
PHYSICAL REVIEW B 101, 024503 (2020)
Editors’ Suggestion

Kohn-Luttinger correction to Tc in a phonon superconductor

Dan Phan and Andrey V. Chubukov
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 10 October 2019; revised manuscript received 27 November 2019; published 6 January 2020)

Weak coupling theory predicts the critical temperature of a phonon superconductor to be Tc =
1.13e−3/2ωDe−1/λ, where ωD is the Debye frequency, λ is the dimensionless electron-phonon coupling constant,
and the factor e−3/2 comes from fermionic self-energy and frequency dependence of the interaction. Other
corrections are small either in ωD/EF , by Migdal’s theorem, or in λ. However, this formula assumes that
ωD � EF , where EF is the Fermi energy. We obtain Tc in the dilute regime, when the Fermi energy is smaller
than ωD. We argue that in this situation Migdal’s theorem is no longer valid, and Kohn-Luttinger-type corrections
to the pairing interaction must be included to obtain the correct prefactor for Tc.
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I. INTRODUCTION

This paper is devoted to the calculation of superconducting
Tc with the prefactor for phonon-mediated superconductivity
in quasi-2D systems at weak coupling, in the small density
limit, when the Debye frequency is larger than the Fermi
energy.

The BCS theory of phonon-mediated superconductivity
[1] predicts the value of superconducting Tc = 1.13ωDe−1/λ.
The derivation of this formula uses three approximations.
First, the frequency-dependent attraction, mediated by an
Einstein phonon with frequency ωD, is replaced by a con-
stant within a shell of width ωD around the Fermi surface.
Second, a weak coupling is assumed (dimensionless λ �
1) and all corrections of O(λ) are neglected. Third, ωD is
assumed to be much smaller than EF , where EF is the Fermi
energy, and all corrections small in ωD/EF are neglected
as well.

Subsequent studies have found that O(λ) corrections to
the exponent in the BCS formula for Tc actually cannot be
neglected because they change the prefactor in Tc by a factor
O(1).

These corrections were studied in detail in the limit EF �
ωD for phonon-mediated pairing [2–8] as well as in the
more general case involving an arbitrary noncritical bosonic
propagator [9].

The corrections were argued to originate from the
fermionic self-energy and the frequency dependence of the
actual phonon-mediated interaction V (ωm, ω′

m) ∝ ω2
D/[(ωm −

ω′
m)2 + ω2

D]. The self-energy �(ωm) = iλωm changes 1/λ

in the exponent to (1 + λ)/λ = 1/λ + 1, which changes
the prefactor for Tc by e−1. The frequency dependence of
the interaction additionally changes 1/λ to (1 + λ/2)/λ =
1/λ + 1/2, i.e., changes the prefactor by e−1/2. The full
prefactor of Tc is then e−3/2, i.e., with these correc-
tions Tc = 1.13e−3/2ωDe−1/λ = 0.252ωDe−1/λ. Vertex correc-
tions, which give rise to Kohn-Luttinger (KL)-type renor-
malization of the pairing vertex, also change the argu-
ment of the exponent by O(λ). However, in the adia-
batic regime where EF � ωD these corrections are smaller

by O(ωD/EF ) by Migdal’s theorem and can be safely
neglected.

The goal of this work is to obtain expressions for Tc with
accurate prefactors in the situation when the coupling is still
weak, but the density of carriers is sufficiently low such that
EF < ωD. Superconductivity in this limit has attracted high
interest in recent years chiefly due to advances in experi-
mental studies of SrTiO3, where superconductivity is present
at carrier densities as low as n ∼ 1018 cm−3 [10–12], and
in other low-density materials, like Pb1−xTlxTe [13], half-
Heusler compounds [14], and single-crystal Bi [15]. A full
analysis of superconductivity in these systems requires one
to analyze the combined effect of phonon-mediated attraction
and electron-electron repulsion [10–39]. In this work we con-
sider only the attractive part of the interaction and explicitly
compute Tc in the low-density limit. We hope our results can
be used as input for future calculations of Tc which include
electron-electron interactions.

The limit EF � ωD is often associated with Bose-Einstein
condensation (BEC) behavior, in which fermions form bound
pairs at a pairing instability temperature Tins, which then
condense at a smaller Tc. However, in three dimensions (3D),
BEC behavior only holds at strong coupling, since there is a
threshold on bound state formation. In our study we consider
pairing in a quasi-two-dimensional (2D) system where the
crossover from BCS to BEC behavior already holds at weak
coupling and can be analyzed in a controllable way. We will
obtain the pairing instability temperature at weak coupling as
a function of the two scales: EF and E0 = ωDe−2/λ, which
denote the Fermi energy and the bound-state energy of two
fermions in vacuum, respectively (note that since we are
working at weak coupling, E0 � ωD). For notational conve-
nience we label this temperature Tc with the understanding
that this is the onset temperature for the pairing; the actual
superconducting Tc is somewhat smaller due to the destructive
effect from phase fluctuations [7,40–42].

Our key results are summarized in Table I and Fig. 5.
We obtained expressions for Tc with accurate prefactors in
three regimes: EF � ωD, ωD � EF � E0, and E0 � EF .
In each regime O(λ) corrections to the exponent in the
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TABLE I. The summary of the analytic results of this paper. The
values of corrected Tc include the contributions of the self-energy,
the frequency dependence of the pairing vertex, and the dressing of
the interaction.

Tc without Tc including
corrections corrections μ(Tc )

ωD � EF 1.13ωD exp(−1/λ) 0.25ωD exp(−1/λ) EF

E0 � EF � ωD 1.13
√

EF E0 0.12
√

EF E0 EF

EF � E0 E0/ log(E0/EF ) 4.48E0/ log(E0/EF ) −4.48E0

weak-coupling formula for Tc give rise to O(1) numerical
factors. At EF � ωD, these corrections come from fermionic
self-energy and from frequency dependence of the interaction,
while KL corrections are small in ωD/EF and can be ne-
glected. In the other two regimes KL corrections are relevant
and must be included to get right prefactor for Tc. In particular,
deep in the anti-adiabatic regime, when EF � E0 � ωD, KL
corrections increase the value of Tc. We also compute Tc

numerically for values of EF across these regimes and find
good agreement between numerical and analytic results.

That KL corrections to the pairing interaction are relevant
at small EF is not obvious, since these corrections come
from the particle-hole channel. At low carrier density, i.e.,
at small enough EF , the value of μ(Tc) is negative. In this
situation a particle-hole bubble, taken alone, vanishes because
at μ(Tc) < 0 the poles in the two Green’s functions in the
bubble are in the same half-plane of complex frequency. If
the pairing interaction is frequency independent, then all KL-
type corrections to the pairing interaction (which here are
proportional to particle-hole bubbles) therefore vanish [7,43].
However, our interaction V0(ωm, ω′

m) ∝ ω2
D/[(ωm − ω′

m)2 +
ω2

D] is dynamical and has poles in both half-planes of fre-
quency. The KL correction to the pairing interaction is a con-
volution of the two fermionic Green’s functions and the dy-
namical interaction, which does not vanish after frequency in-
tegration, even in the limit where EF approaches 0. To be pre-
cise, this statement holds when the bandwidth is much larger
than all other energy scales in the problem. For a general band-
width �, the KL correction is a function of �/ωD and EF /ωD.
In our analysis we assume that � � ωD. In the opposite limit
where � � ωD, the interaction can be approximated by its
static form, and one retrieves previous results [7,43] that KL
corrections are irrelevant (see below and Appendix C).

We consider a model of 2D fermions with isotropic
dispersion εk = k2/2m − μ and effective dynamical

interaction V0(ωm, ω′
m) = −gω2

D/[(ωm − ω′
m)2 + ω2

D]. The
dimensionless coupling λ is defined as λ = gN0, where N0 =
m/2π is the 2D density of states per spin. We follow earlier
works [19,39,44] and assume that the RPA-type screening is
already included into V0(ωm, ω′

m). Accordingly, we exclude
the screening diagram from KL renormalizations. The
resulting contributions to the effective interaction are shown in
Fig. 1.

Our work complements several recent mean-field studies of
superconductivity at low carrier density in both 3D and quasi-
2D systems. The analysis of Tc at EF � ωD in quasi-2D sys-
tems up to an overall factor has been done in Refs. [7,40,41]
and we use the results of these works as an input for our
calculations of Tc with the prefactor. In Ref. [45] the authors
analyzed the mean-field Tc in a 3D Bardeen-Pines type model
with effective phonon-mediated attraction. However, these
calculations do not extend to the BEC regime.

In Ref. [46] the authors analyzed the combined effect of
electron-electron and electron-phonon interactions at weak
coupling, within the mean-field (ladder) approximation and
obtained Tc up to a prefactor. Our results pave the way toward
extending the work in Ref. [46] to obtain Tc with the accurate
prefactor.

References [22,25] computed Tc for a model with electron-
electron and electron-phonon interactions within the Eliash-
berg formalism. This formalism includes self-energy correc-
tions and corrections due to the frequency dependence of the
interaction, but neglects KL renormalization of the pairing in-
teraction in the particle-hole channel. Several other works also
analyzed superconductivity at low carrier density assuming
the system is close to a ferroelectric quantum-critical point
[21,32,47]. Here again we argue that KL renormalizations
must be included to obtain the onset temperature of the pairing
with the exact prefactor.

The paper is organized as follows. In the next section we
briefly review mean-field calculations of Tc up to a prefactor
at EF � ωD, ωD � EF � E0, and E0 � EF . In Sec. III we
compute O(1) corrections to Tc from fermionic self-energy
and the frequency dependence of the interaction in the three
ranges of EF , and then discuss KL corrections to the pairing
interaction. We then combine all O(1) corrections and present
the results for the onset temperature of the pairing in the three
ranges of EF . In Sec. IV we present the results of our numer-
ical calculations of Tc. In Sec. V we present our conclusions.
In Appendix A we discuss in detail the calculations of the
KL corrections in the three regimes EF � ωD, E0 � EF �
ωD, and EF � E0. In Appendix B we discuss numerical
calculations of Tc for a given EF . Finally, in Appendix C we

FIG. 1. The diagrammatic expansion of our irreducible pairing interaction (the double wavy line). The single wavy line is the phonon-
mediated interaction V0(�m ) = −gω2

D/(�2
m + ω2

D). We have ignored conventional screening (a diagram with an internal particle-hole bubble),
as this is already included in the bare interaction for our analysis (a screened combined Coulomb and electron-phonon interaction, the attractive
part of which is V0(�m ), see Refs. [16–18,22,23,39,45,46]).
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FIG. 2. (a) The equation for the pairing vertex shown diagrammatically, within the BCS approximation. The fermionic Green’s functions
are bare, and the pairing interaction (dashed line) is treated as a step function. (b) The full equation for the pairing vertex. The Green’s functions
are fully dressed, and the interaction not only has the correct frequency dependence, but is dressed by Kohn-Luttinger contributions.

discuss how KL corrections get modified for a finite fermionic
bandwidth.

II. Tc TO LOGARITHMICAL ACCURACY

In this section we briefly review the derivation of Tc to
logarithmical accuracy (i.e., at weak coupling, up to an overall
prefactor). We will find that there are three different expres-
sions for Tc for EF � ωD, ωD � EF � E0, and E0 � EF .

To obtain Tc to logarithmical accuracy, we begin with the
BCS equation for the pairing vertex, shown in Fig. 2(a). Here
the phonon-mediated interaction is approximated by a step
function V0(�m) = −g	(ωD − |�m|). The equation for the
pairing vertex therefore becomes


(ωm) = gTc

∑
�m

∫
d2q

(2π )2
G(q)G(−q)

× 	(ωD − |�m − ωm|)
(�m), (2.1)

where G(q) = (i�m − εq)−1 is the undressed electronic
Green’s function, εq = q2/2m − μ(T ) is the shifted electron
energy, and μ(Tc) is the chemical potential of our system
at Tc.

The chemical potential as a function of temperature μ(Tc)
is determined by the constraint of fixed particle number:

n = 2Tc

∑
ωm

∫
d2 p

(2π )2
G(p). (2.2)

Upon insertion of the above form of G(p), one obtains an
expression for μ(Tc).

The conventional approximation, valid to logarithmical
accuracy (i.e., to leading order in λ), is to take 
(ωm) as
independent of ωm for |ωm| � ωD and ignore complications at
|ωm| ∼ ωD. Setting 
(ωm) = 
 and canceling it in Eq. (2.1)
we obtain

1 = gTc

∑
�m

∫
d2q

(2π )2
G(q)G(−q)	(ωD − |�m − ωm|). (2.3)

The simultaneous solution of (2.3) and (2.2) gives Tc and
μ(Tc), which for notational convenience we henceforth la-
bel μc. Integrating over momentum in Eq. (2.3) and using

n = 2N0EF , we obtain

1 = λTc

∑
|�m|<ωD

1

|�m|
[
π

2
+ arctan

(
μc

|�m|
)]

(2.4)

and

μc = Tc log[exp(EF /Tc) − 1], (2.5)

where λ = gN0. Below we present the solution of Eqs. (2.4)
and (2.5) in three ranges of values for EF . As we will see,
Tc � ωD for all EF .

A. EF � ωD

In the range where EF � ωD, we clearly have EF � Tc.
Applying this to the formula for the chemical potential, we
find μc ≈ EF . Hence, μc/|�m| > EF /ωD � 1 for all |�m| <

ωD, and we can safely approximate arctan(μc/|�m|) by π/2.
Equation (2.4) then becomes

1 = λπTc

∑
|�m|<ωD

1

|�m| (2.6)

= λ log

(
2eγ ωD

πTc

)
, (2.7)

from which we find Tc = 1.13ωD exp(−1/λ), the usual BCS
result. The sum was done using the Euler-Maclaurin formula,
using Tc � ωD.

B. E0 � EF � ωD

As EF decreases, we enter the regime where EF � ωD, but
EF � E0 ≡ ωD exp(−2/λ). In this range we will assume and
later verify that we still have μc ≈ EF , and Tc � EF . Equation
(2.4) then becomes

1

λ
= 1

2
log

(
2eγ ωD

πTc

)
+ T

∑
|�m|<ωD

1

|�m| arctan

(
μc

�m

)
. (2.8)

In the second term, it is unnecessary to consider the cutoff
at ωD since the sum converges at |�m| ∼ μc � ωD. The
sum can be done using the Euler-Maclaurin formula, and the
equation for Tc becomes

1

λ
= 1

2
log

(
2eγ ωD

πTc

)
+ 1

2
log

(
2eγ μc

πTc

)
. (2.9)
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Solving for Tc and using μc ≈ EF , we find Tc =
1.13

√
ωDEF exp(−1/λ) = 1.13

√
EF E0. Substituting this ex-

pression for Tc back into (2.5), we verify that μc ≈ EF .

C. EF � E0 � ωD

As we further decrease EF , we enter the regime where
EF is much smaller than both E0 and ωD. To calculate Tc

in this limit, we will assume and then verify that EF � Tc

and |μc| � ωD. Using the first assumption, we find μc ≈
Tc log(EF /Tc) < 0 and |μc| � Tc. Combining this with the
second assumption, we have ωD � |μc| � Tc. The equation
for Tc [Eq. (2.4)] therefore becomes

1

λ
= 1

2
log

(
2eγ ωD

πTc

)
− Tc

∑
�m

1

|�m| arctan

( |μc|
�m

)
(2.10)

= 1

2
log

(
2eγ ωD

πTc

)
− 1

2
log

(
2eγ |μc|

πTc

)
(2.11)

= 1

2
log

(
ωD

|μc|
)

. (2.12)

Hence

|μc| = ωD exp(−2/λ) = E0, (2.13)

and we see that |μc| � ωD, as assumed. Using |μc| =
Tc log (Tc/EF ), we find

Tc = E0

log(E0/EF )
(2.14)

to leading order in log(E0/EF ). This justifies our assumption
that Tc � EF .

We reiterate that this temperature should be understood
to be the pairing instability temperature rather than the ac-
tual transition temperature, below which the system develops
long-range superconducting order. The latter is smaller due
to the destructive effect of phase fluctuations. Though this
distinction holds for all values of EF , it is in this low-density
limit that the effect of phase fluctuations is most pronounced.

We also emphasize that Eq. (2.14) is valid only to logarith-
mical accuracy, i.e., up to numerical prefactors. To get Tc with
correct prefactors, one must include all corrections of O(λ).
This is done in the following section.

III. O(1) CORRECTIONS TO Tc FROM THE
SELF-ENERGY, FREQUENCY DEPENDENCE OF THE

INTERACTION, AND KL RENORMALIZATIONS

To illustrate the point that O(1) corrections to Tc come from
O(λ) corrections to BCS theory, consider Eq. (2.6) with an
additional term Cλ. We have

1 = λ log
2eγ ωD

πTc
+ Cλ (3.1)

= λ log
2eγ eCωD

πTc
. (3.2)

Solving for Tc we obtain Tc = 2eγ eC

π
ωDe−1/λ. We see that

the exponent e−1/λ is unchanged, but the prefactor has been
modified by a constant eC . Hence, terms of order O(λ) will

Einstein

BCS

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. The Einstein and BCS approximation to the interaction
potential, in units of −g.

affect the prefactor for Tc. This reasoning applies for all values
of EF .

To take O(λ) corrections into account, we write down the
linearized equation for the full pairing vertex 
(ωm, k). It is
given diagrammatically by Fig. 2(b). In analytical form we
have


(ωm, k) = −Tc

∑
�m

∫
d2q

(2π )2
G(�m, q)G(−�m,−q)

× Veff (ωm, k; �m, q)
(�m, q), (3.3)

where G(�m, q) is the Green function for interacting
fermions, and Veff (ωm, k; �m, q) is the irreducible dynamical
interaction in the particle-particle channel, dressed by renor-
malizations from the particle-hole channel. Equation (3.3)
must be solved along with the equation for chemical potential
[Eq. (2.5)] with the full fermionic G) simultaneously for Tc

and μc. For our isotropic dispersion, the pairing problem de-
couples between harmonics with different angular momentum
l . Since we are interested in Tc in the s-wave channel, the
corresponding pairing vertex is 
(ωm, k) = 
(ωm).

In the previous section we approximated G(�m, q) by
its bare value G0(�m, q) = (i�m − εq)−1 and the irreducible
pairing interaction by a step function V0(ωm) → −g	(ωD −
|ωm|). Accordingly, we approximated the s-wave pairing ver-
tex 
(ωm) by frequency-independent 
.

To find corrections O(λ) we must go beyond these approx-
imations in three different directions:

(1) We must include O(λ) renormalization of the electron
Green’s function G(�m, q).

(2) We must take into account the frequency dependence
of the bare phonon-mediated interaction V (�m) and solve for
the frequency dependent 
(ωm). The frequency-dependence
of the Einstein phonon-mediated interaction is shown in
Fig. 3.

(3) We must include KL corrections, which account for
the difference between V0(ωm; �m) and Veff (ωm, k; �m, q).

We emphasize that we are only interested in O(λ) correc-
tions to the argument in the exponent for Tc—these give rise
to O(1) renormalizations of the prefactor for Tc. Accordingly,
we neglect regular O(λ) corrections to Tc. In the following we
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consider each correction individually and later add the results,
which is legitimate to O(λ).

A. Corrections from the fermionic self-energy

The fermionic self-energy renormalizes the coupling λ into
λ∗ = λ/Z , where Z = 1 − id�(ωm)/dωm. The one-loop self-
energy is shown in Fig. 4 and is given by

�(ωm, k) = Tc

∑
m

∫
d2q

4π2
G0(�m, q)V0(�m − ωm), (3.4)

where we remind V0(�m) = −g ω2
D

ω2
D+�2

m
. Performing the Mat-

subara sum, we obtain

�(ωm, k) = �(ωm) = λ

2
ωD

∫ ∞

−μc

dε

(
nF (ε) + nB(ωD)

ε − iωm − ωD

+1 − nF (ε) + nB(ωD)

ε − iωm + ωD

)
. (3.5)

Because Tc is exponentially small, and �(ωm) already con-
tains λ in the prefactor, the self-energy can be safely
approximated by its value at T = 0, where nF (ε) = 	(−ε)
and nB(ωD) = 0. We then end up with two expressions, de-
pending on the sign of μc.

1. μc > 0

Here

�(ωm) = �(0) + λωD

2

[
log

(
ωD + iωm

ωD − iωm

)

− log

(
μc + ωD + iωm

μ + ωD

)]
. (3.6)

Because the relevant ωm are of order Tc, i.e., exponentially
smaller than ωD, one can expand in ωm. This gives

Z = 1 + λ

2

2μc + ωD

μc + ωD
. (3.7)

At EF � ωD, μc ≈ EF � ωD, and Z = 1 + λ. This is a well-
known result [48]. At E0 � EF � ωD, we have μc ≈ EF �
ωD, and Z = 1 + λ/2 instead.

2. μc < 0

For μc < 0, only one of the two integrals survives. Now

�(ωm) − �(0) = λωD

2
log

( |μc| + ωD

|μc| + ωD − iωm

)
. (3.8)

This yields

Z = 1 + λ

2

ωD

|μc| + ωD
. (3.9)

Since |μc| � ωD for negative μc, we have Z = 1 + λ/2.

TABLE II. The summary of the analytic results of this paper
regarding modifications to the prefactor of Tc from all corrections of
O(λ). Also listed is the total correction to the prefactor of Tc, obtained
by multiplying the factors from each contribution together.

�(ωm ) 
(ωm ) KL Total

ωD � EF e−1 e−1/2 1 e−3/2

E0 � EF � ωD e−1/2 e−1/4 e−3/2 e−9/4

EF � E0 e−1 e−1/2 e3 e3/2

Equations (3.6) and (3.8) can be combined into

�(ωm) = �(0) + iωm
λ

2

|μc| + μc + ωD

|μc| + ωD
, (3.10)

which holds for both positive and negative μc.
With this, we may now derive modified expressions for Tc

in all three regimes of EF , by simply replacing λ → λ∗ = λ/Z
in the expressions for Tc in the previous section. The effect
on the prefactor of Tc due to the inclusion of the self-energy
in all three cases is summarized in Table II. We recall that
Tc ∝ e−1/λ when EF � E0 and Tc ∝ e−2/λ when EF � E0. In
all cases, including the self-energy reduces Tc.

B. Correction to Tc from the frequency dependence of V0(�m)

Next we obtain the O(1) correction to Tc from the
frequency dependence of the electron-phonon interac-
tion V0(�m). For EF � ωD, this has been considered in
Refs. [2–6,8,49]. We analyze the correction to Tc in all three
regions of EF . We follow the computational approach used in
[8,49].

We start with the Eq. (3.3) for the frequency-dependent
pairing vertex at Tc, which we rewrite as


(ωm) = λ

N0
Tc

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

ω2
D

ω2
D + (ωm − �m)2

× 
(�m). (3.11)

The leading, logarithmical contribution to the r.h.s. of (3.11)
comes from small internal �m, for which 
(�m)/[ω2

D +
(ωm − �m)2] ≈ 
(0)/(ω2

D + ω2
m). Accordingly, we search for

the solution of (3.11) in the form


(ωm) = 
(0)

(
ω2

D

ω2
D + ω2

m

+ λδ
(ωm)

)
. (3.12)

We substitute this into (3.11) and set external ωm to have
the smallest possible value, ωm = πTc. Because Tc is much
smaller than typical �m in all three regimes, we can safely
neglect ωm = πTc compared to �m on the r.h.s. of (3.11). We

FIG. 4. The fermionic Green’s function to first order in the interaction. The tadpole correction (not shown) is already incorporated into μc.
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find

1 + λδ
(0) = λ

N0
Tc

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

ω2
D

ω2
D + �2

m

×
(

ω2
D

ω2
D + �2

m

+ λδ
(�m)

)
. (3.13)

To the same accuracy, the last term on the right-hand side can
be approximated as

λδ
(0)I, (3.14)

where

I = λ

N0
Tc

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

ω2
D

ω2
D + �2

m

. (3.15)

One can verify that I = 1 + O(λ). Substituting this back into
(3.13), we obtain

λ

N0
Tc

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

(
ω2

D

ω2
D + �2

m

)2

= 1 + λδ
(0)(1 − I ) = 1 + O(λ2). (3.16)

To order O(λ) we then have

λ

N0
Tc

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

(
ω2

D

ω2
D + �2

m

)2

= 1. (3.17)

Comparing this with Eq. (3.3), we see that the effect of the
frequency dependence of the pairing vertex is that 	(ωD −
|�m|) → [ω2

D/(ω2
D + �2

m)]2. This difference becomes rele-
vant at frequencies comparable to ωD.

Integrating over momentum in (3.17) we find

1 = λTc

∑
�m

(
ω2

D

ω2
D + �2

m

)2 1

|�m|
[
π

2
+ arctan

(
μc

|�m|
)]

.

(3.18)

At EF � ωD, this reduces to

1 = λπTc

∑
�m

(
ω2

D

ω2
D + �2

m

)2 1

|�m| = log
2eγ ωD

πTc
√

e
. (3.19)

Comparing with Tc in the previous section, we see that Tc is
reduced by

√
e.

For EF � ωD, recall that the second term on the r.h.s.
of Eq. (3.18) converges at |�m| ∼ |μc| � ωD. Therefore, the
modification 	(ωD − |�m|) → [ω2

D/(ω2
D + �2

m)2]2 has no ef-
fect on this sum. In this situation, the renormalization factor
for Tc comes only from the π/2 term, and equals 1/e1/4

instead of 1/
√

e. For smaller Fermi energies (EF � E0), the
only contribution to the renormalization is again from the π/2
term on the r.h.s. of Eq. (3.18). However, since Tc ∝ e−2/λ, the
renormalization factor is (1/e1/4)2 = 1/

√
e.

C. KL renormalization of the pairing interaction

We now take into account the first-order KL correc-
tion to the interaction. We express the dressed interac-
tion as Veff (ωm, k; ω′

m, k′) as Veff (ωm, k; ω′
m, k′) = V0(ωm −

ω′
m) + λδV (ωm, k; ω′

m, k′) + O(λ2). The point of this sec-
tion is to calculate the effect of λδV (ωm, k; ω′

m, k′) on Tc.
For convenience, we pull out the coupling constant g and
express Veff (ωm, k; ω′

m, k′) = −gDeff (ωm, k; ω′
m, k′), where

Deff (ωm, k; ω′
m, k′) = D0(ωm − ω′

m) + λδD(ωm, k; ω′
m, k′) is

dimensionless.
The KL diagrams for δD(ωm, k; ω′

m, k′) are shown in Fig. 1.
There are three first order corrections to the bare interaction.
The first two describe vertex corrections, and the third is the
exchange (crossing) diagram.

Before calculating δD(ωm, k; ω′
m, k′) explicitly, we show

how it modifies Tc. For this we go back to Eq. (3.3) for the
pairing vertex 
(ωm, k), explicitly express Veff as the sum
of the two terms, and neglect other O(λ) corrections, i.e.,
approximate G by its free fermion value and approximate
V (�m) by a step function. The equation for the pairing vertex
then reduces to


(ωm, k) = λ
Tc

N0

∑
�m

∫
d2q

(2π )2

1

�2
m + ε2

q

[	(|�m − ωm| − ωD)

+ λδD(ωm, k; �m, q)]
(�m, q). (3.20)

Due to the factor of (ε2
q + �2

m)−1, the integrand peaks
at q = kμ ≡ √

2mμc for μc > 0 and at q = 0 for μc < 0.
In δD(ωm, k; �m, q) we then set k = nkkμ	(μc) and q =
nqkμ	(μc). Like before, we set ωm = πTc and set the pairing
vertex to be a nonzero constant for |ωm| < ωD and 0 for
|ωm| > ωD, mirroring the frequency dependence of the bare
interaction. We then obtain

1 = λ
Tc

N0

∑
|�m|<ωD

∫
d2q

(2π )2

1

�2
m + ε2

q

+ λ2 Tc

N0

∑
|�m|<ωD

∫
d2q

(2π )2

1

�2
m + ε2

q

× δD[0, nkkμ	(μc); �m, nqkμ	(μc)]. (3.21)

For the last term there is a logarithmical contribution com-
ing from small frequencies around �m = 0, which cancels
one power of λ. Accordingly, we set �m = 0 in δD. Typical
momenta are around q = kμ	(μc). Thus, when μc > 0, these
momenta are around the Fermi surface. for μc < 0, they are
around q = 0. Accordingly, for μc < 0, we set the momenta
in δD to zero. Taking into account finite momenta would lead
to additional O(λ2) term on the r.h.s. of (3.21), which we do
not need.

The part of the KL interaction relevant for our purposes,
is therefore δD[0, nkkμ	(μc); 0, nqkμ	(μc)]. We still need
to integrate over the angle between nk and nq as we are
computing Tc for s-wave pairing. We therefore define δD =∫ 2π

0
dθ
2π

δD(θ ), where θ is the angle between nk and nq. Using
that to first order in λ,

λ
Tc

N0

∑
|�m|<ωD

∫ ∞

0

qdq

2π

1

�2
m + ε2

q

= 1, (3.22)

we obtain from (3.21)

λ
Tc

N0

∑
|�m|<ωD

∫
d2q

(2π )2

1

�2
m + ε2

q

= 1 − λδD + O(λ2). (3.23)
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We see that the KL renormalization of the interaction changes
1/λ to 1/λ − δD. For EF � E0, Tc ∝ e−1/λ then acquires a
factor eδD. For EF � E0, Tc ∝ e−2/λ, and the factor is e2δD.

The calculation of δD is somewhat involved and is pre-
sented in Appendix A. The results are as follows: for EF �
ωD, δD is small in ωD/EF , in agreement with Migdal’s
theorem. At E0 � EF � ωD, we find δD = −3/2, so the KL
renormalization reduces Tc by e3/2. At EF � E0, we find
δD = 3/2. Hence, the KL renormalization increases Tc by e3.
In the last regime, μc < 0 and we take δD(θ ) = δD(0, 0; 0, 0)
to be constant. As before, this is since we are keeping O(λ)
terms and neglecting terms of O(λ2).

The sign change of δD between E0 � EF � ωD and EF �
E0 is specific to 2D and can be understood by analytically
computing δD at T = 0. The sign change occurs at E0 ∼ EF ,
when μc changes sign. To see this, we note that each diagram
for δD in Fig. 1 is the convolution of the interaction V0(�m)
and two Green’s functions. For EF ∼ E0 � ωD, the relevant
internal momenta and frequencies in the Green’s functions are
much larger than the relevant external ones. Therefore, up to
an overall factor, each KL term is given by

J =
∫ ∞

−∞
d�m

ω2
D

�2
m + ω2

D

∫ �

−μ

dε

(i�m − ε+)(i�m − ε−)
, (3.24)

where we have introduced a cutoff �, and ε+ and ε− are
the energies for two nearly coinciding momenta. That is, the
difference between relevant ε+ and ε− are on the order of
|μc| � ωD, while typical ε+ and ε− are on the order of ωD.

The integral over �m and ε in (3.24) is not singular and
can be integrated in any order. Let us first integrate over �m.
Consider the case μc < 0. Since ε+, ε− > 0 for negative μc,
the frequency integral is entirely determined by the pole in the
bosonic propagator at �m = iωD. Once this pole is taken, we
can safely set ε+ = ε− = ε and integrate over dispersion. The
integrand is singularity free, and we obtain

Jμc<0 = π
ωD

ωD + |μc|
� − |μc|
� + ωD

. (3.25)

For positive μc there are two contributions to J:
Jμc>0 = J1,μc>0 + J2,μc>0. The contribution (J1,μc>0) again
comes from the pole in the bosonic propagator. For this one
can set, as before, ε+ = ε− = ε and take the pole of V0(�m)
in the frequency half-plane where there is no double pole in
the fermionic propagator. Afterwards, one can integrate over
ε. This procedure is again free from singularities, and the
result is

J1,μc>0 = π
ωD

ωD + μc

� + μc

� + ωD
+ 2π

�μc

(ωD + μc)(� + ωD)
.

(3.26)

At μc = 0, this term coincides with the one in Eq. (3.25).
The second contribution comes from the split poles in

the fermionic propagators, from the range where ε+ and ε−
have opposite signs. Because |μc| is much smaller than ωD,
the corresponding �m are small compared to ωD. The term
J2,μc>0 is then, up to an overall factor, the product of the
static interaction [set equal to 1 in Eq. (3.24)] and the static
particle-hole susceptibility. The latter is independent of μc(for

μc > 0) in 2D and is equal to −2π . We hence have

J2,μc>0 = −2π. (3.27)

Combining Eqs. (3.26) and (3.27), we find that near μc = 0,
Jμc>0 has an additional −2π compared to Jμc<0:

Jμc>0 = π
ωD

ωD + μc

� + μc

� + ωD
− 2π

ωD(� + ωD + μc)

(ωD + μc)(� + ωD)
.

(3.28)

Therefore, the KL contribution to the pairing vertex, and
hence, to the prefactor of Tc, jumps by a finite value between
EF � E0, where μc > 0 and EF � E0, where μc < 0.

This discontinuity is in fact artificial, because we computed
J at T = 0, when the static particle-hole susceptibility χ (μc)
is discontinuous at μc = 0. At finite T = Tc, it is continu-
ous, but varies rapidly in the range |μc| � Tc. Accordingly,
the KL correction to the exponent is continuous, but varies
rapidly around EF ∼ E0. We note in passing that the same
discontinuity between Jμc>0 and Jμc<0 can be obtained if one
approximates V0(�m) by a step function.

We also note that the magnitude of the KL renormalization
for μc < 0 depends on the ratio �/ωD. For � � ωD, the
magnitude of the KL correction is the same at positive and
negative μc, only the sign is different: Jμc<0 ≈ π, Jμc>0 ≈
−π . For � � ωD, the KL renormalization at μc < 0 becomes
parametrically small: Jμc<0 ≈ π�/ωD � 1. This last result
is consistent with earlier studies, which have found [7,43]
that for a static interaction the KL renormalization vanishes
for μc < 0. To verify this, it is convenient to evaluate Jμc<0

by integrating over ε first. Doing so, one finds that typical
frequencies are of order �. Hence, for � � ωD the interaction
term ω2

D/(ω2
D + �2

m) can be treated as static.

D. Total O(λ) corrections to the exponent,
and the renormalization of Tc

We now combine the renormalizations from self-energy,
frequency dependence of the interaction, and KL renormaliza-
tion. To first order in λ, the numerical prefactor for Tc is the
product of the renormalizations from these three sources. Our
analytical results for these prefactors are shown in Table II.

1. The case EF � ωD

Here only self-energy and frequency dependence of the
interaction affect the prefactor for Tc. The result is

Tc = 0.252ωD exp(−1/λ). (3.29)

This formula has been obtained earlier [2–6,8,49], and is
presented here for completeness.

2. The case E0 � EF � ωD

In this regime we have

Tc = 2eγ

π
e−1/4eδD

√
ωDEF exp(−Z/λ) (3.30)

= 0.12
√

ωDEF exp(−1/λ). (3.31)
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FIG. 5. Tc as a function of EF in the three regimes EF � ωD, ωD � EF � E0, and E0 � EF . The orange curves are our analytic
expressions for Tc, derived in each region. At EF � E0 we included into the analytical expression the leading corrections to Tc of order
O[log log(E0/EF )/ log(E0/EF )]. Our numerical results for Tc were found by self-consistently solving for Tc and μc as a function of EF . We
used λ = 0.2, whereby E0 ≈ 0.45 × 10−4ωD. The limiting value of Tc at large EF /ωD is Tc = 0.252ωDe−1/λ ≈ 1.7 × 10−3ωD (the dashed line
in the last panel).

3. The case EF � E0

In this regime we have Tc = |μc|/ log (|μc|/EF ) and

|μc| = e2δDe−1/2ωD exp(−2Z/λ) = e3/2E0 ≈ 4.48E0. (3.32)

Hence, to leading order in log E0/EF , we obtain

Tc = 4.48
E0

log (E0/EF )
. (3.33)

IV. NUMERICAL CALCULATION OF Tc

For general values of EF , we calculate Tc numerically by
simultaneously solving Eqs. (2.5) and (3.23). In Fig. 5 we
present the numerical results for Tc in the three regions of
EF (EF � ωD, ωD � EF � E0, and E0 � EF ) and compare
them with our analytic expressions. We see good agreement
between analytical and numerical results for all values of EF .
This figure summarizes the key results of our work.

In Fig. 6 we present the result of our numerical evaluations
of the KL correction δD over a wide range of EF , obtained
by using the numerically obtained μc(EF ) and Tc(EF ). We
see from Fig. 6 that the KL correction is small for EF � ωD,
in agreement with Migdal’s theorem. As EF is decreased, δD
reaches a sizable finite value close to −1.5 at EF ∼ 103E0 ∼
0.1ωD. Upon further reduction of the particle density, we
cross the region where EF ∼ E0. Here δD changes sign, and
saturates at 1.5 for smaller EF /E0. This limiting behavior
agrees well with our analytical results.

The shaded region in Fig. 6 marks the range near EF ∼ E0,
where the result for δD is more subtle and depends on whether
the calculations are done perturbatively or self-consistently.
This also affects the behavior of Tc and μc as functions of
EF /E0. In the perturbative calculation, one computes δD by
using “bare” values of μc and Tc, obtained without O(λ)
corrections. The bare μc(EF ) is obtained by solving Eqs. (2.4)
and (2.5), and is a continuous function of EF /E0. Addition-
ally, one can show that the bare μc changes sign at EF =
2
π

log(2)eγ E0 ≈ 0.8E0.
Accordingly, δD, computed using the bare μc(EF ) and

Tc(EF ), is also a continuous function of EF and also changes
sign at EF ≈ 0.8E0. We show this perturbative result for δD
in Fig. 7(c). Combining this perturbative λδD with other O(λ)
corrections, we obtain the result for the renormalized μc and

Tc, which we present in Figs. 7(a) and 7(e). We see that while
Tc is a continuous function of EF /E0, it is not monotonic,
having a maximum at EF ∼ 0.04E0.

The problem with the above perturbative calculation is that
the bare μc and Tc are used to compute δD, which is highly
sensitive to where (at which EF /E0) μc changes sign, as well
as how μc evolves with EF /E0. Meanwhile, O(λ) correc-
tions, although nominally small, add factors O(1) to both Tc

and μc. This is since both Tc and μc go as exp(−2/λ) for
EF � E0, and O(λ) corrections to the exponent change both
by O(1)).

Therefore the value of EF /E0 at which μc changes sign,
also changes by O(1). One can see this in Fig. 7(a), where
the “dressed” μc calculated perturbatively changes sign at
EF ≈ 0.4E0, rather than EF ≈ 0.8E0 as it did originally. This
significantly affects the behavior of δD, which in turn leads
to O(1) corrections to μc and Tc. This mutual dependence
clearly calls for a fully self-consistent calculation of Tc in the

FIG. 6. The result of the numerical evaluation of the KL correc-
tion to s-wave pairing interaction δD as a function of EF /E0 for
a wide range of EF . The KL correction is small at EF � ωD, in
agreement with Migdal’s theorem, but becomes sizable at smaller
EF and evolves from δD ≈ −1.5 to δD ≈ 1.5 at EF ∼ 0.17E0. The
behavior near EF ∼ 0.17E0 (the shaded region in the figure) requires
more detailed consideration. We show the behavior in this region in
Fig. 7.
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FIG. 7. The numerically calculated values of Tc, μc, and δD in the region where the KL correction changes sign. The plots on the left
are calculated within strict perturbation theory, while the plots on the right are calculated self-consistently. Self-consistent calculations yield
multivalued quantities around EF ≈ 0.2E0, which in practice means that Tc and μc change discontinuously upon variation of EF /E0 (dashed
lines on the right-hand-side panels for Tc and μc).

range EF ∼ E0, where δD rapidly evolves. In other ranges
of EF /E0, where δD saturates and only weakly varies with
EF /E0, self-consistency is not required.

We show the results of self-consistent calculations of μc,
δD, and Tc in the right three panels of Fig. 7. To obtain
these results, we treat δD as a function of Tc and μc, and
substitute δD(μc, Tc) into Eq. (3.23). This equation is then
solved self-consistently with Eq. (2.5). We see from the plots
that over some range of EF /E0, Tc is a multivalued function
of EF /E0. In practical terms this implies that the supercon-
ducting transition temperature (the largest possible Tc for a
given EF /E0) jumps by a finite amount at EF ∼ 0.2E0. There
is of course a corresponding jump in μc at this EF /E0. Though
subleading corrections to Tc may yield a continuous transition,
Tc should change sharply around EF /E0 = 0.2 in either case.
Note that the maximum in Tc at smaller values of EF also
emerges in a self-consistent calculation, but is located at a
larger EF ≈ 0.06E0.

V. CONCLUSION

In this paper we derived expressions for the onset temper-
ature of the pairing (Tc in Eliashberg approximation) with ex-
act prefactors for quasi-2D electrons, with Einstein-phonon-
mediated attraction at weak coupling. Previous studies chiefly
considered the adiabatic limit EF � ωD. We analyzed Tc in
the two other regimes EF � E0 and ωD � EF � E0, where
E0 = ωDe−2/λ is the bound state energy for two fermions in a
vacuum and λ is the dimensionless electron-phonon coupling
constant. In these two regimes the corrections to Tc come from
three sources: fermionic self-energy, frequency dependence
of the phonon-mediated interaction, and KL renormalization
of the pairing interaction by particle-hole excitations. KL
corrections are small in ωD/EF in the adiabatic regime, but
become O(1) in the other two regimes. We found that the
combined renormalization from the three sources reduces Tc

from its mean-field value by a factor of almost 10 in the
intermediate regime E0 � EF � ωD, and increases Tc by
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nearly a factor of 5 in the regime EF � E0, which corresponds
to very low carrier concentration. We hope that our results will
form a starting point for studies of Tc beyond logarithmical
accuracy in the physically more relevant case when both
electron-electron repulsion and electron-phonon attraction are
present.

ACKNOWLEDGMENTS

We are thankful to M. Christensen, R. Fernandes, M. Gas-
tiasoro, A. Klein, A. Millis, N. Prokofiev, and B. Svistunov for
useful discussions. This work was funded by the Department
of Energy through the University of Minnesota Center for
Quantum Materials, under DE-SC-0016371.

APPENDIX A: EVALUATION OF THE KL CORRECTIONS

Here we calculate the KL corrections δD(k, q) to the
interaction. This is a sum of two types of diagrams: vertex
corrections and exchange corrections, and we will write δD =
Dvertex

1 + Dvertex
2 + DX . Before calculating these diagrams, we

discuss the relevant values of these parameters in the various
limits for EF .

As discussed in Sec. III C, we will calculate δD at zero
external frequency, and with the magnitudes of k and q
fixed to 	(μc)kμ. Depending on the value of EF , there are

essentially three limiting regions:
(A) μc < 0 and |μc| � Tc: This is where EF � E0.
(B) μc ≈ 0 and Tc � |μc|: This region describes the

crossover between EF � E0 and E0 � EF � ωD.
(C) μc > 0 and μc � Tc: This includes the regions E0 �

EF � ωD and EF � ωD.
In both regions A and C we have |μc| � Tc. Since Tc is

therefore smallest energy scale in the calculation, we may
simply evaluate these diagrams at T = 0 as an approximation.
We also fix the external frequencies equal to zero in both
regions A and C.

Regarding region B where μc ≈ 0, we cannot evaluate
these diagrams at T = 0, since Tc is not the smallest energy
scale in the problem. However, we will still calculate these di-
agrams at zero external frequency and momenta. The validity
of setting the external frequency and momenta to zero will be
discussed below.

1. Vertex corrections

Let us first consider the vertex corrections, denoted Dvertex
1

and Dvertex
2 . One can verify that these two corrections will end

up being equal, so we will calculate Dvertex
1 and take Dvertex =

2Dvertex
1 . Referring to Fig. 1, we write the expression for

Dvertex below, where we have used D0(ωm) = ω2
D/(ω2

m + ω2
D),

G(k) = (iωm − εk )−1, and εk = k2/2m − μc:

λDvertex = 2gTcD0(ωp)
∑
�m

∫
d2l

(2π )2

1

i�m + iωq − εl

1

i�m + iωq + iωp − εl+p
D0(�m). (A1)

In the above expression we have defined p = k − q and ωp = ωk − ωq, and �m is a bosonic Matsubara frequency. Since
ωp = ωk − ωq is on the order of Tc � ωD, we may replace D0(ωp) = 1. Using partial fractions we find

λDvertex = 2gTc

∑
�m

∫
d2l

(2π )2

1

εl+p − εl − iωp

(
1

i�m + iωq + iωp − εl+p
− 1

i�m + iωq − εl

)
D0(�m). (A2)

Calculating the Matsubara sum, and setting nB(ωD) = 0 (since Tc � ωD), we have

λDvertex = gωD

∫
d2l

(2π )2

1

εl+p − εl − iωp

(
nF (εl+p)

iωq + iωp − εl+p + ωD
− 1 − nF (εl+p)

ωD + εl+p − iωq − iωp

− nF (εl )

iωq − εl + ωD
+ 1 − nF (εl )

ωD + εl − iωq

)
. (A3)

Now we may simplify our three different limits.

a. Region A

Let us begin with region A, where |μc| � Tc and μc < 0.
All Fermi functions are effectively zero in this region, and we
have after some algebra

λDvertex
A = gωD

∫
d2l

(2π )2

1

ωD+ εl− iωq

1

ωD + εl+p − iωq − iωp
.

(A4)

As discussed above, in region A, we set all external fre-
quencies and momenta to zero. This expression then becomes

λDvertex
A = gN0ωD

∫ ∞

−μc

dε
1

(ωD + ε)2
(A5)

= λ
ωD

ωD − μc
. (A6)

Since μc � ωD in region A, we have Dvertex
A ≈ 1. As

alluded to in the main text, this KL correction is nonzero in
region A (where μc < 0). From this calculation, we see that
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this is due to the dynamical nature of our interaction (more
precisely, the presence of a pole in our bosonic propagator).

b. Region B

In this region we must now include the terms with Fermi
functions. For reasons that will become clear below, we will
refer to this as the singular part of Dvertex. Regarding the terms
without Fermi functions, we may simply take our above result
from region A, since we are still working at zero external
momenta and frequencies. We will refer to this expression as
the regular part of Dvertex. Focusing on the singular part of
Dvertex, we have

λDvertex
sing = gωD

∫
d2l

(2π )2

1

εl+p − εl − iωp

×
(

nF (εl+p)

iωq+ iωp− εl+p+ ωD
+ nF (εl+p)

ωD + εl+p − iωq − iωp

− nF (εl )

iωq − εl + ωD
− nF (εl )

ωD + εl − iωq

)
. (A7)

Since ωD is the largest energy scale in region B, we
simply replace the denominators of all Fermi functions by ωD,
obtaining

λDvertex
sing ≈ 2g

∫
d2l

(2π )2

nF (εl+p) − nF (εl )

εl+p − εl − iωp
. (A8)

Working in the static limit, and taking p → 0, we find

λDvertex
sing (p = 0) = 2g

∫
d2l

(2π )2

dnF (εl )

dεl
(A9)

= 2gN0

∫ ∞

−μc

dε
dnF (ε)

dε
(A10)

= −2λnF (−μc), (A11)

so we have Dvertex
sing (p = 0) = −2nF (−μc). Note that this

Fermi function leads to a steplike jump as we transition from
region A to region C through region B. This is why we refer
to it as singular. In contrast, the other part of this vertex
correction is essentially 1 across the transition, which is why
we called it the regular part of Dvertex. Putting Dvertex

reg and
Dvertex

sing together, we find Dvertex
B (p = 0) = − tanh μc

2Tc
.

This is what we use in the numerical calculations of Tc.
As we will see below, this expression which was evaluated
at p = 0 overestimates the effect of the singular piece in
the crossover region. However, it has the correct qualitative
behavior, i.e., the vertex corrections smoothly decrease from
1 to −1 connecting the limiting behaviors of both region A
and region C.

With this, we now turn to the complications discussed
above that we cannot naively evaluate this diagram at p =
ωp = 0. Instead we must consider momenta q and k such
that εq and εk are on the order of Tc. We will see that in this
crossover region where |μc| � Tc, the Dvertex

sing (p) dies quickly
with increasing p. This invalidates the assumption made in the
main text, that the KL diagram is relatively constant over the
region of q which contribute significantly to the integral. In
fact, the quick decay of Dvertex

sing (p) with p destroys the logarith-
mical singularity in the second term of Eq. (3.21). Therefore,
the effect on Tc in region B due to the vertex correction is not
due to the singular piece, but the regular piece.

To show this, let us rewrite Dvertex
sing (p) and take μc = 0 for

convenience. Using Eq. (A8) we have

λDvertex
sing (p) = 2g

∫
d2l

(2π )2

nF (εl+p) − nF (εl )

εl+p − εl − iωp
(A12)

= 2g
∫

d2l

(2π )2

(
nF (εl )

εl − εl+p − iωp
− nF (εl )

εl+p − εl − iωp

)
(A13)

= −2gP
∫

d2l

(2π )2

nF (εl )

εl+p − εl
. (A14)

To obtain the last equality, we took ωp = 0 for simplicity.
Doing the angular integration, we find

Dvertex
sing (p) = −2

p

∫ p/2

0

dllnF (εl )√
(p/2)2 − l2

(A15)

≈ −2nF [ε(p/2)]. (A16)

To obtain the final expression, we first notice that the
integrand peaks when l = p/2. Therefore, as a crude approx-
imation, we pull nF (εl ) outside of the integral, evaluated at
l = p/2, and do the remaining integral. As asserted above,
this expression decays quickly with p. One may verify that
this indeed leads to the disappearance of the logarithmical
singularity upon insertion into Eq. (3.21).

c. Region C

As in region A we have |μc| � Tc and we can again evaluate this expression at T = 0. However, both the regular and singular
pieces of the vertex correction now contribute since μc > 0 (we cannot set the Fermi functions to zero). However, we can use
our T = 0 approximation to replace the Fermi function nF (x) with 	(−x). Using this and 1 − 	(−x) = 	(x), we find

λDvertex
C = gωDP

∫
d2l

(2π )2

1

εl+p − εl

(
	(−εl+p)

−εl+p + ωD
− 	(εl+p)

ωD + εl+p
− 	(−εl )

−εl + ωD
+ 	(εl )

ωD + εl

)
. (A17)

We rewrite the step functions in terms of sgn functions, obtaining

λDvertex
C = gωDP

∫
1

εl+p − εl

(
− sgn(εl+p)

ωD + |εl+p| + sgn(εl )

ωD + |εl |
)

(A18)

= 2gωDP
∫

ldl

2π

sgn(εl )

ωD + |εl |
∫

dθ

2π

1

p2/2m + l p cos(θ )/m
. (A19)

024503-11



DAN PHAN AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 101, 024503 (2020)

Doing the angular integration and canceling a factor of λ = gN0, we find

Dvertex
C = 2ωD

p

∫ p/2

0

ldl√
(p/2)2 − l2

sgn(εl )

ωD + |εl | . (A20)

Since in region C we set the external momenta q and k equal to kμ, we have p = |q − k| = 2kμ sin θ/2, where θ is the angle
between q and k. Therefore, the upper limit of this integral is p/2 = kμ sin θ/2 < kμ. Since εl = l2/2m − μc, if l < kμ (as in
the above integral), we have εl < 0. Therefore, we set sgn(εl ) = −1 and |εl | = μc − l2/2m, obtaining

Dvertex
C = −2ωD

p

∫ p/2

0

ldl√
(p/2)2 − l2

1

ωD + μc − l2/2m
. (A21)

We now rescale l = kμx and μ̄c = μc/ωD, plug in p = 2kμ sin θ/2, and average over all θ to obtain

Dvertex
C (μ̄c) = − 1

π

∫ π

0
dθ

1

sin(θ/2)

∫ sin(θ/2)

0

xdx√
sin2(θ/2) − x2

1

1 + μ̄c(1 − x2)
. (A22)

This is the expression we use to numerically calculate the vertex corrections for any μc in region C. We can simplify this
expression analytically in the limit of large and intermediate density (EF � ωD and ωD � EF � E0), obtaining Dvertex

C = 0 and
Dvertex

C = −1, respectively. Note that the vertex corrections go to zero in the limit of small ωD/EF in accordance with Migdal’s
theorem.

2. Exchange diagram

We now move on to the exchange diagram, which we will denote DX . We have from Fig. 1

λDX = gT
∑
�m

∫
d2l

(2π )2
G0(l )G0(l + p)D0(�m − ωq)D0(�m − ωk ), (A23)

where we have redefined ωp = −(ωq + ωk ), p = −(q + k), and �m is a fermionic Matsubara frequency. If we let �m → �m −
ωq, we have instead

λDX = gT
∑
�m

∫
d2l

(2π )2

1

i�m + iωq − εl

1

i�m + iωq + iωp − εl+p
D0(�m)D0(�m + ωq − ωk ), (A24)

where the redefined �m is now bosonic. Since ωk and ωq are on the order of T � ωD, we may approximate this sum with

λDX = gT
∑
�m

∫
d2l

(2π )2

1

i�m + iωq − εl

1

i�m + iωq + iωp − εl+p
D0(�m)2. (A25)

Note that the expressions for Dvertex and DX are identical
except for a difference of 2 in the prefactor and the fact that
D0(�m) is squared in the exchange diagram. We will exploit
this similarity to obtain expressions for DX in all three regions
from our previous work. Using the definition of D0(�m), one
may verify

d

dω2
D

D0(�m)

ω2
D

= −D0(�m)2

ω4
D

. (A26)

We therefore have

DX (p, ωp) = −ω4
D

2

d

dω2
D

(
1

ω2
D

Dvertex(p, ωp)

)
. (A27)

We have explicitly written the dependence on ωp and p
to emphasize that this identity is true only before we write
how p depends on k and q. This is because in the case of the
vertex corrections above, p = k − q, while for the exchange
corrections, p = −q − k. We now use this derivative formula
to calculate DX in our three limits.

a. Region A

In region A we have p = −q − k = 0. Applying our
derivative formula [Eq. (A27)] to our previous result in region
A, Dvertex = 1/(1 − μ̄c), we obtain

DX
A = 1

4

2 − μ̄c

(1 − μ̄c)2
≈ 1

2
. (A28)

b. Region B

In region B we also have p = 0. Applying our derivative
formula to our previous equation in region B, we obtain

DX
B = −1

2
tanh

μc

2Tc
. (A29)

As before, this is a sum of regular and singular parts, with
the singular piece switching on across μc = 0. As before,
this expression overestimates the effect of the singular piece,
which does not affect Tc until |μc| exceeds Tc.

024503-12



KOHN-LUTTINGER CORRECTION TO Tc IN A … PHYSICAL REVIEW B 101, 024503 (2020)

TABLE III. The summary of the analytic results of this paper
regarding the KL corrections. These directly affect the prefactor of
Tc in each region for EF .

Dvertex Dexchange δD

EF � E0 1 1/2 3/2
E0 � EF � ωD −1 −1/2 −3/2
ωD � EF 0 0 0

c. Region C

Applying the derivative formula to Eq. (A20), we find

DX
C (k, q) = 1

2p

∫ p/2

0
ldl

sgn εl√
(p/2)2 − l2

2 + |ε̄l |
(1 + |ε̄l |)2

, (A30)

where we have defined εl = εl/ωD. Since we have k = q = kμ

in region C, we have p = |k + q| = 2kμ cos θ/2. We can now
simplify this expression as before to obtain

DX
C (μ̄c) = − 1

4π

∫ π

0

dθ

cos(θ/2)

∫ cos(θ/2)

0
dx

x√
cos2(θ/2) − x2

× 2 + μ̄c(1 − x2)

[1 + μ̄c(1 − x2)]2
. (A31)

This is the expression we use to numerically calculate the
exchange contribution for any μ̄c in region C. As before, we
can simplify this expression analytically when μc � ωD (cor-
responding to E0 � EF � ωD) and μc � ωD (corresponding
to EF � ωD), obtaining −1/2 and 0, respectively.

d. Total KL contribution

The total correction to the interaction δD is found by
summing the contribution from the vertex corrections and
the exchange diagram δD = Dvertex + Dexchange. We can now
numerically calculate KL contribution at any μc, given the
region (A, B, or C) in which μc exists. Additionally, though
we do not have an analytic expression that holds for general
μc, we have obtained simple results for this correction in our
general limits of EF , which are summarized in Table III. The
total correction as a function of EF /E0 as been plotted in
Fig. 6.

APPENDIX B: DETAILS OF NUMERICAL
CALCULATIONS

For our numerical calculation of Tc, we start from the full
equation for the pairing vertex, Eq. (3.3), which we rewrite
below for convenience:


(ωm, k) = −T
∑
�m

∫
d2q

(2π )2
G(�m, q)G(−�m,−q)

× Veff (ωm, k; �m, q)
(�m, q). (B1)

In the main text we discussed all three effects on Tc

separately, and added their contributions at the end, which
is valid at weak coupling. Doing so, our expression for the

pairing vertex becomes

Tc

N0

∑
�m

∫
d2q

(2π )2

1

Z2�2
m + ε2

q

ω4
D(

ω2
D + �2

m

)2 = Z

λ
− δD. (B2)

Integrating over momentum and doing one of the fre-
quency sums, this equation becomes

1

2
log

(
2eγ

√
eπ T̄c

)
+ T̄c

∑
�m

arctan

(
μ̄c

�m

)
1(

1 + �
2
m

)2

1∣∣�m

∣∣
= Z (μ̄c)

λ
− δD(μ̄c), (B3)

where we have redefined all variables to be relative to ωD, and
emphasized the fact that Z and δD are functions of μ̄c. We
now rewrite the second term on the left-hand side as follows:

T̄c

∑
�m

arctan

(
μ̄c

�m

)
1(

1 + �
2
m

)2

1

|�m|

=
∫ μ̄c

0
dx

( −1

x2 − 1

1

8T̄c
sech2 1

2T̄c
+ x2 − 3

4(x2 − 1)2
tanh

1

2T̄c

+ 1

2x(x2 − 1)2
tanh

x

2T̄c

)
. (B4)

This integral is more convenient than the original sum for
computational purposes. To derive this expression, recall
that for any function f (μ̄c), f (μ̄c) = ∫ μ̄c

0
df (x)

dx dx, assuming
f (0) = 0. This is what we did above, where after taking
the derivative, the sum has been evaluated explicitly. This
simplified version of the equation for the pairing vertex is then
solved simultaneously with μ̄c = T̄c log[exp(ĒF /T̄c) − 1] for
a given EF .

Though this can in principle be done for any EF , we only
use the above equation for EF > 5E0, and instead solve a sim-
plified equation for EF < 5E0, where |μc| � ωD. For EF >

5E0 we also use the Kohn-Luttinger expression calculated in
region C, from the above Appendix. The threshold of EF =
5E0 is of course artificial. We only require |μc| � ωD for our
simplified equation to apply, and we find that at EF = 5E0,
μc/ωD = 2 × 10−4 � 1 (using λ = 0.2).

In the region where |μc| � ωD, the above sum can be
simplified to

T̄c

∑
�m

arctan

(
μ̄c

�m

)
1

�m
=

∫ μ̄c

0
dx

1

2x
tanh

x

2T̄c
. (B5)

Additionally, for |μc| � ωD, we may set Z = 1 + λ/2. The
resulting equation for Tc can be written as

log

(
2eγ−3/2

π T̃c

)
− 3 tanh

μ̃c

2T̃c
+

∫ μ̃c

0

tanh x
2T̃c

x
= 0, (B6)

where all quantities with tildes have been expressed in terms
of E0. Note that we have used the expression for the Kohn-
Luttinger correction which applies only in the crossover re-
gion (region B), where μc � Tc. It is in fact unnecessary to
use the expression calculated in region A (EF � E0), since
the expression in region B smoothly saturates to the constant
value calculated in region A. This is the computationally more
convenient equation we solve (both self-consistently and non-
self-consistently), along with the equation for the chemical
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potential for Tc and μc for EF � 5E0. All numerical results
are obtained using λ = 0.2.

APPENDIX C: ASSUMPTION OF BANDWIDTH

Throughout this paper we have worked in the infinite band-
width limit, i.e., the bandwidth � is much larger than EF and
ωD. In general, the effect of the Kohn-Luttinger corrections
will depend on the ratio �/ωD. To illustrate this point, we
will evaluate the vertex correction Dvertex at finite bandwidth.
For simplicity, we will evaluate this correction at μc < 0, for
|μc| � Tc (see region A). Referring to our calculations in
Appendix A, we may simply take Eq. (A6) and replace the

upper limit by �. The new result at finite bandwidth is then

Dvertex
A = ωD

ωD − μc
− ωD

ωD − �
. (C1)

If we work in the limit where |μc| � ωD and �, the
expression simplifies to Dvertex

A = �/(� − ωD). Note that if
we work in the limit where � � ωD, we have Dvertex

A = 1,
and we retrieve the result obtained in Appendix A. However,
if we work in the opposite limit where ωD � �, we obtain
Dvertex

A ≈ −�/ωD → 0. This agrees with previous work on
Kohn-Luttinger corrections that considered static interactions
[7,43], which found that the Kohn-Luttinger corrections dis-
appear in the low-density limit (μc < 0).
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