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Each unit cell in YBa2Cu3O6+x contains a pair of two-dimensional CuO2 layers. While the crystal structure
is globally inversion symmetric, the individual layers are not. This leads, necessarily, to a nonvanishing Rashba
spin-orbit coupling (SOC) in the CuO2 layers, with opposite signs of the coupling constant in each layer. These
so-called Rashba bilayers generate hidden spin textures, with a vanishing net spin at each k point in the Brillouin
zone, but nonvanishing spin textures in each layer separately. Here, we trace the microscopic origin of the Rashba
splitting through the orbital structure of the CuO2 conduction bands, obtain a generic three-orbital model Hamil-
tonian, and show that the magnitude of the spin-splitting predicted by density functional theory is ∼10 meV.
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I. INTRODUCTION

Metals that have both inversion symmetry and time-
reversal symmetry must have doubly degenerate bands; that
is, for any given wave vector k, there must exist two dis-
tinct spin states (“up” and “down”) with the same energy.
This degeneracy is broken in noncentrosymmetric crystals
(which lack centers of inversion) as a result of spin-orbit
coupling, and if the spin-orbit coupling is sufficiently strong
the crystal will have observable spin textures that arise from
the mismatch in the “up” and “down” Fermi surfaces. Even
for centrosymmetric crystals, however, so-called hidden spin
textures may appear when individual atoms are located at sites
that lack inversion symmetry [1,2]. In this case, the degenerate
bands will be spatially separated, so that spatially localized
spin textures may form.

Rashba bilayer materials are a simple example of how
this can happen [3–7]. These are centrosymmetric three-
dimensional materials containing stacks of atomic bilayers.
The monolayers making up each bilayer are inversion pairs,
meaning that they can be mapped onto each other through the
inversion operation. They have Rashba coupling constants α

and −α, respectively, so that the spin textures are opposite in
the two monolayers [5–7].

Much of the interest in Rashba bilayers is due to the
possibility of engineering topological structures [3,4], or to
the nontrivial superconducting [8–11] and nematic [12,13]
phases that can appear. However, it was recently recognized
that many important cuprate high temperature superconduc-
tors, notably YBa2Cu3O6+x and Bi2Sr2CaCu2O8+x, are also
Rashba bilayers, and that this can have observable conse-
quences [14,15]. In particular, spin-polarized angle-resolved
photoemission (ARPES) experiments in Bi2Sr2CaCu2O8+x

have found evidence for k-space spin textures that are con-
sistent with Rashba-like physics [16].

In this work, we look at the details of spin-orbit coupling
(SOC) in bilayer cuprates. For concreteness, we take the
case of YBa2Cu3O6+x (YBCO), which has a simple cystal
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structure that makes process of tracing the origins of the
Rashba SOC straightforward. In contrast, Bi2Sr2CaCu2O8+x

has a complicated
√

2 × 5
√

2 buckling superstructure [17]
that complicates the analysis. The work starts from a tight-
binding multiorbital model that is informed by available band
structure calculations, and through a process of downfolding,
arrives at an effective three-band model for the CuO2 band
structure. These calculations establish the roles played by
different orbitals, beyond the usual Cudx2−y2 , O2px, and O3py

orbitals, and allow us to estimate the size of the coupling
constant. We show that the Rashba bilayer SOC comes from
a confluence of the atomic SOC on the Cu sites and the
structural “dimpling” of the CuO2 planes.

The topic of spin-orbit coupling in cuprate superconductors
was widely discussed in the early 1990s [18–23]. There,
the focus was primarily on explaining observed connections
between structural phases and magnetic anisotropy [24,25]
in the La-based cuprates, La2−xSrxCuO4 and La2−xBaxCuO4

(although see Ref. [20] for a discussion of magnetic phases in
underdoped YBCO). These are single-layer materials (having
a single CuO2 layer per unit cell) that undergo a sequence
of tilt distortions of the CuO6 octahedra as a function of
temperature and doping [26]. As in the current work, the
combination of atomic SOC on the Cu sites and structural
distortions generates spin textures.

However, there are fundamental differences in the theo-
retical approach taken in Refs. [18–23] and that taken here.
The previous work focused on the low-doping regime of the
phase diagram, in which the cuprates can be thought of as
doped Mott insulators, having localized spins on the Cu2+

sites [27] that interact weakly with a dilute gas of itinerant
holes. In this case, the dominant electron-electron interaction
is believed to be of the Heisenberg spin-spin type, namely
J

∑
i j Si · S j where Si, j are the spins on on the Cu sites i and j.

The SOC then generates small corrections to the interaction of
the Dzyaloshinskii-Moriya type,

∑
i j Di j · (Si × S j ) [18–23].

In contrast, we focus here on higher dopings, where there
is a well-developed Fermi surface and magnetic correlations
are weak so that a local-spin picture is inappropriate. In this
limit, the SOC shows up as a correction to the kinetic energy,
rather than the electron-electron interactions.
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FIG. 1. Structure of the YBa2Cu3O6+x unit cell. The dimpling
angle δ is shown, as are the locations of the O2 and O3 oxygen sites
within the CuO2 planes.

The model is outlined in Sec. II, and it follows closely the
tight-binding description of YBCO put forward in Ref. [28],
with the key difference that we emphasize spin-orbit physics.
Two main results of the calculations are then given in
Sec. III. The first of these is an estimate of the magnitude
�Ek ∼ 10–20 meV of the Rashba spin splitting of the
conduction band. The second is a downfolded six-band
model, comprising three orbital and two spin degrees of
freedom, that provides a simple quantitatively meaningful
description of SOC in YBCO.

II. MODEL

A. Overview

The YBCO unit cell is shown in Fig. 1. As in all of
the cuprate high temperature superconductors, the important
conduction bands originate in the CuO2 plane layers. From
the figure, it is apparent that all centers of inversion lie
outside the CuO2 layers, meaning that inversion symmetry is
broken locally within the layers. From the point of view of
the conduction electrons, the largest effects come from the
charge imbalance between the Y3+ and Ba2+ ions that lie
on opposite sides of each CuO2 monolayer. The imbalance
creates a local electric field pointing from the Y towards the
Ba ions. This field directly generates a small Rashba SOC;
however, a much more significant effect is to cause dimpling
of the CuO2 layers [29]. The electric field draws the planar
O atoms a distance ∼0.25 Å towards the Y3+ layer, so that
the Cu-O bond makes a doping-dependent angle δ ≈ 5◦–7◦
with the undistorted plane [30,31]. We show in this work that
the Rashba SOC comes primarily from the combination of
dimpling and the atomic spin orbit coupling (ASOC) on the
Cu sites.

We can eliminate direct spin-orbit contributions by the
electric field as a significant effect: The strength of the cor-
responding Rashba constant is ∼μBvF Ez/c2, where μB is the
Bohr magneton, vF is the Fermi velocity, and Ez the electric

FIG. 2. The 16-band model, along with relevant hopping matrix
elements. (a) Structure of the σ -bonding block. The four orbitals
shown make the most important contribution to the conduction band.
(b) A total of four orbitals are included in the π -bonding block:
O2pz, O3pz, and the two t2g orbitals dxz, and dyz. In the absence of
dimpling and atomic spin-orbit coupling, the orbital pairs(O2pz, dxz)
and (O3pz, dyz) form one-dimensional channels. (c) Hopping matrix
elements that connect the σ and π blocks. The dimpling angle δ is
shown, and all of the matrix elements shown in (c) are proportional
to sin δ. Spin-orbit coupling provides an additional source of mixing
between the blocks.

field in the CuO2 plane. Taking vF ≈ 1.5 eV Å [32] and
Ez ≈ 2–4 V/Å [33], we get a value of less than 0.01 meV
for the constant, which is unobservably small. This leaves
structural distortions as the primary cause of SOC.

We start with a model for a single CuO2 layer, and then
discuss the bilayer in a later section. The model starts with the
four orbitals pictured in Fig. 2(a), namely, the Cudx2−y2 , O2px,
O3py, and a “Cus” orbital. This last orbital represents a mix-
ture of Cu4s, Cudz2 , and apical oxygen pz, which hybridize
to form a single relevant axially symmetric orbital [34]. This
orbital has a substantial effect on the Fermi surface shape
[28,34], and has been shown to affect the superconducting
transition temperature [34,35] and the structure of the charge
density wave in underdoped YBCO [36,37]. Together, these
orbitals make up the σ -bonded block of the eight-band Hamil-
tonian introduced by Andersen et al. (ALJP) for YBCO [28].
In the absence of SOC and dimpling, the σ block is sufficient
to accurately describe the low-energy portion of the density
functional theory (DFT) band structure [28].

The second block of orbitals, the so-called π block, in-
cludes two of the Cu t2g orbitals (dxz and dyz) and the O2pz

and O3pz orbitals, which together form a π -bonded network
[Fig. 2(b)] [38]. Without ASOC, the (dxz, O2pz) and (dyz,
O3pz) orbital pairs form one-dimensional networks. ASOC
mixes these bands.

The dimpling creates a direct coupling between the σ and
π blocks. The matrix elements tgσ , tsz, and tdz that couple the
two blocks [Fig. 2(c)] are proportional to sin δ and vanish
in the absence of dimpling. This σ -π mixing was shown in
Ref. [38] to significantly affect the band structure near the
antinodes [i.e., near k = (π, 0) and (0, π )].
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TABLE I. Parameter values for YBCO, taken from Ref. [28] un-
less otherwise indicated. These parameters were obtained by fitting
a multiorbital tight-binding Hamiltonian to the DFT band structure.
Note that the hopping matrix elements tsz and tgσ were not considered
in Ref. [28], and are set to zero here. However, there is no reason
for these elements to vanish and they are therefore retained in our
analytic calculations.

Parameter Value (eV)

εd 0.0
εx , εy −0.9
εs 6.5
εz 0.4
εg [39] −1.5

tdσ 1.5
tsσ 2.3
tpp 0.0

tgz 0.70
tdz 0.24
tsz 0.0
tgσ 0.0
ξ [40] 0.11

ASOC also directly couples the σ and π blocks, in this
case through a mixing of the dx2−y2 and t2g orbitals. The
Rashba SOC depends on both σ -π mixing and on ASOC,
and the basic mechanism is simple: A valence electron in a
dx2−y2 orbital mixes with dxz and dyz orbitals through ASOC,
and then hops into neighboring O2px and O3py orbitals; this
process couples spin flips with nearest-neighbor hopping.

B. Hamiltonian

As described in the previous section, we keep eight orbitals
which, when spin is included, generate a 16 × 16 Hamilto-
nian. Conventions for the matrix element signs and phases
are described in Appendix A. Values of the Hamiltonian
parameters are primarily obtained from DFT, and are given
in Table I. The σ blocks have the ordered bases

|1〉 = {|d ↑〉, |x ↑〉, |y ↑〉, |s ↑〉}, (1)

|2〉 = {|d ↓〉, |x ↓〉, |y ↓〉, |s ↓〉}. (2)

Here, we have used the compact notation d ≡ dx2−y2 , x ≡
O2x, and y ≡ O2y. The π blocks have the bases

|3〉 = {|xz ↑〉, |yz ↑〉, |z2 ↑〉, |z3 ↑〉}, (3)

|4〉 = {|xz ↓〉, |yz ↓〉, |z2 ↓〉, |z3 ↓〉}, (4)

with xz ≡ dxz, z2 ≡ O2z, etc. The block structure of the
Hamiltonian is then

H16b
k =

|1〉 |2〉 |3〉 |4〉
〈1| Hσσ

k 0 Hσπ
k H ξ

14

〈2| Hσσ
k H ξ

23 Hσπ
k

〈3| Hππ
k + H ξ

33 0
〈4| Hππ

k + H ξ
44

(5)

with elements below the diagonal obtained from the Hermitic-
ity of Hk.

The Hamiltonian Hσσ
k is independent of spin, and is

|d〉 |x〉 |y〉 |s〉
〈d| εd 2tdσ sx −2tdσ sy 0
〈x| 2tdσ sx εx 4tppsxsy 2tsσ sx

〈y| −2tdσ sy 4tppsxsy εy 2tsσ sy

〈s| 0 2tsσ sx 2tsσ sy εs

(6)

where sx = sin(kx/2) and sy = sin(ky/2). Hσσ
k by itself cap-

tures most of the structure of the conduction band near the
Fermi level.

We note that, in Eq. (6), the direct hopping tpp is actually
not the dominant path connecting neighboring oxygen atoms;
rather, indirect hopping through the s orbital is more signifi-
cant. This point is easily illustrated. Because the s orbital sits
well above the Fermi level in energy, it may be downfolded
to create an effective three-band model [36]. This process
renormalizes the parameters εx, εy, and tpp, with the first two
given by Eqs. (B7) and (B8) in Appendix B, and the latter
being

t̃pp = tpp + t2
sp

εF − εs
. (7)

The second term on the right of Eq. (7) describes the indirect
hopping through the s orbital. Because the overlap between
the s and p orbitals is large, this indirect hopping process is
significantly larger than the direct hopping matrix element tpp,
which we set to zero following Ref. [38].

The π -block Hamiltonian Hππ
k , which does not include

ASOC, is also independent of spin and is

|xz〉 |yz〉 |z2〉 |z3〉
〈xz| εg 0 −2tgzsx 0
〈yz| 0 εg 0 −2tgzsy

〈z2| −2tgzsx 0 εz 0
〈z3| 0 −2tgzsy 0 εz

. (8)

The σ -π mixing Hσπ
k is

|xz〉 |yz〉 |z2〉 |z3〉
〈d| 0 0 −2itdzcx 2itdzcy

〈x| 2itgσ cx 0 0 0
〈y| 0 2itgσ cy 0 0
〈s| 0 0 −2itszcx −2itszcy

. (9)

Here, cx = cos(kx/2) and cy = cos(ky/2).
So far, all of these matrices are diagonal in the spin index.

Spin mixing comes from the d orbitals on the Cu sites. The
ASOC energy takes the simple form ξL · S and generates
a splitting between low- and high-total angular momentum
states of �ESO = (2	 + 1)ξ/2. Photoemission experiments
[40] have reported �ESO = 280 meV, giving ξ = 110 meV
for the Cu d orbitals.

As described above, we include the dx2−y2 , dxz, and dyz

orbitals in our Hamiltonian, but have neglected the dxy orbital
and have absorbed the dz2 into an effective s orbital. While
it may seem a priori unjustified to drop either orbital from
the explicit basis, given that they mix with the band structure
through ASOC, we have checked numerically that neither
orbital has a significant quantitative effect on our final results.
We will discuss this point further in Sec. III B.
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FIG. 3. Band structure predicted by the 16-band model, obtained
from the eigenvalues of Eq. (5). The two Rashba-split conduction
bands that cross the Fermi surface are in red. Note that the splitting
is less than the thickness of the line.

Keeping all five orbitals for later discussion,
the ASOC Hamiltonian for the block of states
|d ↑〉, |z2 ↑〉, |xy ↑〉, |xz ↓〉, |yz ↓〉 is

ξ [L · S] = ξ

2

⎡
⎢⎢⎢⎢⎣

0 0 −2i 1 i
0 0 0 −√

3
√

3i
2i 0 0 −i 1
1 −√

3 i 0 i
−i −√

3i 1 −i 0

⎤
⎥⎥⎥⎥⎦. (10)

The nonzero matrix elements of H ξ
14 and H ξ

44 in Eq. (5) can
be obtained from Eq. (10). Similarly, the nonzero matrix
elements of H ξ

23 and H ξ
33 are contained in ξL · S for the block

of states |d ↓〉, |z2 ↓〉, |xy ↓〉, |xz ↑〉, |yz ↑〉

ξ [L · S] = ξ

2

⎡
⎢⎢⎢⎢⎣

0 0 2i −1 i
0 0 0

√
3

√
3i

−2i 0 0 −i −1
−1

√
3 i 0 −i

−i −√
3i −1 i 0

⎤
⎥⎥⎥⎥⎦. (11)

Equations (6) and (8)–(11) provide all the matrix elements
required for Eq. (5). The band structure obtained from this
model is shown in Fig. 3. It is very similar to that discussed in
Ref. [28], on which it is based.

III. RESULTS

A. 16-band model

Despite the apparent complexity of the model in Eq. (5),
the Fermi surface structure is simple: there is a single pair of
spin-orbit split bands with energies Ek± that cross the Fermi
energy (Fig. 3). The two bands have opposite windings of the
spin (helicities) around their respective Fermi surfaces, and
the mismatch in the two Fermi surfaces leads to the formation
of spin textures in the CuO2 layer. It is important to note that

FIG. 4. Energy difference �Ek between the two spin-split bands
that cross the Fermi surface. These bands are obtained by numeri-
cally diagonalizing the Hamiltonian, Eq. (5). The white dashed line
shows the Fermi surfaces for a hole filling of p = 0.10 holes per unit
cell, corresponding to a Fermi energy εF = 2.07 eV. Note that the
Fermi surfaces for the two bands are indistinguishable in this figure.
The color scale is in meV.

the helicities of the two CuO2 layers making up a bilayer
are opposite, so that the net spin-polarization (summed over
layers) vanishes, as required by global inversion symmetry.

In the absence of SOC, the two bands are degenerate, and
to obtain a quantitative measure of the spin-orbit coupling, we
calculate their splitting

�Ek = Ek+ − Ek−. (12)

The results of this calculation are shown in Fig. 4, along with
the Fermi surface corresponding to a hole filling of p = 0.10
holes per unit cell. (Note that the separation between the two
Fermi surfaces is less than the thickness of the dashed line.)
At this filling, the splitting is �Ek ≈ 10 meV along most
of the Fermi surface, but drops to near zero at the Brillouin
zone boundary. This value is comparable to that estimated
by Harrison et al. [14] and Briffa et al. [15] by modeling
quantum oscillation experiments. Since �Ek is independent
of the Fermi energy, the spin splitting at different dopings can
be obtained by shifting the Fermi surface in Fig. 4.

Figure 4 is one of the two main results of this work. The
parameters underlying this figure are primarily taken from
DFT calculations; however, there are well-known discrepan-
cies between DFT and the experimental dispersion that arise
because of strong electronic correlations not included in the
DFT energy functionals. It is therefore reasonable to ask
whether the spin-splitting results are robust.

We find that for modest perturbations of the parameters
(�50% of the parameter’s value), the k-space structure of the
spin splitting is qualitatively similar to what is shown in Fig. 4,
but that the energy scale can change by a factor of up to 2. To
illustrate this point, Fig. 5 shows two of the more extreme
cases we explored.
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FIG. 5. Examples showing the range of variation of the spin
splitting across different models (see text). (a) Results for a model
in which the Cus orbital has been removed, with tsp = 0 and tpp =
−1.2 eV. (b) Results for a model with a reduced hybridization
between the Cudx2−y2 and oxygen O2px and O3py orbitals, with
tdσ = 1.0 eV.

Figure 5(a) shows the spin splitting for a case in which
the “Cus” orbital has been removed by setting tsp = 0. To
partially compensate for the missing orbital, we set tpp =
−1.2 eV, which according to Eq. (7) should give the same
total effective oxygen-oxygen hopping matrix element as in
the original calculation with nonzero tsp. The resultant Fermi
surface has less curvature than the original model, but the
dramatic difference is in the spin splitting along the Fermi
surface, which is reduced by a factor of 2 from the original
calculation.

As a second, more physically plausible, example the spin
splitting is shown in Fig. 5(b) for the case in which the hop-
ping matrix element tdσ between the dx2−y2 and O2px/O3py

orbitals is reduced from 1.5 to 1.0 eV. This leads to a narrow-
ing of the conduction band, as might be expected from strong
correlations. In this case, there is a modest change in the Fermi
surface shape compared to Fig. 4, but the spin splitting along
the Fermi surface is approximately doubled.

In summary, numerical calculations suggest that for phys-
ically plausible parameter sets the spin-splitting is of order
�Ek = 10–20 meV, and is relatively constant along the Fermi
surface, except near the Brillouin zone boundary where it
drops to near zero.

B. Six-band model

To obtain a useful tight-binding characterization of the
cuprates, we downfold the 16-band model to an effective
six-band model. This model includes three orbital degrees of
freedom (Cudx2−y2 , O2px, and O3py) and two spin degrees
of freedom. The details of the downfolding process are left
to Appendix B, and here we give the final results. It is
important to note that while the downfolding procedure gives
the correct Fermi surface, it does not give the correct effective
band mass, and consequently overestimates the Rashba spin-
orbit coupling constant. We show below that this is a minor
issue for the default model parameters, with the predicted
spin-splitting being quite close to that of the 16-band model;
however, for other model sets the discrepancy can be large.
The value of the downfolding procedure is therefore primarily
qualitative; from it, we obtain the generic structure of the
Rashba Hamiltonian, along with an understanding of where
the different Rashba matrix elements come from.

We first consider the diagonal blocks of the six-band
Hamiltonian, H6b

k . The spin-up block is

H6b
k,↑↑ =

|d ↑〉 |x ↑〉 |y ↑〉
〈d ↑ | εd 2t↑

d pxsx −2t↑
d pysy

〈x ↑ | 2t↑
d pxsx εx 4t↑

pp,k

〈y ↑ | −2t↑
d pysy 4t↑∗

pp,k εy

(13)

This has the same structure as the usual three-band model,
but with renormalized (and k-dependent) parameters. These
parameters are given by Eqs. (B16)–(B21) in Appendix B.
The spin dependence of the hopping parameters comes from
processes in which an electron hops from a dx2−y2 into one
of the t2g orbitals through a nearest-neighbor oxygen, then
moves into a different t2g orbital by ASOC, and finally hops
back onto an oxygen site. This is clearly a high-order process,
and we have checked that it is much smaller than other spin-
dependent terms in the Hamiltonian.

The equations for the matrix elements of H6b
k,↑↑ given in

Appendix B are complicated, and for most purposes a much
simpler approximation should be sufficient. Namely, one may
use the parameters from the downfolded four-band σ block,
Eq. (6). For this simpler case, one has the renormalized
parameters

εx = εx + 4t i
pps2

x , (14)

εy = εy + 4t i
pps2

y , (15)

t pp = tpp + t i
pp (16)

with sx = sin(kx/2), sy = sin(ky/2), and where the indirect
hopping is t i

pp = 4t2
sp/(εF − εs) ≈ −1.2 eV, and all other pa-

rameters in Eq. (13) equal to their bare values.
Next, we turn to the off-diagonal blocks of H6b

k . To linear
order in the ASOC, the “up-down” block has the form,

H6b
k,↑↓ =

|d ↓〉 |x ↓〉 |y ↓〉
〈d ↑ | t dd↑↓ t dx↑↓ t dy↑↓
〈x ↑ | t xd↑↓ 0 0
〈y ↑ | t yd↑↓ 0 0

(17)

with

t dd,↑↓ = −ξ t̃dg

[
cysy

εF − ε̃gy
+ i

cxsx

εF − ε̃gx

]
(18)

t dx↑↓ = t xd↑↓ = −iξ tgσ
εF − ε̃gx

cx (19)

t dy↑↓ = t yd↑↓ = ξ tgσ
εF − ε̃gy

cy, (20)

and ε̃gx, ε̃gy, and t̃dg given by Eqs. (B10), (B11), and (B13).
The “down-up” block is the Hermitian conjugate of Eq. (17).

Equation (17) shows that there are two types of terms that
are linear in the spin-orbit parameter ξ . The first involves a
spin-flip of an electron within the dx2−y2 orbital; this is actually
a multistep process, in which an electron migrates from the
dx2−y2 orbital to one of the dxz or dyz orbitals by ASOC,
and then tunnels back into the dx2−y2 via one of the planar
oxygen pz states. The matrix element for this process is given
by Eq. (18). Noting that casa ≡ cos(ka/2) sin(ka/2) = 1

2 sin ka
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for a = x, y, Eq. (18) can be usefully approximated as

t dd,↑↓ = −αdd (sin ky + i sin kx ) (21)

which has the Rashba form.
The second type of spin-orbit term is a spin-flip hopping

process between the dx2−y2 and one of the oxygen orbitals.
This process is also multistep: a dx2−y2 electron moves into
a dxz or dyz orbital through ASOC, and then hops into a
neighboring O2px or O3py orbital through the matrix element
tgσ . The matrix elements for this process are given by Eqs. (19)
and (20), and can be usefully approximated as

t dx↑↓ = −iαd p cos
kx

2
, (22)

t dy↑↓ = αd p cos
ky

2
. (23)

One can show (Appendix C) that these off-diagonal terms
have the form expected for Rashba SOC, namely, they break
inversion symmetry, are time-reversal invariant, and are even
under fourfold rotations.

We note that to linear order in the ASOC parameter ξ , the
dxy orbital does not contribute to the Rashba SOC. This is
because the matrix elements coupling this orbital to the O2px

and O3py orbitals vanish by symmetry, even with dimpling,
so that the only hopping processes with Cudx2−y2 and oxygen
orbitals as initial and final states must be of order ξ 2. Fur-
thermore, because the spin-orientation is unchanged in these
processes, the dxy orbital actually appears only in the renor-
malization of the diagonal spin-up and spin-down blocks of
the six-band Hamiltonian, and not in the off-diagonal spin-flip
blocks. This justifies its neglect in the original Hamiltonian.

The role of the dz2 orbital, which we have ignored up to
this point, can be established by a similar line of reasoning.
This orbital does not couple directly to the dx2−y2 orbital via
ASOC [see Eqs. (10) and (11)], and it’s largest contribution
to spin-orbit effects will therefore be as a conduit for oxygen-
oxygen hopping. As an example, the effective matrix element
for spin-flip processes in which the electron starts and finishes
on an O2px orbital is

t xx↑↓ ≈ −ξ
4tz2σ tgσ

(εF − εg)2
cxsx. (24)

Here, the electron starting in an O2px orbital hops into a
neighboring dz2 orbital, moves into the dxz orbital via ASOC,
and then hops into one of the two neighboring O2px orbitals.
The first of these processes has matrix element tz2σ ; Ref. [38]
suggests that it is small for YBCO, and can be neglected;
however, if this is not the case, then one must further add the
matrix elements

−αpp ×
⎧⎨
⎩

|x ↓〉 |y ↓〉
〈x ↑ | cxsx icysx

〈y ↑ | cxsy icysy

⎫⎬
⎭, (25)

to Eq. (17), with αpp = 4ξ tz2σ tgσ /(εF − εg)2. Because αpp

comes from higher order hopping processes than αd p, one can
exect the latter to be larger.

The quality of the six-band downfolding is illustrated in
Fig. 6, where the spin-splitting is shown in one quadrant of
the Brillouin zone for both models. (The six-band calcula-
tions use the full expressions for the model parameters, from

FIG. 6. Comparison of the spin splittings for (a) the 16-band
model and (b) six-band model, using the same parameters as in
Fig. 4. Contours show the spin splitting throughout one quadrant
of the Brillouin zone, while the curves show the value of the spin
splitting along the Fermi surface. The two curves differ only by a few
percent and show the accuracy of the 6-band model near the Fermi
surface.

Appendix B, rather than the simplified parameters discussed
above.) The contour plots show the spin-splitting through-
out the quadrant, while the curves show the spin splitting
along the Fermi surface. Two features of these figures are
notable: the contour maps are very different, yet the plots
along the Fermi surface are nearly the same, differing by
only ∼10%. As mentioned above, this discrepancy can be
primarily attributed to the failure of the downfolding process
to correctly include mass-renormalization effects, and can be
larger for other choices of parameter. Ultimately, the value
of the downfolded Hamiltonian is that it provides a generic
model Hamiltonian for YBCO.

C. The bilayer

(Much of the discussion in this section can be found
elsewhere [14,15,41] and is repeated here for completeness.)
The extent to which spin-orbit effects are relevant to the
CuO2 bilayer depends on the relative strengths of the Rashba
coefficient α and the interlayer hopping t⊥,k. For simplicity,
we consider a one-band model for the CuO2 monolayers,
such that the total bilayer Hamiltonian has the form Ĥ =∑

k 
†(k)h0(k)
(k) with

h0(k) =
[
εk + (gk × ẑ) · σ t⊥,k

t⊥,k εk − (gk × ẑ) · σ

]
, (26)
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where gk = α(sin kx, sin ky) is the Rashba SOC and 
(k) =
[c1k↑, c1k↓, c2k↑, c2k↓]T is an array of fermion annihilation
operators for the two monolayers and spin states.

The Hamiltonian can be diagonalized analytically, and one
obtains two doubly degenerate bands, with energies ξk± =
εk ±

√
t2
⊥,k + g2

k , where gk = |gk|. This expression shows that
the energy splitting between the two bands depends on both
the interlayer hopping and the Rashba coupling; furthermore,
the character of the bands depends on which of the two terms
is larger. This is most easily seen from the spin texture at
the Fermi surface. It is straightforward to show that the x
component of the spin at a specific k value in layer 1 is

〈Ŝ1k,x〉 = 1
2 〈c†

1k↑c1k↓ + c†
1k↓c1k↑〉

= [ f (ξk+) − f (ξk−)]
gk cos θk√
t2
⊥,k + g2

k

(27)

where f (ξk±) are the Fermi-Dirac functions for the two bands,
and cot θk = sin ky/ sin kx. 〈Ŝ1k,y〉 is found by making the
substitution cos θk → − sin θk [42]. The key point of this
expression is that the moment in layer 1 is proportional to

gk√
t2
⊥,k + g2

k

, (28)

which gives us a quantitative measure of the importance of
Rashba SOC. Importantly, when t⊥,k � gk, the interlayer
coupling is dominant and quenches SOC.

It is frequently argued that interlayer coupling in cuprate
superconductors has the form t⊥,k = t⊥(cos kx − cos ky)2; for
such a form, the bilayer splitting vanishes along the Brillouin
zone diagonals (kx = ±ky), at which points any residual split-
ting must be due to SOC. This is especially important for
cuprate superconductors because the superconducting order
parameter vanishes along these directions. As a result, low-
energy quasiparticles lie along the Brillouin zone diagonals
and should be heavily influenced by SOC.

However, this is not the case for YBCO. Early DFT calcu-
lations found that for fully oxygenated YBa2Cu3O7, there is a
large splitting along the diagonal directions, of order 100 meV
[28], ARPES experiments [43] on overdoped YBCO confirm
this large splitting, and tight-binding fits to the data further
find that t⊥,k is nearly independent of k everywhere along the
Fermi surface [44]. All of this strongly suggests that SOC is
largely irrelevant in highly oxygenated YBCO.

The story is different in underdoped YBCO. ARPES exper-
iments by Fournier et al. [45] found that the bilayer splitting
collapses in underdoped YBCO, for hole dopings p < 0.15.
At these doping levels, it appears plausible that the predicted
Rashba spin splitting, �Ek ≈ 2α = 10–20 meV, could be the
dominant energy scale.

D. Relevance to underdoped YBa2Cu3O6+x

Although SOC is comparitively weak in the cuprates,
it may nonetheless have observable consequences. In the
insulating La-based cuprates, where the SOC takes the
Dzyaloshinskii-Moriya form, the SOC generates a small out-
of-plane canting of the predominantly in-plane antiferromag-
netic moments [24,25]. The situation is more complicated in
insulating YBCO, as there is a competition between SOC and

interplane coupling, with the former favoring a spiral state and
the latter favoring planar antiferromagnetism [20].

The doping range over which we expect the Rashba SOC
to be appreciable corresponds to the region in which both
superconductivity and charge density wave order are found.
Here, we ask whether SOC can influence either of these
phases.

First, we note that the energy difference between the spin-
split bands �Ek corresponds to a Fermi surface splitting
of �k = �Ek/vF ∼ 10−2 Å. The two spin-orbit split Fermi
surfaces have opposite helicity, and the predominantly singlet
pairing occurs between electrons in the same band. The slight
difference in Fermi wave vector for the two helicities gen-
erates a weak triplet component to the superconducting gap
[46]. By directly solving the gap equation with parameters
appropriate for YBCO, we obtain a triplet component that is
approximately 1% of the dominant singlet component [47].
This is unlikely to be important.

The spin-splitting is more likely to be important for the
charge-ordered phase. The splitting of the Fermi surface leads
to a multiplicity of nesting wave vectors q, differing by
amounts �q ∼ �k; the corresponding length scale 	SOC =
2π
�q ∼ 600 Å is the distance over which two charge density
waves with different nesting wave vectors will dephase and
come into phase again; half that distance is the dephasing
length, and because the charge density correlation length is
comparable to this length scale [48], one can expect the
energetics of density wave formation to be affected by SOC.
In particular, we speculate that the dephasing length might set
an upper bound for the charge density wave correlation length.

Finally, we note that simulations have shown that, because
the unit cell is polar, there is substantial band-bending at
YBCO surfaces [44]. This breaks the degeneracy of the CuO2

bilayers near the surface, and should reveal the Rashba SOC.
As pointed out in Ref. [2], one of the key characteristics
of hidden-Rashba systems is a strong sensitivity to even
weak perturbations that break inversion symmetry. Thus we
anticipate that the size of the surface Rashba effect should
be considerably larger than one might expect from the size of
the potential gradient at the surface. This conjecture remains
to be tested, however.

IV. CONCLUSIONS

We have traced the origins of the hidden Rashba spin-
splitting in YBa2Cu3O6+x via a multiorbital model ob-
tained primarily from density functional theory calculations.
Through a process of downfolding, we obtained a three-orbital
model for the low-energy physics and showed that the spin
splitting of the conduction band is ∼10–20 meV. Finally,
we discussed the extent which this effect might be plausibly
observed, and argued that it could be have observable conse-
quences in moderately underdoped YBa2Cu3O6+x with hole
dopings p < 0.15.
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APPENDIX A: MATRIX ELEMENT CONVENTIONS

The hopping matrix elements in Sec. II B are defined
with the following conventions. (1) The matrix elements are
assumed to be real, implying that the orbital wave functions
are real. (2) The sign of the hopping matrix element between
two adjacent orbitals is determined by the signs of the closest
lobes of each orbital. If the signs are the same, then the matrix
element is positive; otherwise, the matrix element is negative.
Thus, in Fig. 2(a), the matrix element between the Cudx2−y2

orbital and the O2px to its right is −tdσ , while the bond to the
left has matrix element +tdσ . The purpose of this convention
is to keep track of the relative signs of different bonds, and the
value of tdσ itself may be negative or positive depending on
the structure of the bond.

(3) After Fourier transforming to k-space, the piece of the
Hamiltonian connecting Cudx2−y2 and O2px states has the
form −2itdσ sin kx

2 d†
kσ pxkσ , where dkσ and pxkσ are fermion

operators for the two orbitals. We make the conventional
gauge transformation pxkσ → ipxkσ to eliminate the factor
of i. Similar transformations are made for the O2pz, O3py,
and O3pz fermion operators. These gauge transformations
eliminate factors of i in Hσσ

k and Hππ
k , but introduce them

in Hσπ
k .

As a result of the gauge transformation, the time reversal
of pxk↑ is −px−k↓, i.e. there is an addtional factor of −1 under
time reversal. This holds also for the other oxygen p orbitals.

APPENDIX B: DOWNFOLDING THE HAMILTONIAN

Given a Hamiltonian with the block structure

H =
[

H11 H12

H21 H22

]
, (B1)

the Green’s function for the first block is

G11(ω) = [(ω − H )−1]11

= [ω − H11 − H12(ω − H22)−1H21]−1. (B2)

By inspection, we see that G11(ω) could equally be obtained
from the effective Hamiltonian

H eff
11 = H11 + H12(ω − H22)−1H21. (B3)

To obtain a low-energy theory, we set ω = εF .
By this process, we can downfold our 16 × 16 Hamiltonian

into a 6 × 6 Hamiltonian that includes only dx2−y2 , O2px

and O3y orbitals plus spin degrees of freedom. To make the
process physically transparent, we do this in two steps. In the
first step, we downfold the O2pz, O3pz, and s orbitals, and in
the second we downfold the dxz and dyz orbitals.

1. First downfolding

Following the first downfolding, we have a 10 × 10 Hamil-
tonian with the block structure

H̃k =
[

H̃k,11 H̃k,12

H̃k,21 H̃k,22

]
. (B4)

The first block, H̃k,11 has the usual structure for three-band
models of cuprates, with spin-up matrix elements

|d ↑〉 |x ↑〉 |y ↑〉
〈d ↑ | ε̃d 2tdσ sx −2tdσ sy

〈x ↑ | 2tdσ sx ε̃x 4t̃ppsxsy

〈y ↑ | −2tdσ sy 4t̃ppsxsy ε̃y

(B5)

and an identical set of matrix elements for the spin-down
matrix elements. The parameters are renormalized, however,
with t̃pp given by Eq. (7), and

ε̃d = εd + 4t2
dz

(
c2

x + c2
y

)
εF − εz

, (B6)

ε̃x = εx + 4t2
sps2

x

εF − εs
, (B7)

ε̃y = εy + 4t2
sps2

y

εF − εs
. (B8)

In this basis, the three diagonal “orbital energies” are k-
dependent, which leads to a significant re-weighting of the
oxygen and copper contributions to the Fermi surface. This
re-weighting was found to have a profound effect on charge
density-wave formation [36,37], and in general should not be
neglected.

The H̃k,22 block is

|xz ↓〉 |yz ↓〉 |xz ↑〉 |yz ↑〉
〈xz ↓ | ε̃gx

iξ
2 0 0

〈yz ↓ | − iξ
2 ε̃gy 0 0

〈xz ↑ | 0 0 ε̃gx − iξ
2

〈yz ↑ | 0 0 iξ
2 ε̃gy

(B9)

with

ε̃gx = εg + 4t2
gzs

2
x

εF − εz
, (B10)

ε̃gy = εg + 4t2
gzs

2
y

εF − εz
. (B11)

Again, this has the same structure as before the downfolding,
but with renormalized orbital energies.

Finally, the H̃k,12 block is

|xz ↓〉 |yz ↓〉 |xz ↑〉 |yz ↑〉
〈d ↑ | ξ

2
iξ
2 it̃dgcxsx −it̃dgcysy

〈x ↑ | 0 0 2itgσ cx 0
〈y ↑ | 0 0 0 2itgσ cy

〈d ↓ | it̃dgcxsx −it̃dgcysy − ξ

2
iξ
2

〈x ↓ | 2itgσ cx 0 0 0
〈y ↓ | 0 2itgσ cy 0 0

(B12)

where

t̃dg = 4tdztgz

εF − εz
, (B13)

is an effective matrix element for hopping between the dx2−y2

and dxz/yz orbitals through the oxygen pz intermediate state.
The H̃k,21 block is the Hermitian conjugate of H̃k,12.
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2. Second downfolding

The effective six-band Hamiltonian is

H6b
k = H̃k,11 + H̃k,12(εF − H̃k,22)−1H̃k,21. (B14)

For the sake of transparency, we work under the assumption
that ξ is a small parameter and keep only terms to first order
in ξ . Then

H6b
k =

|d ↑〉 |x ↑〉 |y ↑〉 |d ↓〉 |x ↓〉 |y ↓〉
〈d ↑ | εd 2t↑

d pxsx −2t↑
d pysy t dd↑↓ t dx↑↓ t dy↑↓

〈x ↑ | 2t↑
d pxsx εx 4t↑

pp,k t xd↑↓ 0 0

〈y ↑ | −2t↑
d pysy 4t↑∗

pp,k εy t yd↑↓ 0 0

〈d ↓ | t dd↓↑ t dx↓↑ t dy↓↑ εd 2t↓
d pxsx −2t↓

d pysy

〈x ↓ | t xd↓↑ 0 0 2t↓
d pxsx εx 4t↓

pp,k

〈y ↓ | t yd↓↑ 0 0 −2t↓
d pysy 4t↓∗

pp,k εy

(B15)

with parameters

εd = ε̃d + t̃2
dgc2

xs2
x

εF − ε̃gx
+ t̃2

dgc2
ys2

y

εF − ε̃gy
, (B16)

εx = ε̃x + 4t2
gσ c2

x

εF − ε̃gx
, (B17)

εy = ε̃y + 4t2
gσ c2

y

εF − ε̃gy
, (B18)

t s
d px = tdσ + tgσ t̃dgc2

x

εF − ε̃gx

− s
iξ

2

tgσ t̃dgcxcy

(εF − ε̃gx )(εF − ε̃gy)
, (B19)

t s
d py = tdσ + tgσ t̃dgc2

y

εF − ε̃gy

+ s
iξ

2

tgσ t̃dgcxcy

(εF − ε̃gx )(εF − ε̃gy)
, (B20)

t s
pp,k = t̃ppsxsy − s

iξ

2

t2
gσ cxcy

(εF − ε̃gx )(εF − ε̃gy)
, (B21)

and the spin-flip terms

t dd,↑↓ = t∗
dd,↓↑ = −ξ t̃dg

[
cysy

εF − ε̃gy
+ i

cxsx

εF − ε̃gx

]
, (B22)

t dx↑↓ = t xd↑↓ = t∗
dx↓↑ = t∗

xd↓↑ = −iξ tgσ
εF − ε̃gx

cx, (B23)

t dy↑↓ = t yd↑↓ = t∗
dy↓↑ = t∗

yd↓↑ = ξ tgσ
εF − ε̃gy

cy. (B24)

APPENDIX C: SYMMETRIES

To illustrate the symmetries of H6b
k , we consider two

examples: time inversion and fourfold rotations. We focus
explicitly on the spin-flip blocks of the Hamiltonian, as these
are the new to this work.

Under the time-reversal operator , the fermion annihila-
tion operators dks and pa,ks transform as

−1dks = sd−k −s; −1 pa,ks = −spa,−k −s. (C1)

In this equation, s = ± represents the two spin states and a =
x, y represents the oxygen px and py orbitals. Note that there is

an extra factor of −1 in the equation for pa,ks; this comes from
an implicit factor of i in the definiton of the fermion operators
pa,ks that was discussed in Appendix A.

To show invariance under time reversal, we group terms
from H6b

k . For example, the combination of terms∑
k

[t dx↑↓d†
k↑ px,k↓ + t dx↓↑d†

k↓ px,k↑] (C2)

is invariant because first term in the sum transforms into the
second,∑

k

−1t dx↑↓d†
k↑ px,k↓ =

∑
k

t∗
dx↑↓d†

−k↓(−1)2 px,−k↑

=
∑

k

t dx↓↑d†
k↓ px,k↑, (C3)

and vice versa. Key to this is that tdx↑↓ is an even function
of k.

A similar approach can be taken for rotations. Under a
rotation by π/2,

R−1
π/2dksRπ/2 = −eisπ/4dks, (C4)

R−1
π/2 px,ksRπ/2 = eisπ/4 py,ks, (C5)

R−1
π/2 py,ksRπ/2 = −eisπ/4 px,ks. (C6)

with k = (ky,−kx ). Under this transformation (making the k-
dependence of the matrix elements explicit),

R−1
π/2

[∑
k

t dx↑↓d†
k↑ px,k↓

]
Rπ/2 = i

∑
k

t dx↑↓(k)d†
k↑ py,k↓

=
∑

k

t dy↑↓(k)d†
k↑ py,k↓

=
∑

k

t dy↑↓(k)d†
k↑ py,k↓.

(C7)

The second line makes use of Eqs. (B23) and (B24). Overall,
this equation is an example of how different matrix elements
of Eq. (B15) transform into one another under rotation.
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