
PHYSICAL REVIEW B 101, 024515 (2020)

Critical scaling and aging near the flux-line-depinning transition
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We utilize Langevin molecular dynamics simulations to study dynamical critical behavior of magnetic flux
lines near the depinning transition in type-II superconductors subject to randomly distributed attractive point
defects. We employ a coarse-grained elastic line Hamiltonian for the mutually repulsive vortices and purely
relaxational kinetics. In order to infer the stationary-state critical exponents for the continuous nonequilibrium
depinning transition at zero temperature T = 0 and at the critical driving current density jc, we explore two-
parameter scaling laws for the flux lines’ gyration radius and mean velocity as functions of the two relevant
scaling fields T and j − jc. We also investigate critical aging scaling for the two-time height auto-correlation
function in the early-time nonequilibrium relaxation regime to independently measure critical exponents. We
provide numerical exponent values for the distinct universality classes of noninteracting and repulsive vortices.
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I. INTRODUCTION

The flow of magnetic flux lines in type-II superconductors
in the presence of fixed attractive pinning centers represents
a paradigmatic example of coherent structures driven through
disordered media. Such systems are of prime interest from a
theoretical point of view since they exhibit a rich variety of
both thermodynamic phases and nonequilibrium steady states
that result from the competing energy scales associated with
the intrinsic elastic rigidity, mutual interactions, quenched
disorder, thermal fluctuations, and external driving current.
From an experimental/technological standpoint they are of
paramount importance as well, since they emerge in a highly
diverse array of physical scenarios, e.g., in directed polymers,
magnetic flux vortices, charge density waves (CDWs), mag-
netic domain walls, moving Wigner crystals, and driven mem-
brane sheets [1]. Indeed, the nonlinear dynamics of vortex
motion in disordered type-II superconductors has been studied
extensively [2–8] through numerical simulations but also an-
alytically by means of functional renormalization group tech-
niques [9–12]. In 1985 Fisher posited via phenomenological
arguments that the depinning of sliding CDWs may be re-
garded as a dynamic critical phenomenon where driving force
acts as the control parameter and velocity as the associated
order parameter [13], an idea that has since been successfully
extended to several domains beyond CDWs [9,14–19]. Ample
evidence for elastic critical depinning has been found both in
experiments [20–27] and in numerical studies [28–37], which
all observed clear signatures for a continuous (second-order)
dynamical phase transition at a critical value of the external
drive.

To mention only a few important recent investigations
of the critical depinning of vortices in disordered type-II
superconductors, Luo and Hu utilized molecular dynamics
simulations to study the dynamical scaling of velocity-force

curves for flux lines in a three-dimensional embedded space
(d = 3), obtaining the critical exponents β and δ in both the
weak and strong pinning regimes [38]. Fily et al. studied
depinning for two-dimensional vortex lattices (d = 2) and
determined β and δ for the scaling relation that governs the
velocity-force behavior near the depinning transition [1]. Di
Scala et al. computed critical scaling exponents including the
growth exponent ν for the elastic depinning of vortices in
two dimensions [39]. Bag et al. recently determined critical
scaling exponents from experimental data they obtained for
2H-NbS2 single crystals [40]. The two-dimensional critical
depinning dynamics, including nonequilibrium relaxation and
aging scaling, of skyrmion topological defects in disordered
magnetic films has been investigated by Xiong et al. [41]
For a comprehensive up-to-date (until 2016) review article on
depinning and nonequilibrium phases in various systems, we
refer to Ref. [42].

In this present work, we employ an elastic line model
to study critical behavior near the depinning transition for
vortices in the presence of weak attractive random quenched
disorder (point defects) in a three-dimensional system (d = 3)
with a two-dimensional displacement vector (N = 2) [43–48].
We perform finite-temperature scaling on both steady-state
velocity and radius of gyration data and thereby obtain the
stationary critical scaling exponents β, δ, and ν that char-
acterize the depinning process as a continuous second-order
phase transition at zero temperature, finding β to be in good
agreement with experimental values. In addition, we probe the
nonequilibrium aging dynamics in the system by quenching
vortices from the high-drive moving lattice state to the critical
depinning regime and studying the ensuing two-time vortex
line displacement autocorrelations to compute the aging ex-
ponent b, dynamic exponent z, autocorrelation exponent λC ,
and roughness exponent ζ in the system.
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II. MODEL AND SIMULATION DESCRIPTION

We model magnetic flux lines in type-II superconductors
as mutually repulsive elastic lines in the extreme London
limit [49,50] with the effective Hamiltonian or free energy
functional

H[ri] =
N∑

i=1

∫ L

0
dz

[
ε̃1

2

∣∣∣∣dri(z)

dz

∣∣∣∣
2

+ UD(ri(z))

+ 1

2

N∑
j �=i

V (|ri(z) − r j (z)|) − Fd · ri(z)

]
. (1)

Here ri(z) represents the xy position of the ith flux line
(one of N = 16), at height z. Model parameters have been
chosen to closely match the material properties of YBCO.
The elastic line stiffness or local tilt modulus is given
by ε̃1 ≈ �−2ε0 ln(λab/ξab) where �−2 = Mab/Mc = 1/25 de-
notes the anisotropy parameter and ε0 ≈ 1.92 × 10−6 erg/cm
is the elastic line energy per unit length. λab ≈ 1200 Å is
the London penetration depth and ξab ≈ 10.5 Å is the co-
herence length, in the ab crystallographic plane. The in-
plane repulsive interaction between any two flux lines is
given by V (r) = 2ε0K0(r/λab), where K0 denotes the zeroth-
order modified Bessel function. It effectively serves as a
logarithmic repulsion that is exponentially screened at the
scale λab. The pinning sites are modeled as smooth poten-
tial wells UD(r, z) = −∑ND

α=1
b0
2 p[1 − tanh (5 |r−rα |−b0

b0
)]δ(z −

zα ), where ND = 1116 indicates the number of pinning sites,
p = 0.05ε0 is the pinning potential strength, b0 = 35 Å is the
width of the potential well, while the vector rα and coordinate
zα , respectively, represent the in-plane and vertical positions
of pinning site α. The Lorentz force exerted on the flux lines
by an external electrical current density j is modeled in the
system as a tunable, spatially uniform drive Fd = |j × φ0B/B|
in the x direction where φ0 = hc/2e represents the magnetic
flux quantum and B/B is a unit vector pointing in the direction
of the magnetic flux. All lengths are expressed in units of b0

while energies are expressed in units of ε0b0.
We enforce periodic boundary conditions in the x and y

directions and free boundary conditions in the z direction.
The system size is X × Y × L = 314b0 × 272b0 × 100b0; the
ratio of X to Y is set to 2/

√
3 to ensure that the flux lines

equilibrate to a periodic hexagonal Abrikosov lattice in the
absence of defects.

We simulate the dynamics of the model by discretizing the
Hamiltonian (1) into L = 100 layers along the z direction and
using it to obtain coupled overdamped Langevin equations

η
∂ri(t, z)

∂t
= −δH[ri(t, z)]

δri(t, z)
+ fi(t, z),

which are subsequently solved numerically. Here η =
φ2

0/2πρnc2ξ 2
ab denotes the Bardeen-Stephen viscous drag pa-

rameter, where ρn ≈ 500 μ�m represents the normal-state
resistivity of YBCO near Tc [6,51]. This results in the sim-
ulation time step being defined by the fundamental temporal
unit t0 = ηb0/ε0 ≈ 18 ps. We model the fast, microscopic de-
grees of freedom of the surrounding medium as uncorrelated
Gaussian white noise fi,z(t ) with vanishing mean 〈fi,z(t )〉 = 0.

Furthermore, these stochastic forces obey the Einstein relation
〈fi,z(t ) · f j,z′ (s)〉 = 4ηkBT δi jδzz′δ(t − s) which ensures that the
system relaxes to thermal equilibrium with a canonical proba-
bility distribution P[ri,z] ∝ exp(−H[ri,z]/kBT ) in the absence
of any external current. The temperature in the simulations is
set to kBT/ε0b0 = 0.001 (T ≈ 5 K) and lower.

III. MEASURED QUANTITIES

We directly measure four quantities of interest in our model
system: The mean radius of gyration rg =

√
〈(ri(z) − 〈ri〉z )2〉

is the standard deviation of the lateral positions ri(z) of the
points constituting the ith flux line, averaged over all the lines.
Hence rg represents a measure of the overall roughness of the
vortex lines in the sample. Here 〈. . .〉z indicates an average
over all layers z of a given flux line, while 〈. . .〉 denotes an
average over layers z, over all vortex lines i, and over different
realizations of disorder and noise. The mean vortex velocity
in the direction of the drive (x direction) is given by the x
component of the vector v = 〈dri(z)/dt〉. We obtain rg and
v as functions of drive Fd in the steady state by randomly
placing 16 straight flux lines in the system and immediately
subjecting them to thermal fluctuations at temperature T and
the desired drive strength Fd . The lines are allowed to relax
in this constant temperature-drive bath for 100 000 t0, until
a stationary regime is reached (see Fig. 1 for snapshots). At
this point, we start measuring rg and v every 100 time steps, a
duration larger than the correlation times in the system. We
perform 1000 such measurements and record their average
for each observable. We simulate 10 independent realizations
and perform an ensemble average. Between the temporal and
ensemble averaging, each data point represents a combined
mean over 10 000 independent values.

The third set of quantities measured are normalized two-
time vortex “height,” i.e., transverse flux line displacement
autocorrelation functions

C(t, s) = 〈(ri,z(t ) − 〈ri,z(t )〉z )(ri,z(s) − 〈ri,z(s)〉z )〉
〈(ri,z(s) − 〈ri,z(s)〉z )2〉

that quantify how correlated the lateral positions ri,z of the
elements of a line relative to the mean lateral line position
〈ri,z〉z at the present time t are to their values at a past
time s; they measure the time evolution of local transverse
thermal vortex fluctuations. We use height autocorrelations to
investigate the existence and nature of physical aging in our
system. A system shows aging when a dynamical two-time
quantity displays slow relaxation and the breaking of time
translation invariance [52]. Additionally, in a simple aging
scenario, the two-time quantity satisfies dynamical scaling
and obeys the general scaling form

C(t, s) = s−b fC (t/s) , (2)

where fC is a scaling function that follows the asymptotic
power law fC (t/s) ∼ (t/s)−λC/z as t → ∞; b is called the
aging scaling exponent, λC the autocorrelation exponent, and
z is the dynamical scaling exponent.

In this study, we measure height autocorrelations following
drive quenches. A drive quench is performed by first taking
the system to a steady state (as described above) at some
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FIG. 1. Simulation snapshots of the noninteracting flux line sys-
tem in the (a) pinned (Fd = 0ε0b0), (b) critical (Fd = 0.0095ε0b0),
and (c) moving (Fd = 0.03ε0b0) stationary regimes at temperature
T = 0.0009ε0b0/kB. The snapshots represent a side view of the
system, i.e., a projection of the three-dimensional system onto the
xz plane, with drive Fd directed in the positive x direction.

initial drive strength Fd followed by an instantaneous change
(quench) of the drive strength to the desired final value. Fol-
lowing the quench, we wait for some waiting time s before
taking a snapshot of the system and proceeding to measure
C(t, s) with respect to the snapshot at times t > s; this is
repeated for several waiting times. All results are averaged
over at least 10 000 realizations of disorder and noise. Finally,
we extract the characteristic system correlation time τ by

measuring the time taken for C(t, s) (for arbitrary s) to fall
from its value 1 at t = s to 0.5 at later time t .

IV. STATIONARY CRITICAL SCALING

As vortex depinning from attractive point defects repre-
sents a zero-temperature nonequilibrium continuous phase
transition [13], the critical scaling of the v−Fd curves above
but near the depinning threshold Fd = Fc should be described
by a power law v(T = 0, f > 0) ∼ f β where f = (Fd −
Fc)/Fc is the reduced force. More generally, the critical be-
havior in the (T, f ) control parameter plane is captured by the
scaling ansatz

v(T, f ) = T 1/δS(T −1/βδ f ) , (3)

where S(x) is a scaling function that satisfies the conditions
S(x → ∞) ∼ xβ and S(x = 0) = const [1,13,38,53–55]. Tak-
ing the limit T → 0+ in (3) yields the prescribed power law
for v as function of f at zero temperature, while setting f = 0
yields the algebraic temperature dependence v(T > 0, f =
0) ∼ T 1/δ .

We argue that the radius of gyration rg plays the role of
the critical correlation length ξ in the system, and hence upon
approaching the transition f → 0+ should diverge according
to rg(T = 0, f > 0) ∼ f −ν [56]. As with the scaling of the
v− f curves, we postulate the analogous two-parameter scal-
ing ansatz

rg(T, f ) = T −ν/βδR(T −1/βδ f ) , (4)

with R(x → ∞) ∼ x−ν and R(x = 0) = const. Taking T →
0+ yields the required v− f power-law and setting f = 0
yields the scaling relation rg(T > 0, f = 0) ∼ T −ν/βδ . Fi-
nally, the correlation time τ is expected to diverge as τ ∼ f −νz

at T = 0 near the critical point f → 0+ [56].
To numerically determine the reduced drive f , we first find

the zero-temperature critical drive Fc via Eq. (3): v should
exhibit power law behavior as a function of T when f = 0
(Fd = Fc). Therefore, on a double-logarithmic plot, the v−T
curves for Fd < Fc are concave, those for Fd > Fc in contrast
are convex, and at the critical drive Fc = (0.013 ± 0.0005)ε0

the curves are approximately linear for the interacting system
(shown in Fig. 2). From the slope and via Eq. (3), we find
δ = 5.6 ± 0.2. Identical inflection analysis of v−T curves for
noninteracting flux lines yields Fc = (0.015 ± 0.0005)ε0 and
δ = 4.1 ± 0.1.

We show the steady-state velocity and radius of gyration
as a function of drive in Fig. 3. Note that Fc is lower for the
interacting system than the noninteracting one; this is consis-
tent with the enabling role played by intervortex repulsions
in the depinning process that facilitates collective unbinding
of correlated flux line clusters. With these estimated critical
depinning forces Fc, we calculate the reduced drives f and
check if v and r scale, respectively, as per Eqs. (3) and (4).
Employing global optimization methods [57,58], we have
estimated the ensuing numerical values for the stationary
critical exponents β, δ, and ν that provide optimal scaling
of the temperature- and drive-dependent observables v and
rg, thereby facilitating convincing data collapse onto single
master curves as demonstrated in Fig. 4.
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FIG. 2. Velocity-temperature (v−T ) curves for repulsive vortex
lines taken for various values of the drive Fd , with the curve at critical
drive Fc = (0.013 ± 0.0005)ε0 indicated by a solid line.

For the interacting vortex system, the optimal values of
the exponents are found to be β = 0.43 ± 0.04, δ = 5.6 ±
0.2, and ν = 0.98 ± 0.15 [Figs. 4(b) and 4(d)]. Our β value
shows good agreement with experiment (Table I); however,
our estimate for δ markedly differs from the value measured
experimentally in Ref. [40]. In order to ascertain that our
numerical data properly pertain to the asymptotic critical
scaling regime, we have extracted the value of the product
βδ using two distinct, complementary methods: (i) by scaling
the v− f curves for different temperatures giving βδ = 2.41 ±
0.24, and (ii) by scaling the rg− f curves yielding βδ = 2.5 ±
0.2; the two independent estimates show excellent agreement
within our statistical and systematic error bars.

Likewise, we have evaluated the critical scaling expo-
nents that yield excellent finite-temperature scaling for the
noninteracting system to be β = 0.33 ± 0.03, δ = 4.1 ± 0.1,
and ν = 0.74 ± 0.13 [Figs. 4(a) and 4(c)]. The values of
βδ estimated, respectively, from the v− f and rg− f scaling
are βδ = 1.35 ± 0.11 and βδ = 1.4 ± 0.1, which also agree
nicely within our numerical errors.

Consequently, in both the noninteracting and interacting
flux line systems, the fact that our estimates of βδ for scaling
the rg− f curves using the ansatz (4) are in agreement with
the values obtained by scaling the v− f curves with the
extensively verified Eq. (3), in conjunction with the quality of
data collapse for both scaling procedures, gives us confidence
that we are properly accessing the asymptotic critical scaling
regimes in either system. The discrepancies of our critical
exponent values with those obtained in Ref. [38] might be
caused by the lower number of 20 layers along the magnetic
field direction used in that study compared with our L = 100;
perhaps for that smaller simulation domain thickness, the

FIG. 3. Steady-state (a), (b) velocity v (in units of b0/t0) and (c),
(d) radius of gyration rg (in units of b0) as functions of driving force
Fd (in units of ε0) for (a), (c) noninteracting and (b), (d) interacting
flux lines. Each quantity is measured at five different temperatures T
(values listed in units of ε0b0/kB).

FIG. 4. Steady-state data from Fig. 3 replotted by means of the
two-parameter scaling ansätze (3) and (4) with stationary critical
exponents β, δ, and ν. Panels (a), (c) show results for noninteracting
vortices, while (b), (d) represent the data for repulsively interacting
flux lines. Panels (a), (b) show scaled velocities v for five different
temperatures T (in units of ε0b0/kB) as functions of scaled reduced
drive f , and panels (c), (d) display scaled gyration radii rg for the
same temperatures, also as functions of f .
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TABLE I. Stationary critical scaling exponents for vortex depinning observed in several available numerical simulation and experimental
studies.

Source d βδ β δ ν

Luo and Hu [38] (simulation) 3 1.0 ± 0.019 0.754 ± 0.010 1.326 ± 0.018
Fily et al. [1] (simulation) 2 1.73 ± 0.27 1.30 ± 0.10 1.33 ± 0.18
Di Scala et al. [39] (simulation) 2 1.04 ± 0.21 0.29 ± 0.03 3.57 ± 0.64 1.04 ± 0.04
Bag et al. [40]
(experiment; averaged results) 3 1.01 ± 0.06 0.41 ± 0.02 2.47 ± 0.08
This study: noninteracting 3 1.35 ± 0.11 0.33 ± 0.03 4.1 ± 0.10 0.74 ± 0.13

interacting 3 2.41 ± 0.24 0.43 ± 0.04 5.6 ± 0.20 0.98 ± 0.15

ultimate crossover to the two-dimensional scaling limit masks
the asymptotic exponent values.

V. CRITICAL DYNAMICS AND AGING SCALING

In addition to finite-temperature critical scaling of one-time
quantities near the depinning transition, we have studied the
nonequilibrium relaxation of our flux line model systems
following a drive quench from the moving state to the critical
depinning regime. Investigating the two-time vortex height
or transverse displacement autocorrelation function allows
us to determine the associated dynamical and aging scaling
exponents.

We begin by identifying the drive strength Fm correspond-
ing to the maximum steady-state radius of gyration for each
temperature T [Figs. 3(c) and 3(d)]. As explored in the
preceding section, the gyration radius represents a good proxy
for correlation length in the system, and it is reasonable
to expect that its peak value must lie within the depinning
drive regime. For critical quenches, we initially prepare the
system in a moving nonequilibrium steady state at high drive
Fd = 0.035ε0 at the desired temperature T . Subsequently we
suddenly switch to the depinning crossover drive Fm(T ) and
start measuring two-time height autocorrelations C(t, s) as
the system relaxes from the quench over time. We perform
these critical quench measurements for five different tem-
peratures: T = 0.0005, 0.0006, 0.0007, 0.0008, and 0.0009
(values listed in units of ε0b0/kB). When we plot the height
autocorrelations C(t, s) against the time difference t − s for
different waiting times (s = 26t0, 27t0, and 28t0), we see clear
breaking of time translation invariance [Figs. 5(a) and 5(b)],
the first indication of physical aging. The data are found
to dynamically scale [Figs. 5(c) and 5(d)] according to the
full-aging ansatz (2). The scaled autocorrelations collapse on a
master curve that appears to be linear on a double-logarithmic
scale when plotted against t/s. This implies that the scaling
function fC varies algebraically with t/s, indicating that the
flux lines undergo simple aging after a critical quench. For

long times, the master curve ultimately decays as a power law
(t/s)−λC/z where λC and z are, respectively, the autocorrelation
and dynamic exponents.

We have obtained excellent dynamical scaling collapse
following critical drive quenches for our flux line system
with and without vortex interactions for all five temperatures
considered. Representative results for T = 0.0005ε0b0/kB are
shown in Fig. 5. Both in the absence or presence of repulsive
interactions, the values of λC/z and b were found to agree
(within statistical and systematic error bars) across all temper-
atures as seen in panels (e), (f), (g), and (h) of Fig. 5. Indeed, in
the critical scaling regime, at temperatures sufficiently close to
zero and for s � t , one expects the aging scaling exponents to
be universal [59–64]. The observed universality of the aging
scaling exponents for the temperatures considered here thus
further supports the hypothesis of vortex depinning being
a critical phenomenon (at zero temperature). Our extracted
exponent values, averaged over the five different temper-
atures, are stated in Table II. Correlations for interacting
vortices decay slower (λC/z = 0.43 ± 0.03) than they do for
noninteracting, independent flux lines (λC/z = 0.61 ± 0.02)
indicating that repulsive vortex-vortex interactions facilitate
the formation of correlated vortex regions and slow down the
temporal relaxation of these collective deformations.

In order to obtain the dynamic critical exponent z, we
first attempted to use a finite-temperature scaling ansatz as
in our measurements of the static exponents β and ν. This
approach failed, however, most likely on account of our not
being able to get sufficiently close to the critical drive during
the quenches. We then used an alternative method to evaluate
z which was to compute finite-temperature values of z for
multiple temperatures (Fig. 6) in the following manner: For a
given temperature T , we quenched moving systems to several
drives f > 0 near f = 0 and computed the corresponding
correlation times τ ; i.e., the half-life of C(t, s = 128t0). Since
τ ∼ f −νz, and with ν previously determined, we could thus
infer z. We pursued this computation for six temperatures T =
0.0005, 0.0006, 0.0007, 0.0008, 0.0009, and 0.001 (in units

TABLE II. Critical aging and dynamical scaling exponents describing the nonequilibrium relaxation of vortices following critical drive
quenches.

b λC/z z λC ind ζind

Noninteracting vortices 0.56 ± 0.03 0.61 ± 0.02 1.39 ± 0.16 0.85 ± 0.10 0.65 ± 0.24
Interacting flux lines 0.29 ± 0.03 0.43 ± 0.03 1.43 ± 0.15 0.61 ± 0.08 0.98 ± 0.16
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FIG. 5. (a),(b) Two-time flux line height autocorrelation func-
tions C(t, s) following critical quenches at T = 0.0005 ε0b0/kB

for waiting times s = 26t0, 27t0, and 28t0 as a function of t − s;
(c),(d) these autocorrelations scaled with sb as functions t/s with
b = 0.56 ± 0.03 for (c) and 0.30 ± 0.03 for (d). Panels (a), (c), (e),
(g) and (b), (d), (f), h) represent the noninteracting and repulsively
interacting flux line systems, respectively. The solid black line in
(c), (d) shows the power law dependence of the scaled quantities
for T = 0.0005ε0b0/kB on t/s with λC/z = 0.61 ± 0.015 for (c) and
0.44 ± 0.03 for (d). Panels (e), (f) and (g), (h), respectively, show the
exponents b and λC/z estimated for critical quenches at five different
temperatures T = 0.0005, 0.0006, 0.0007, 0.0008, and 0.0009 (left
to right, in units of ε0b0/kB); the solid horizontal line in each panel
represents the mean value of the data points and the shaded region
indicates the error of the mean. The final mean exponent values are
stated in Table II.

of ε0b0/kB). We then performed a linear extrapolation (Fig. 6
insets) to estimate the zero-temperature dynamic exponent,
yielding z = 1.39 ± 0.16 for noninteracting flux lines, and
z = 1.43 ± 0.15 for interacting vortices, indicating that the

FIG. 6. Correlation time τ of (a) noninteracting and (b) inter-
acting vortices as a function of drive f (double-logarithmic scale)
for six temperatures T (values listed in units of ε0b0/kB) along with
linear (power law) fits. The negative line slope for a given T yields
νz. In each panel, the inset shows the dynamic exponent z (obtained
from the log τ− log f data) as a function of T , along with a linear
extrapolation to zero temperature. (Each data point originates from
1000 independent simulation runs.)

mutual repulsions induce slower critical relaxation. From the
ratio λC/z measured before, we may finally compute the auto-
correlation exponents λC = 0.85 ± 0.10 for the noninteract-
ing system, while λC = 0.61 ± 0.08 for interacting flux lines.
All our results for the dynamical and aging scaling exponents
are summarized in Table II.

Hyperscaling relations connecting the growth exponent ν,
the order parameter exponent β, the roughness exponent ζ ,
and the dynamic critical exponent z have been derived, the
latter using statistical tilt symmetry [14,15,19]:

ν = 1/(2 − ζ ) , β = (z − ζ )ν . (5)

Using our numerically obtained values of ν and β (Table I),
we can compute ζ = 2 − 1/ν and z = ζ + β/ν. We find
ζ = 0.65 ± 0.24, z = 1.10 ± 0.36 for noninteracting vortices,
whereas ζ = 0.98 ± 0.16, z = 1.42 ± 0.25 with repulsive
interactions present. For the interacting vortices, the value for
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the dynamical exponent from the hyperscaling relations (5) is
thus fully consistent with our direct numerical estimate listed
in Table II; for the noninteracting lines, we observe a larger
deviation, but still well within our error bars.

VI. CONCLUSIONS

In this detailed numerical study, we have employed a
coarse-grained three-dimensional elastic line model of mag-
netic vortices and overdamped Langevin molecular dynamics
simulations to investigate the critical depinning of flux lines
from randomly distributed weak attractive point pinning cen-
ters. We have performed finite-temperature scaling of one-
time quantities, namely the mean vortex velocity and flux line
gyration radius, to obtain consistent estimates of the stationary
critical exponents β, δ, and ν. Independent analyses of data
collapse for these observables confirm that we are properly ac-
cessing the asymptotic critical scaling regime in both systems
of noninteracting flux lines and mutually repulsive vortices.
Our estimate for the correlation length exponents ν in three
dimensions turns out remarkably close to but slightly smaller
than the numerical result from Ref. [39] obtained via finite-
size scaling for a two-dimensional vortex system. Our value
for β is in very good agreement with recent experimental
results for 2H-NbS2 single crystals [40]. However, our

estimate for δ clearly deviates from the corresponding mea-
sured value.

Furthermore, we have investigated dynamic scaling prop-
erties in the nonequilibrium relaxation regime following drive
quenches from the moving vortex state into the critical de-
pinning regime, and thus determined the aging scaling ex-
ponent b, autocorrelation exponent λC , and dynamic critical
exponent z for the relaxation of the system via the analysis
of two-time flux line height autocorrelation functions and the
aid of hyperscaling relations between the static and dynamic
exponents. We found evidence for universal scaling near the
depinning threshold in the form of temperature independence
of the aging scaling exponents indicating that we are accessing
the critical aging regime in the system and providing further
support for elastic depinning constituting a dynamic critical
phenomenon. Mutual repulsive interactions collectively cage
flux lines and hence slow down the decay of correlations in the
system as evidenced by the smaller value of λC/z compared to
the relaxation of noninteracting vortices.
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