipationless and disorder-free Josephson
junction chain characterized by two capacitances, where the
Coulomb interaction between the charges decays exponen-
tially with distance. We have benchmarked our method with
the known results for the special case of contact interaction,
where the chain is equivalent to the Bose-Hubbard model at
large integer filling. At screening lengths �s � 1, the transition
line is governed by short-distance renormalizations due to the
weak Kerr nonlinearity of each junction, not captured by the
Kosterlitz-Thouless renormalization group.
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APPENDIX A: JOSEPHSON JUNCTION RING

Closing the chain into a ring corresponds to adding a
junction between islands n = N and n = 0. This introduces no
new degrees of freedom, but (i) it modifies four elements of
the capacitance matrix, C00 = CNN = Cg − 2C, C0N = CN0 =
−C, and (ii) it introduces an extra term in the Josephson part
of the Hamiltonian, EJ [1 − cos(φ̂N − φ̂0 − ϕ)], if the ring is
pierced by a magnetic flux ϕ (in units of the flux quantum
divided by 2π ). In the variables θ j , which are defined in the
same way as for the open chain, the Josephson part of the
Hamiltonian becomes

ĤJ =
N−1/2∑
j=1/2

EJ (1 − cos θ̂ j )

+ EJ [1 − cos(θ̂1/2 + . . . + θ̂N−1/2 − ϕ)]. (A1)

When constructing the path integral, one can no longer eval-
uate the matrix element of e−εĤJ at different junctions inde-
pendently. Still, it can be calculated by introducing additional
decoupling variables:

2π∫
0

N−1/2∏
j=1/2

dθ j

2π
ei

∑
j (l j−l ′j )θ j

× exp

⎡
⎣εEJ

∑
j

cos θ j + εEJ cos

⎛
⎝∑

j

θ j − ϕ

⎞
⎠

⎤
⎦

=
∞∑

k=−∞

2π∫
0

dϑ

2π

N−1/2∏
j=1/2

dθ j

2π
ei

∑
j (l j−l ′j )θ j

× eik(θ1/2+...+θN−1/2−ϕ−ϑ )

× exp

⎡
⎣εEJ

∑
j

cos θ j + εEJ cos ϑ

⎤
⎦

=
∞∑

k=−∞
eikϕ Ik (εEJ )

∏
j

Il j−l ′j−k (εEJ ). (A2)

Then, instead of Eqs. (10) we have

Tr{e−βĤ } = e−β(N+1)EJ lim
M→∞

∞∑
{l jm,km}=−∞

WCW ′
J eiϕ

∑
m km ,

(A3a)

W ′
J =

M−1∏
m=0

Ikm (βEJ/M )
N−1/2∏
j=1/2

Il jm−l j,m+1−km (βEJ/M ).

(A3b)
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This expression, formally as good as Eqs. (10), is much less
convenient from the practical point of view. First, the sum-
mand is no longer positive due to the factors eikmϕ , which leads
to strong cancellations (sign problem). Second, we do not see
an efficient way to sample configurations: since the variables
km appear in many Bessel functions, even a small modification
of the configuration may lead to a strong modification of the
weight, resulting in a low acceptance probability.

APPENDIX B: CHARGE STIFFNESS

To define the charge stiffness, one should choose two
arbitrary islands n1, n2 and modify the Coulomb part of
Hamiltonian (1) as

Ĥκ =
N∑

n,n′=0

C−1
nn′

2
(q̂n − κn)(q̂n′ − κn′ )

+
N∑

n=1

EJ [1 − cos(φ̂n − φ̂n−1)], (B1)

with κn = κδnn1 − κδnn2 . The ground-state energy in the Q =
0 sector E0(κ ) is a periodic function of the offset charge κ

with period 2e since q̂n1 , q̂n2 can be shifted by ±2e and still
conserve the total charge. The charge stiffness is defined as

Kn1n2 = −∂2E0

∂κ2

∣∣∣∣
κ=0

(B2)

and can be viewed as the inverse capacitance of the system
between the two points n1, n2. Using perturbation theory in κ ,
definition (B2) can be identically rewritten in the form of an
imaginary-time correlator, perfectly suitable for calculation in
our QMC scheme:

Kn1n2 = C−1
n1n1

+ C−1
n2n2

− C−1
n1n2

− C−1
n2n1

− lim
β→∞

∫ β

0
dτ

〈
eτ ĤQ=0V̂n1n2 e−τ ĤQ=0V̂n1n2

〉
. (B3)

where

V̂n1n2 = ∂Ĥ

∂κ

∣∣∣∣
κ=0

=
N∑

n′=0

(
C−1

n1n′ − C−1
n2n′

)
q̂n′ (B4)

is nothing but the voltage between islands n1 and n2. Thus,
it is helpful to think of these two sites as attached to voltage
probes. Naively, one might expect that at N → ∞ the charge
stiffness should be finite in the insulating phase and vanish in
the superconducting phase.

Let us take C = 0 and two values of EJ/Eg = 0.85, 1.0,
corresponding to the insulating and superconducting phases,
respectively. Fixing n2 = N − n1, we show the calculated
charge stiffness Kn1n2 in the natural units of 1/Cg and different
chain lengths N in Fig. 5. First, we observe that the stiffness
remains finite and relatively large when the voltage probes
are attached to the ends of the chain, n1 → 0, n2 → N . More
puzzling, even when the voltage probes are placed in the bulk
of the chain, Kn1n2 tends to a small but finite value as N → ∞.

To clarify these results, let us recall that the ground-state
energy E0(κ ) can also be viewed as the dispersion of the
lowest Bloch band. Indeed, if external wires are attached

FIG. 5. Dimensionless charge stiffness CgKn1n2 with n2 = N −
n1 for two values of EJ/Eg = 0.85, 1.0 (top and bottom panels,
respectively) and different chain lengths N at C = 0.

to islands n1 and n2, the corresponding phases φn1 , φn2 be-
come noncompact (that is, all values on the whole real
axis R become physically distinct). In other words, the
{φn} space instead of a (N + 1)-dimensional torus TN+1

becomes R2 ⊗ TN−1. When passing from (φ0, . . . , φN ) to
(θ1/2, . . . , θN−1/2,�), the overall phase � becomes noncom-
pact, conjugate to the continuous total charge Q, which is still
conserved since the Hamiltonian does not depend on �. The
remaining (θ1/2, . . . , θN−1/2) lie on an N-dimensional cylinder
R ⊗ TN−1, with the noncompact direction corresponding to

φn2 − φn1 =
n2−1/2∑

j=n1+1/2

θ j .

The Josephson energy is still a periodic function of all θ j ,
so along this noncompact direction the Hamiltonian has a
discrete translation symmetry. Then κ can be viewed as the
quasicharge quantum number arising by virtue of the Bloch
theorem, while Hamiltonian (B1) is precisely the Hamiltonian
for the periodic part of the Bloch function. The charge stiff-
ness is just the band curvature at the bottom, and Eq. (B3) is
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the analog of the k · p perturbation theory, a common tool in
the band theory of solids. If the voltage probes are viewed as
one-dimensional wires in which a polarization P is created,
the offset charges κn1,n2 = ±κ entering Hamiltonian (B1) can
be associated with the boundary charges of the polarized
wires.

For a finite-length chain with EJ being sufficiently large,
the phase is almost classical, the lowest Bloch band is sinu-
soidal, and its small bandwidth is determined by tunneling
between two neighboring minima of the Josephson energy.
For example, one can consider the minimum with all θ j = 0
and the neighboring one with θ j = 2πδ j j0 , n1 < j0 < n2 (note
that n2 − n1 possible values of j0 correspond to a single
point on the R ⊗ TN−1 cylinder). Tunneling between neigh-
boring minima is called a quantum phase slip, and the Bloch
bandwidth can be calculated using the instanton approach
[36,58–61]. The bandwidth corresponds to the amplitude of a
quantum phase slip at any junction between the voltage probes
n1, n2. Equivalently, it is given by the density of vortices
of the classical XY model in the imaginary-time direction,
whose spatial position is between the voltage probes. Naively,
one would expect Kn1n2 to be finite in the insulating phase
(characterized by a finite density of unpaired vortices) and to
decay as Kn1n2 ∝ |n1 − n2|/NK in the superconducting phase
(where each vortex has a large self-energy ∝ 1/NK ).

First, in Fig. 5 we observe that the stiffness remains finite
and relatively large when the voltage probes are attached to
the ends of the chain, n1 → 0, n2 → N . This happens because
the action of a phase slip occurring near one of the chain ends
is not proportional to ln N but is cut off by the distance to the
end. This effect was discussed in Ref. [61] for a superconduct-
ing wire. Thus, there is a finite density of unpaired vortices
near the chain ends even in the superconducting phase.

Second, even when the probes are placed in the bulk of the
chain, Kn1n2 tends to a small but finite value as N → ∞. This
happens because in addition to the single-vortex contribution
to the phase slip amplitude, there is another contribution due
to bound vortex-antivortex pairs where the vortex resides on
one side of a voltage probe and the antivortex resides on the
on the other side, and thus, the phase 2π is accumulated on
the probe as τ goes through the pair. This pair contribution
to the amplitude is subleading in the vortex fugacity and thus
quickly decreases with increasing EJ , but it does not scale with
N or with the probe separation |n1 − n2| (except for small
|n1 − n2| ∼ 1, which corresponds to the size of the bound
vortex-antivortex pair).

Thus, for a given N , one can fit Kn1n2 for |n1 − n2| suf-
ficiently far from N as a function of |n1 − n2| by a linear
function,

Kn1n2 = Y0 + |n1 − n2|Y1, (B5)

and try to extract Y1(N ) ∝ 1/NK in the superconducting phase
and Y1(N ) ∝ 1/(N2 ln N ) at the transition. However, the un-
certainty of the thus obtained exponent turns out to be too
high. We plot N2Y1(N ) as a function of EJ for different N
in Fig. 6. Ideally, one would hope to see a family of smooth
curves, which become steeper as N increases, all crossing at
one point, the critical value of EJ . But the data are too noisy
to be useful in practice.

FIG. 6. The rescaled slope N2Y1(N ) of the charge stiffness
[Eq. (B5)] as a function of EJ/Eg for different N .

Similar behavior was observed in Ref. [62] for a Zp clock
model (a discrete version of the XY model with allowed
angles being multiples of 2π/p), where the phase stiffness re-
mained finite in the disordered phase. There, the problem was
solved by looking at the free-energy change upon a finite twist
instead of the infinitesimal one. In our case, looking at the
whole Bloch band instead of just its curvature at the bottom
does not help since the vortex-antivortex pairs determine the
whole bandwidth. We have checked numerically that the band
is sinusoidal, so the curvature at the bottom is representative
of the whole band.

APPENDIX C: HARMONIC CALCULATION

To handle the harmonic part of Hamiltonian (6),

Ĥ (2)
Q=0 =

N−1/2∑
j, j′=1/2

Dj j′

2
P̂j P̂j′ + EJ

2

N−1/2∑
j=1/2

θ̂2
j , (C1)

we need to diagonalize the dipole-dipole matrix (7). Let us
start from the tridiagonal capacitance matrix, which can be
written in terms of its eigenvectors unk and eigenvalues Ck as

Cnn′ =
N∑

k=0

Ckunkun′k, Ck = Cg + 4C sin2 μk

2
, (C2a)

unk =
√

2 − δk0

N + 1
cos[μk (n + 1/2)], μk ≡ πk

N + 1
. (C2b)

Inverting Cnn′ and using the definition (7), we straightfor-
wardly obtain

Dj j′ =
N∑

k=1

Dkū jk ū j′k, Dk = 4 sin2(μk/2)

Cg + 4C sin2(μk/2)
, (C3a)

ūnk =
√

2

N + 1
sin[μk ( j + 1/2)]. (C3b)
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This gives the harmonic Hamiltonian in terms of the normal-
mode creation and annihilation operators b̂†

k, b̂k :

Ĥ (2)
Q=0 =

N∑
k=1

ωk

(
b̂†

kb̂k + 1

2

)
, ωk =

√
(2e)2DkEJ , (C4a)

θ̂ j =
∑

k

[
(2e)2Dk

4EJ

]1/4

ū jk (b̂k + b̂†
k ), (C4b)

P̂j = 2ie
∑

k

[
EJ

4(2e)2Dk

]1/4

ū jk (b̂k − b̂†
k ). (C4c)

Noting that

N−1/2∑
j=1/2

ū jk =
√

2

N + 1

1 − (−1)k

2
cot

μk

2
,

we arrive at Eq. (14) by a straightforward calculation.

For Hamiltonian (18) with the cosine expanded to
quadratic order, we have

Ĥ (2)
sG =

N∑
k=1

ω̃k

(
b̂†

kb̂k + 1

2

)
, ω̃k =

√
v2μ2

k + 4πKy
v2

a2
,

(C5a)

�̂(x) =
∑

k

√
πω̃k

(N + 1)vK
(b̂k + b̂†

k ) sin μkx, (C5b)

P̂(x) = 2ie
∑

k

√
vK

(N + 1)πω̃k

(
b̂k − b̂†

k

)
sin μkx. (C5c)

Here we used the zero-current boundary conditions, P̂(x =
0) = P̂(x = N + 1) = 0. The gap in ω̃k determines the soliton
size a/

√
4πKy. Evaluation of 〈d̂2〉 gives

〈d̂2〉
(2e)2

=
∞∑

k=1

1 − (−1)k

2

4vK

(N + 1)πω̃kμ
2
k

coth
βω̃k

2
. (C6)
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