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ac-driven annular Josephson junctions: The missing Shapiro steps
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Examination of an annular system of underdamped Josephson junctions in the presence of external radiation
showed that the ability of the system to lock with some external radiation was determined not only by the
number but also by the type of rotating excitations (fluxons or antifluxons). Shapiro steps can be observed in the
current-voltage characteristic only in the system with trapped fluxons or in the system with fluxon-antifluxon
pairs. If the trapped fluxons circulate simultaneously with fluxon-antifluxon pairs, there are no Shapiro steps
regardless of the amplitude or frequency of the applied external radiation.
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I. INTRODUCTION

The idea that a fluxon behaves as a particlelike solitary
wave, which can be manipulated and controlled, motivated
creation of a logic circuit by using Josephson fluxon as
elementary bits of information [1–7]. In the creation of new
logic elements, particularly important are the long Josephson
junctions [8] described by a continuous sine-Gordon (SG)
equation, and the Josephson junctions parallel array by its dis-
creet counterpart, i.e., the Frenkel-Kontorova model [8–12].
However, in long Josephson junctions (JJs), the motion of
fluxon strongly depends on the geometry and boundaries of
the junctions, which makes studies of fluxon dynamics very
challenging. These problems led to the creation of annular
Josephson junctions [13] as ideal systems for the studies of
fluxon dynamics, which provide an undisturbed and tunable
fluxon motion [14–21].

One of the most interesting properties of Josephson junc-
tion systems is their ability to exhibit various resonance
phenomena. In the absence of any external radiation, the
so-called zero-field steps (ZFSs) [11,22,23] appear in the
current-voltage (I-V ) characteristic due to resonant motion
of fluxons and antifluxons inside the system. If, on the other
hand, some external radiation is applied, the I-V characteristic
exhibits the well-known Shapiro steps [24] as a result of the
locking with the external frequency. When the locking appears
at the integer values of external frequency, the steps are called
harmonics, while the locking at rational noninteger values
leads to subharmonics (for the locking at the half-integer
values of external frequency, the steps are called half-integer
steps) [10]. Though the Shapiro steps are today one of the
most recognized frequency locking phenomena associated
with a wide variety of physical systems [10], the majority
of the works [14–21] on annular Josephson junctions have
been focused on the resonance phenomena in the absence of
external radiation.

In this study, we will examine the underdamped dynamics
of an annular array of Josephson junctions (AAJJs) under the
external radiation. In contrast to previous studies of annular
Josephson junctions, which were mainly focused on the case
of one trapped fluxon in a small range of currents and voltages
[14,15], here we will examine the Shapiro steps in various
cases of circulating excitations (fluxons and antifluxons), in
a wide range of currents and voltages in order to get the
full picture of dynamical behavior. Surprisingly, our results
show that ability of the system to lock with some external
radiation depends not only on the number but also on the
type of excitations, i.e., whether there are only trapped fluxons
or the fluxon-antifluxon pairs in the system, or the trapped
fluxons circulate simultaneously with fluxon-antifluxon pairs.

II. MODEL

We consider an annular parallel array of N Josephson junc-
tions in the underdamped regime presented in Fig. 1. The total
length of a chain is L = Na, where a is a distance between
the neighboring junctions. The annular system that we are
considering here can be described by the discrete version of
perturbed sine-Gordon equation, which is well known as the
dissipative Frenkel-Kontorova model [9]:

d2ϕi

dt2
− ϕi+1 + 2ϕi + ϕi−1

a2
+ sin ϕi + α

dϕi

dt
= I + A sin(ωt ),

(1)

where ϕi is the phase difference across the ith junction, α is the
dissipation parameter, I is the total or biased current through
the junction, and A and ω are the amplitude and frequency
of external radiation, respectively. The coupling between the
neighboring junctions is described by the constant 1

a2 , where
a = √

2πL0Ic/�0 is the discreteness parameter, i.e., the dis-
tance between two junctions normalized to the Josephson
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FIG. 1. Schematic view of an annular array of Josephson junc-
tions. The junctions are colored in dark red.

penetration depth. The time is normalized with respect to the
inverse plasma frequency ω−1

p , where ωp = √
2π Ic/(�0C),

Ic is the critical current, L0 and C are the inductance and
capacitance of single cell, respectively, and �0 = h

2e is the flux
quantum [25].

The Frenkel-Kontorova model or the discrete SG model
takes into consideration only inductive interaction between
the neighboring junctions. Capacitive interaction, on the other
hand, was taken into account in the FCU (Fistul, Caputo, and
Ustinov) model in Ref. [26]. Later, a comparative analysis
between the two models (the discrete SG model and the
FCU model) and the experimental results was performed
in an annular system of Josephson junctions in Ref. [14].
The authors showed that both the discrete SG model and
the FCU model agreed very well with experiments. The
influence of capacitive interaction was negligible, which led
to the conclusion that the conventional discrete SG model was
good enough to describe the experiments.

In order to calculate the I-V characteristic of the AAJJs we
have used Eq. (1) and the Josephson relation:

Vi = dϕi

dt
= ωJ , (2)

where Vi is the voltage of the ith junction normalized to V0 =
h̄ωp/2e, and ωJ is the Josephson frequency normalized to ωp.

Our numerical simulations were performed for the periodic
boundary conditions, which in discrete case have the form

ϕN+1 = ϕ1 + 2πM, ϕ0 = ϕN − 2πM, (3)

where M is the number of trapped fluxons inside the sys-
tem. The spatial points i = 0 and i = N + 1 were assumed
to be equivalent to i = N and i = 1, respectively. We have
applied the well-known procedure used in Refs. [27,28]. The
current was changed by step �I and for every value of I
the corresponding voltage V was calculated; in that way, the
I-V characteristic was produced. We note that the solution
at a certain value of I was used as the initial condition for
the calculation of the next point at the value of bias current
I + �I .

III. RESULTS

If no trapped fluxons are present in the system (M = 0),
one or more fluxon-antifluxon pairs, which appear as a soliton
solution of a dynamical equation, are circulating along the
system. Due to the presence of external radiation, in addition
to zero-field steps, the system will also exhibit Shapiro steps.
In Fig. 2 the I-V characteristic of the AAJJs in the presence
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FIG. 2. (a) The current-voltage characteristic of the annular array
of Josephson junctions for N = 10, a = 1, α = 0.1, and M = 0.
The amplitude and frequency of external radiation are A = 1 and
ω = 3.7, respectively. The units for I , V and ω are normalized to
Ic = 50 μA, V0 = 0.61 mV and ωp = 1.857 THz, respectively. The
numbers 2, 4, 6, and 8 mark the total number of fluxons and
antifluxons n. The zoomed parts of I-V characteristic correspond to:
(b) the harmonic step on the ZFS n = 8; (c) the halfinteger step on
the ZFS n = 4; and (d) the subharmonic step 1

5 on the ZFS n = 2.

of external radiation for M = 0 is presented. The units for
I , V , and ω are dimensionless and normalized to Ic = 50 μA,
V0 = 0.61 mV, and ωp = 1.857 THz, respectively, so that our
analyses have been performed in the experimentally relevant
regions of currents and voltages [14]. At first, it might appear
in Fig. 2(a) that the I-V characteristic exhibits only four ZFSs,
which appear when V , i.e., the Josephson frequency, satisfies
the resonant condition V = ωJ = 2πnu

L , where u is a speed
of moving fluxon (antifluxon). Considering that V ∼ n, the
I-V characteristic clearly shows that these steps correspond
to n = 2, 4, 6, and 8. Here, n = n f + na f = 2np + M is the
total number of excitations, i.e., fluxons and antifluxons in
the system, where n f , na f , and np are the number of fluxons,
antifluxons, and fluxon-antifluxon pairs, respectively. Since
our system is topologically closed M must be conserved, and
consequently for M = 0 the excitations appear only in the
form of fluxon-antifluxon pairs. However, the high-resolution
analysis reveals also the Shapiro steps that come from the
locking of Josephson frequency and the frequency of external
radiation. For a given external frequency ω = 3.7, the first
harmonic step appears on the n = 8 ZFS as can be seen in
Fig. 2(b), while Figs. 2(c) and 2(d) show the half integer 1

2ω

and the subharmonic step 1
5ω, which appear on the n = 4 and

n = 2 ZFS, respectively. We have examined the AAJJs for
a wide range of applied frequencies ω, and we were able to
obtain Shapiro steps in the whole area of the I-V characteristic
in Fig. 2.

If there are fluxons trapped in the system, the ability of
the system to exhibit Shapiro steps will completely change.

024512-2



AC-DRIVEN ANNULAR JOSEPHSON JUNCTIONS: THE … PHYSICAL REVIEW B 101, 024512 (2020)

I

V

0.2 0.40

2

4

6

3 1

5
7

ω=5, A=1
M=1

(a)

I
V

0.4 0.5
4

5

6(b)

I

V

0 0.2 0.4 0.6
0

0.2

0.4

(c)

I

V

0.35 0.4 0.45
0.495

0.5

0.505

ωJ=ωM/N

FIG. 3. (a) The current-voltage characteristic of the annular array
of Josephson junctions for M = 1, with the amplitude and frequency
of external radiation A = 1 and ω = 5, respectively. The rest of the
parameters are the same as in Fig. 2. The numbers 1, 3, 5, and 7 mark
the total number of fluxons and antifluxons n. (b) The absence of
the Shapiro step in the I-V curve. Dashed line marks where the step
should be. (c) High-resolution plot of the step n = 1, which exhibits
Shapiro step shown in the inset.

In Fig. 3 the I-V characteristic of the AAJJ with one trapped
fluxon (M = 1) is presented. Since in addition to the one
trapped fluxon, which is introduced through the boundary
condition in Eq. (3), the additional excitations appear only in
the form of fluxon-antifluxon pairs the system exhibits ZFSs
for n = 1, 3, 5, and 7. In this case, for the applied frequency
of the external radiation ω = 5, in Fig. 3(a) we would expect
to see the Shapiro step at V = 5 as well as other subharmonic
steps in the I-V characteristic. However, as we can see in
Fig. 3(b) there is no Shapiro step, and the only Shapiro step
we could detect was the step 1

10ω, which appears for n = 1 in
Fig. 3(c). We have to point out that while for the case M = 0
in Fig. 2 Shapiro steps appear due to locking between the
Josephson frequency and the frequency of external radiation,
i.e., always when ωJ is equal to some rational (integer or non-
integer) number of ω, in the case of trapped fluxons (see, e.g.,
M = 1 in Fig. 3), the trapped fluxons introduce an additional
time scale, and Shapiro steps come due to locking between the
frequency of circulating fluxons and the frequency of external
radiation, in which case the condition for their appearance,

I

V

0 0.1 0.2 0.3 0.4
0

0.2

0.4

ω=3.9, A=2
M=1

ωM/N=0.39

(a)

V=0.39

t

V

0 20 40

0

2
V=0.39

I

V

0 0.1 0.2 0.3 0.4
0

0.5

1

ω=12.2, A=2
M=1

ωM/N=1.22

(b)

V=1.22

no Shapiro step

t

V

0 20 40
0

5 V=1.22

FIG. 4. (a) The part of the I-V characteristic corresponding to the
step n = 1 for M = 1, ω = 3.9, A = 2. The rest of the parameters
are the same as in Fig. 2. (b) The part of the I-V characteristic
corresponding to the n = 3 ZFS for M = 1, ω = 12.2, A = 2. Insets
show the voltage-time dependence at the values of I marked by
arrows at which Shapiro steps should appear.

ωJ = Mω
N , is also determined by the number of trapped fluxons

M and the number of junctions N .
In Fig. 4 two I-V characteristics at two different values of

applied frequencies are presented. As in the previous case,
the Shapiro step appears in Fig. 4(a) at V = 0.39, when the
applied frequency is in the region of the step n = 1, i.e., in
the region where only one trapped fluxon rotates through the
system. On the other hand, if we increase the frequency to
the value, which corresponds to the higher steps (n > 1) in
I-V characteristic, no Shapiro steps appear as can be seen
for V = 1.22 at the n = 3 step in Fig. 4(b). The voltage-time
dependence given in the insets clearly shows the periodic
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FIG. 5. (a) The part of the I-V characteristic corresponding to the
step n = 2 for M = 2, ω = 4.375, A = 2. The rest of the parameters
are the same as in Fig. 2. (b) The part of the I-V characteristic
corresponding to the step n = 4 for M = 2, ω = 8.25, A = 2. Insets
show the voltage-time dependence at the values of I marked by
arrows at which Shapiro steps should appear.

behavior on the Shapiro step in Fig. 4(a), and the nonperiodic
one in Fig. 4(b) in its absence.

The situation remains unchanged if more fluxons are in-
troduced. In Fig. 5, the I-V characteristics for two trapped
fluxons M = 2 at two different values of applied frequencies
are presented. As we can see from the I-V characteristic
and the corresponding voltage-time dependence in Fig. 5(a),
again, Shapiro steps appear in the region, where only two
fluxons are present in the system. On the other hand, in
Fig. 5(b), where ω is in the region of the n = 4 step, i.e.,
in addition to two trapped fluxons there is also one fluxon-
antifluxon pair, there are no Shapiro steps.

When M = 0, we could create Shapiro steps anywhere
in the I-V characteristic, however, this was not the case for
M �= 0. We performed simulations for a wide range of system
parameters and obtained that if there were trapped fluxons,
regardless of the value of ω or A, Shapiro steps would appear
only in the part of the I-V characteristic which corresponds to
the step n = M (np = 0), where only trapped fluxons moved
through the AAJJs. If in addition to the trapped fluxons
there are also fluxon-antifluxon pairs, i.e., n = 2np + M (np �=
0), there would be no Shapiro steps. This leads us to the
conclusion that the appearance of Shapiro steps is somehow
determined by the type of excitations, and raises the question
of why for M �= 0 Shapiro steps do not exist if fluxons
and fluxon-antifluxon pairs simultaneously circulate in the
system.

In order to understand this fact let us consider first the case
of one trapped fluxon in the AAJJ. When M = 1, in the region
of the I-V characteristic, which corresponds to the n = 1 step,
we have only one circulating fluxon, so it will pass through
a junction at the equal time intervals, and consequently, this
periodic motion can get locked with some external periodic
radiation. In the same way, for any M �= 0 we will have n = M
fluxons circulating around the ring equally distributed in space
and time. As they move, they are passing through junctions in
equal time intervals and this motion can get locked with some
external frequency.

However, if in addition to trapped fluxons, we have also
fluxon-antifluxon pairs, the situation will be completely differ-
ent. Let us look at one example: the case of n = 3 excitations
present in the system. If we have one trapped fluxon and one
fluxon-antifluxon pair in which case n = 2 + 1 = 3, this will
be completely different from the case of 3 trapped fluxons,
for which the total number of excitations is also n = 3. Three
fluxons are always equally distributed in space and time and
rotate passing through junctions in the same time intervals.
This will change if instead we have two fluxons and one
antifluxon. Though they all move periodically, the antifluxon
is moving in the opposite direction of the two fluxons, and so
they are not any more equally distributed in space and time
(the distance between antifluxon and two fluxons is changing
as they move). Consequently, they will not pass through a
junction at the same time intervals, but the period between
two consecutive passages will constantly change, and for that
reason, it would be impossible for the system to lock with
external radiation.

IV. CONCLUSION

In conclusion, the examination of the fluxon dynamics
in an annular array of underdamped Josephson junctions
demonstrated that not only the number but also the type of
rotating excitations (fluxons or antifluxons) determined the
ability of the system to lock with the external radiation.
Regardless of the amplitude or frequency of the external
radiation, the current-voltage characteristic exhibits Shapiro
steps only in the system with trapped fluxons or in the
system with fluxon-antifluxon pairs. If the trapped fluxons
circulate simultaneously with fluxon-antifluxon pairs, there
are no Shapiro steps. The obtained results are generic since
regardless of system parameters the type of excitations present
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in the system determines the way the system locks with the
external radiation (locking of the external radiation with the
Josephson frequency in the case without trapped fluxons or
locking with the frequency of circulating fluxons when they
are trapped) and most importantly, its ability to exhibit that
locking. Though this phenomenon of missing Shapiro steps
was observed in one particular system, the AAJJ, it could
be relevant for any system where dynamics is governed by
the moving fluxons and antifluxons since any disbalance be-
tween their numbers will change the system behavior. Further
investigations certainly require experimental observation of
this effect and the settings as in Ref. [14], for instance,
could be applied, which would be the subject of our future
studies.

Annular Josephson junctions possess an enormous poten-
tial for various technological applications. The fluxon dy-
namics, as well as resonance phenomena, are in the core of
some of the most advanced ideas in superconducting digital
technologies [1–7]. Another interesting application of annular
Josephson junctions is in superconducting metamaterials [29],
whose generic element is a superconducting ring split by
a Josephson junction. One of the most recent studies has

been dedicated to the resonant response of such metama-
terials to the external signal in strongly nonlinear regimes
[29]. Regardless of the field in which the annular Josephson
junctions have the application, a good theoretical guideline
and their understanding are crucial. We hope that this work
contributes to that understanding and that it will motivate
further theoretical and experimental studies.
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