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Spin-transfer dynamics in MgO-based magnetic tunnel junctions with an out-of-plane magnetized
free layer and an in-plane polarizer
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Here, we present an analytical and numerical model describing the magnetization dynamics in MgO-based
spin-torque nano-oscillators with an in-plane magnetized polarizer and an out-of-plane free layer. We introduce
the spin-transfer torque asymmetry by considering the cosine angular dependence of the magnetoresistance
between the two magnetic layers in the stack. For the analytical solution, dynamics are determined by assuming
a circular precession trajectory around the direction perpendicular to the plane, as set by the effective field,
and calculating the energy integral over a single precession period. In a more realistic approach, we include
the bias dependence of the tunnel magnetoresistance, which is assumed empirically to be a piecewise linear
function of the applied voltage. The dynamical states are found by solving the stability condition for the Jacobian
matrix for out-of-plane static states. We find that the bias dependence of the tunnel magnetoresistance, which is
an inseparable effect in every tunnel junction, exhibits drastic impact on the spin-torque nano-oscillator phase
diagram, mainly by increasing the critical current for dynamics and quenching the oscillations at high currents.
The results are in good agreement with our experimental data published elsewhere.
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I. INTRODUCTION

An electrical current passing through a ferromagnetic ma-
terial gains spin polarization along a direction defined, in
the first approximation, by the orientation of the magnetic
moment of the layer. This collective spin-angular momen-
tum carried by the spin-polarized current can be transferred
to the magnetic moment of a second ferromagnetic layer,
thereby generating a torque on its magnetization known as
spin-transfer torque (STT) [1,2]. As predicted by Slonczewski
[1] and Berger [2] in 1996, spin-transfer torques may be
strong enough to switch the magnetization direction of the
ferromagnetic layers, without the need of external magnetic
fields, which was experimentally confirmed later in [3–5].
Furthermore, Slonczewski [1] suggested that passing a direct
current (dc) through a magnetic multilayer can also induce
steady-state precession of the magnetization in at least one
of the ferromagnetic layers. This phenomenon was experi-
mentally observed for the first time in metallic nanopillars by
Kiselev et al. [6] in 2003, in magnetic tunnel junctions (MTJs)
with Al2O3 tunnel barriers by Petit et al. [7] in 2007, and in
MgO-based MTJs by Deac et al. [8] in 2008. Spin-torque
nanooscillators (STNOs) are currently under intense inves-
tigations for their potential applications as low input power
radio-frequency devices for wireless telecommunication de-
vices, such as transmitters, receivers, mixers, phase shifters,
etc. [9,10]. In comparison to conventional transistor-based
electronic oscillators, STNOs offer tunability over a wide
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range of frequencies by adjusting the applied current [6,11],
and their lateral size can be up to 50 times smaller [9,10,12–
14]. Simultaneously, their output powers and frequencies re-
main compatible with the requirements for applications, i.e.,
output powers in the μW range [8,15,16] and frequencies of
the order of GHz [6,9–13].

Todate, most studies focusing on spin-transfer driven dy-
namics were carried out on devices with both the free and
the reference layers magnetized in plane. In this configu-
ration, under application-desirable conditions (i.e., close to
zero applied fields), steady-state precession mainly occurs on
clam-shell trajectories centered on the direction defined by the
in-plane shape anisotropy. Consequently, only a fraction of
the full magnetoresistance amplitude translates into the radio-
frequency output power. However, when using structures with
an in-plane (IP) magnetized fixed layer and an out-of-plane
(OOP) magnetized free layer [the so-called hybrid geometry
shown in Fig. 1(a)], the full parallel (P)-to-antiparallel (AP)
resistance variation can be converted into maximized output
power in the limit of a 90◦ precession angle [14]. Moreover,
this configuration also helps to reduce the critical currents
[17] and can provide functionality regardless of the magnetic
or current history [13–15,18]. In comparison to fully metal-
lic GMR-type devices, MgO-based tunnel junctions remain
better candidates for applications as STNOs, mostly due to
much higher magnetoresistance ratios, directly translating
into larger output powers, and lower operation currents in the
order of 1 mA [8,13,19] (reduced by one order of magnitude
compared to fully metallic spin valves [6,14]) leading to a
significant reduction in the power consumption of the actual
device.
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FIG. 1. Considered STNO geometry: (a) STNO with marked di-
rections of positive fields and currents; (b) the principle of sustained
precession (here: τ‖, spin-transfer torque; τD, damping torque).

Previous theoretical studies demonstrated that stable pre-
cession in hybrid geometry STNOs can only be sustained if
the in-plane component of the spin-transfer torque (STT‖)
exhibits an asymmetric dependence on the angle between the
free and the polarizing layer. This is true for fully metallic
devices, where for constant applied currents the torque ex-
hibits strong angular asymmetry [20], but not for the MgO-
based magnetic tunnel junctions, which do not exhibit an
intrinsic asymmetry of the STT‖ component [21]. Unfortu-
nately, the output power of the metallic STNOs (in the order
of 0.1 nW) is not sufficient for most applications. How-
ever, recent experimental reports showed that spin-transfer
driven dynamics can also be sustained in similarly designed
MgO-based MTJs [8,13,15,16,19], exhibiting output powers
up to 0.55 μW [15], in spite of the lack of STT‖ angular
asymmetry [20].

These results have so far been interpreted by defin-
ing the angular asymmetry of STT‖ based on the angle-
dependent tunneling resistivity function suggested by Slon-
czewski [21,22]. This formalism is analogous to the one
used so far only for metallic GMR structures [18], i.e.,
defined by some asymmetry constants. In this paper, we
suggest phenomenological and straightforward explanation of
the mechanism for sustaining steady-state precession in hy-
brid geometry MgO-based MTJs, defining an angular asym-
metry of STT‖ with measurable parameters, which makes
this model potentially more suitable for comparisons with
experimental data. This mechanism is based on the strong
cosine-type angular dependence of the tunnel magnetore-
sistance which, at constant applied current, translates into
an angle-dependent voltage component, giving rise to the

angular asymmetry of STT‖ and, thus, enabling steady-state
precession to be sustained. An asymmetry of the angular
dependence of the torkance in MgO-based MTJs for a fixed
current has been demonstrated in the theoretical study by
Heiliger and Stiles in 2008 [23]. In the study presented
here, we demonstrate that this asymmetry is indeed sufficient
to sustain steady-state precession in hybrid-geometry MTJs.
Note that, unlike the case of MTJs with in-plane free layers,
for the geometry considered here, the torque acts as damping
for one half-trajectory and antidamping for the other, and
thus steady-state dynamics can only be observed when the
torque modulus changes sufficiently as the magnetic moment
precesses.

We analytically solve the Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation for a typical device with
circular cross section, under perpendicular applied fields and
currents. We assume that the magnetization precesses along
a circular trajectory around the direction perpendicular to the
plane, as set by the effective field [14] (i.e., the crystalline
anisotropy and the in-plane shape anisotropy are neglected).
We also take into account the bias dependence of the TMR,
which has been so far neglected in similar calculations. We
find that, for constant currents, the bias dependence of the
resistance gradually suppresses the STT‖ angular dependence
asymmetry, but it may be still sufficient to sustain precession
and high output powers for relatively low values of applied
currents and fields.

The analytical and numerical results presented here com-
pare well to our experimental study published in Ref. [24].

II. GENERAL ASSUMPTIONS

In magnetoresistive multilayers, the in-plane component of
STT is responsible for counteracting the damping torque and,
thus, sustaining steady-state precession of the magnetization
in the free layer. In magnetic tunnel junctions, the magnitude
of STT‖ depends on the angle β between the magnetizations
of the free and reference layers [25,26] (marked as m and p
vectors in Fig. 1), as well as the magnitude of the applied
voltage, V [22,27,28]. However, since the applied current, Idc,
is assumed to be constant, the magnitude of STT‖ is then
directly proportional to the variation of the junction resistance,
R, according to the following formula:

|STT‖| =
∣∣∣∣∂τ‖
∂V

V [m × (m × p)]

∣∣∣∣ ∝ |RIdc sin(β )|, (1)

where ∂τ‖/∂V [T/V ] is the torkance, i.e. the derivative of the
in-plane component of the spin-transfer torque with respect to
the voltage [27,28].

The investigated STNO geometry is presented in Fig. 1(a).
Similar to Rippard et al. [14], we assume a circular mag-
netization precession trajectory around the OOP axis, with
a constant precession angle θ for a given applied current.
As the magnetization of the free layer precesses around
the z axis, the angle between the magnetic moments of
the two layers changes and, thus, through the magnetoresis-
tance effect, the voltage also changes if the experiment is
conducted at constant applied current. To be more specific,
during the oscillation, the resistance varies between a max-
imum and a minimum value when approaching the P and
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AP configurations [i.e., for βmax and βmin, which corresponds
to ϕ ≈ 0 and ϕ ≈ π , respectively; see Fig. 1(a)], following a
cosine-type angular dependence of the tunnel magnetoresis-
tance [25,26]. This assumption, i.e., R ∝ cos(ϕ), effectively
introduces a spin-torque angular dependence asymmetry into
Eq. (1) [as also schematically shown in Fig. 1(b)].

The motion of the free layer magnetization m is described
by the LLGS Eq. [1]:

dm
dt

= −γμ0(Hext + Hk⊥mz )(m × nz)

+α

(
m × dm

dt

)
+ γ

∂τ‖
∂V

V [m × (m × nx)], (2)

where μ0Hext is the applied magnetic field, α is the Gilbert
damping constant, μ0Hk⊥ is an effective magnetization along
the OOP direction (μ0Hk⊥ = μ0Hk − μ0Ms, where μ0Hk is a
magnetic anisotropy field and Ms is the saturation magneti-
zation), and nx and nz are the unit vectors of the coordinate
system presented in Fig. 1(a). It is worth noting that nx is,
in fact, the unit vector along the direction of the fixed layer
magnetization, marked as the p vector in Fig. 1(a).

The perpendicular (fieldlike) component of the spin-
transfer torque is excluded from Eq. (2), since its influence
on static and dynamic states in the system was found to
be negligible compared to the effective field acting along z
axis [27] for realistic values of the ∂2τ⊥/∂V 2 constant (i.e.,
the torkance of the perpendicular component of STT). For
instance, as reported by Kubota et al. [27] for MgO-based
MTJs, ∂2τ⊥/∂V 2 = 1.8 mT/V2 is at least one order of mag-
nitude smaller compared to the in-plane torkance ∂τ‖/∂V =
12.5 mT/V for voltages up to 1 V as used typically.

To sustain steady-state precession, energy supplied by
the in-plane spin-torque term, STT‖ = γ [(∂τ‖)/∂V ]V [m ×
(m × p)], and energy dissipated through the damping, α[m ×
(dm/dt )], must compensate over a full precession period, T ,
as described by the following integral:

∫ T

0

{
α

(
m × dm

dt

)
+ γ

∂τ‖
∂V

V [m × (m × p)]

}
dt = 0. (3)

In the analytical calculations presented in Sec. III A), we
introduce the STT asymmetry by considering the cosine an-
gular dependence of the resistance, and derive the necessary
conditions for dynamics from the energy integral shown above
[Eq. (3)].

In Sec. III B, the bias dependence of the tunnel magne-
toresistance is additionally taken into account. In MgO-based
MTJs, the TMR exhibits a maximum at zero bias, and then
gradually decreases when increasing the magnitude of the bias
voltage [21,26,29–32]. Since the resistance variation with the
bias for the P state is usually significantly smaller compared
to the AP state, we assume the P state resistance to remain
constant within the usable voltage range and the AP state
resistance as a linear function of the applied voltage. Note that
this TMR bias dependence is just a linear approximation of
the real TMR versus voltage function, which is, in fact, linear
only at a temperature of 0 K, and deviates from the linear de-
pendence at low voltage with increasing ambient temperature
[26,31]. This, however, does not influence STNO dynamics,
since this low voltage range is usually below the onset value

for precession. It is also worth noting that, typically, the bias
voltage dependence of the TMR is asymmetric with respect to
zero bias [21,26,29,30,33–35].

III. DYNAMIC AND STATIC PHASE DIAGRAMS

A. Steady-state precession allowed by angular
dependence of TMR

1. Steady-state precession

Since in magnetic tunnel junctions the STT‖ depends on
the voltage across the barrier, we convert the applied current
Idc into the voltage V with the following formula:

V = RIdc = [
RP + 1

2
R0(1 − m · p)
]
Idc. (4)

Here, R is the resistance obtained for a given voltage value at
a given point on the precession trajectory, RP is the resistance
of the parallel state, 
R0 is the resistance difference between
the P and AP states close to zero bias, and (m · p) is the pro-
jection of the free layer magnetization vector on the polariza-
tion direction, i.e., the magnetization component contributing
to TMR.

Taking into account the cosine angular dependence of
TMR, and neglecting the bias dependence of TMR, leads to
the following system of equations for the three degrees of
freedom of the Cartesian coordinate system:

mx →
∫ T

0

{
α(myṁz − mzṁy)

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

](
m2

y + m2
z

)}
dt

= 0,

my →
∫ T

0

{
α(mzṁx − mxṁz )

+ γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

]
mxmy

}
dt = 0,

mz →
∫ T

0

{
α(mxṁy − myṁx )

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

]
mxmz

}
dt = 0. (5)

Subsequently, Eqs. (5) are transferred to the spherical
coordinate system in order to simplify the description of an
out-of-plane precessional state occurring at given values of
applied fields and currents (namely, from now on, it will be
described only by the precession angle θ ):

∫ 2π
ω

0

{
− αω sin θ cos θ cos ωt

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

×
(

sin2θ sin2ωt + cos2θ

)}
dt = 0,

024430-3



E. KOWALSKA et al. PHYSICAL REVIEW B 101, 024430 (2020)

∫ 2π
ω

0

{
− αω sin θ cos θ sin ωt

+ γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

× sin2θ sin ωt cos ωt

}
dt = 0,

∫ 2π
ω

0

{
αω sin2θ

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

× sin θ cos θ cos ωt

}
dt = 0. (6)

The integrals presented above are solved for a full preces-
sion period (i.e., the time range from zero to 2π/ω). Solving
the first and the second integrals leads us to contradictory
equations. The lack of solutions for these two integrals makes
sense also from the physics point of view, i.e., since the
integrals of the damping torque over a single precession cycle
of x and y components are equal to zero, the equivalent
integrals of the in-plane STT term have to be zero too (note
that the damping and STT‖ balance each other). A nonzero
result is then expected only for the integration along the z
axis alone. Solving the third integral leads to the following
equation:

4α + ∂τ‖
∂V

Idc
R0 cos θ
γ

ω
= 0. (7)

Implementing the formula for the Larmor frequency [36]
(ω = −γ B) enables us to incorporate the magnetic field
μ0H = μ0Hext + μ0Hk⊥ cos θ into Eq. (7):

4α(μ0Hext + μ0Hk⊥ cos θ ) = ∂τ‖
∂V

Idc
R0 cos θ. (8)

In the final step of calculations, the onset angle for preces-
sion, θonset, is estimated in order to find the boundaries of the
dynamical region. We assume that θonset is the smallest angle
where precession can be sustained, i.e., imposing θ → 0 for
positive applied fields and θ → π for negative applied fields.
This assumption leads us to the following relation between
the critical current for steady-state precession and the external
field:

μ0H θ→0
ext (Idc) = ±

∂τ‖
∂V 
R0

4α
Idc ∓ μ0Hk⊥ . (9)

Here, μ0Hext(θonset )(Idc) = ( ∂τ‖
∂V 
R0/4α)Idc − μ0Hk⊥ refers

to θ → 0 for positive fields applied along +z direction and
μ0Hext(θonset )(Idc) = −( ∂τ‖

∂V 
R0/4α)Idc + μ0Hk⊥ is the solution
for θ → π for negative fields applied along −z direction.
Both functions (i.e., for θ → 0 and θ → π ) are plotted as
solid lines in Fig. 2. Stable out-of-plane dynamics are ex-
pected to occur in the region above the lines. The presence
of dynamics only for positive currents was expected, since
only for this particular current direction (i.e., current favoring
the AP state), the in-plane spin-transfer torque is efficient

FIG. 2. Dynamical phase diagram of the STNO with hybrid
geometry for the case when the angular dependence of the TMR
is included and the bias dependence of the TMR is neglected
(∂RAP/∂V = 0 �/V ). The diagram shows results of numerical in-
tegration (dynamics occurs in the colored areas) and analytically
determined onset currents (solid and dash-dot lines). The dash-dot
lines [see Eq. (14)] define the region of the stable static in-plane
AP state (striped area). The solid lines [see Eq. (9)] are boundaries
between the region of OOP dynamics (colored area) and the static
OOP state (dotted areas). Current values, I , are normalized by I0

c ,
i.e., the current value at the crossing of the critical lines for dynamics
(the crossing point of the solid lines). The magnetic field μ0Hext

is normalized by the effective out-of-plane anisotropy of the free
layer (μ0Hk⊥ ). Magnetic configurations corresponding to static and
dynamic states are marked with black and white arrows, respectively.

in overcoming the damping [18,37] [see the scheme of the
“Sustained precession” case in Fig. 1(b)].

An analytical solution for the large angle regime (i.e.,
when the magnetization vector precesses in the plane of the
free layer) could not be found using this calculation method,
since, at the limit of θ → 90◦, the critical current and field
approach infinity. This is due to the fact that for θ = 90◦ the
z component of the magnetization is equal to zero and, thus,
the integration along the z axis loses its physical sense.

2. Static states

For small applied fields and relatively high currents, STT‖
may become large enough to stabilize a static in-plane state
of the free layer. Note that the magnetization of the free
layer tends to stabilize in the sample plane, since the po-
larizer supplies an in-plane polarization of the flowing elec-
trons. We start from the initial condition for static states,
dm
dt = 0 [i.e., when Eq. (2) is equal to zero], expressed for

all three degrees of freedom of the Cartesian coordinate
system:

dmx

dt
= −γ (μ0Hext + μ0Hk⊥mz )my

+α(myṁz − mzṁy)

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

](
m2

y + m2
z

) = 0,
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dmy

dt
= γ (μ0Hext + μ0Hk⊥mz )mx

+α(mzṁx − mxṁz )

+ γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

]
mxmy = 0,

dmz

dt
= α(mxṁy − myṁx )

+ γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − mx )

]
mxmz = 0. (10)

Subsequently, Eqs. (10) are expressed with spherical coordi-
nates, as follows:

− γ (μ0Hext + μ0Hk⊥ cos θ ) sin θ sin ωt

− αω sin θ cos θ cos ωt

− γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

× (sin2θ sin2ωt + cos2θ ) = 0,

γ (μ0Hext + μ0Hk⊥ cos θ ) sin θ cos ωt

− αω sin θ cos θ sin ωt

+ γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

× sin2θ sin ωt cos ωt = 0,

αω sin2θ + γ
∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − sin θ cos ωt )

]

× sin θ cos θ cos ωt = 0. (11)

Imposing that the magnetization should turn to an in-
plane state (defined by θ = π

2 , which indicates that an actual
in-plane direction is, at this point, unknown), leads to the
following formula:

μ0Hext + ∂τ‖
∂V

Idc

[
RP + 1

2

R0(1 − cos ωt )

]
sin ωt = 0.

(12)
Considering that |sin ωt | � 1 leads to∣∣∣∣∣−

μ0Hext
∂τ‖
∂V Idc

[
RP + 1

2

R0(1 − cos ωt )

]−1
∣∣∣∣∣ � 1. (13)

Subsequently, applying the condition of | cos ωt | � 1 leads
to the final solution for a static in-plane state of the hybrid
geometry spin-torque nano-oscillator:

μ0Hext (Idc) �
∣∣∣∣∂τ‖
∂V

RPIdc

∣∣∣∣. (14)

Equation (14) is plotted with dash-dot lines in Fig. 2.
The stability region of in-plane states is marked as a striped
area. Since the in-plane states occur only at positive applied
currents [i.e., for the electron flow from the free layer to
the reference layer, thus favoring the AP state, as defined in
Fig. 1(a)], the AP state is expected to be stabilized in the
striped area. Similarly, according to symmetry arguments, we
preliminarily assume that the region between the dash-dot

lines at the negative current range (latticed area) corresponds
to the stability area of the in-plane P state.

According to the results plotted in Fig. 2, the region of
out-of-plane dynamics exhibits a gap at zero and small applied
fields, where the out-of-plane dynamic state turns into the
static AP state (see the striped area in Fig. 2), as the currents
required to sustain precession become infinitely large as the
magnetization approaches the xy plane.

3. Numerical integration of LLGS equation

The analytical solutions presented in the previous para-
graphs were double-checked via numerical integration of the
LLGS Eq. (2). To this end, we used a MAPLE 8 program,
which enabled us to follow the evolution of the position of the
magnetization vector under a defined set of parameters as a
function of time. The following set of parameters was used:
α = 0.005 [38], ∂τ‖/∂V = 0.028 T/V [24], 
R0 = 110 �

[24], RP = 190 � [24], and μ0Hk⊥ = 120 mT [24] (the same
parameters were used for the analytical lines plotted in Fig. 2).
We used a simulation time of 150 ns, while the final static or
dynamic state was defined based on the last 2 ns. The initial
position of the magnetization was always set as random, so as
not to overlook bistability regions if they occur.

The results of the numerical simulation are shown in Fig. 2.
Here, the color scale represents the magnitude of the intensity
of magnetization dynamics expressed by (mx(t ) − 〈mx〉)rms,
where rms is the root mean square, mx(t ) is the instant mx

component, and 〈mx〉 is the mean value of the mx component.
In the case of the presence of stable dynamics, the absolute
value of (mx(t ) − 〈mx〉) has to be greater than zero (i.e.,
[mx(t ) − 〈mx〉]rms = 0 corresponds to a lack of dynamics).
Based on this definition, the maximum precession angle of
θ = 90◦ (i.e., where the mx value changes sinusoidally be-
tween −1 and +1) translates into an intensity of magnetiza-
tion dynamics equal to 0.7 (see a dark brown region in Fig. 2).
The analytically determined critical lines for dynamics (solid
lines) and for the static AP state (dash-dot lines) define accu-
rately the boundaries of the numerically obtained dynamical
region (color area). According to the phase diagram shown in
Fig. 2, when the bias dependence of the magnetoresistance
is ignored, similarly to the metallic case [20,39,40], stable
dynamics occur only for positive current, defined as electrons
flowing from the free layer to the reference layer (i.e., current
favoring the AP state in Fig. 2). This is a consequence of the
fact that STT‖ is larger close to the AP state than close to the
P state [see the “Sustained precession” case in Fig. 1(b)].

Figure 3(a) shows the average magnetization component
along the x axis as a function of applied current and field. The
dark blue region indicates the presence of the static in-plane
AP state (〈mx〉 = −1) at positive applied current in the low
and zero-field range, which is in agreement with the ana-
lytically determined region of the AP state stability (striped
area in Fig. 2). The presence of the stability area of the P
state, predicted analytically (see latticed area in Fig. 2), is not
confirmed by the numerically obtained data in the investigated
current range. For a random initial state, the region between
the dash-dot lines at the negative current range is characterized
by various static states; namely, by the in-plane P state, i.e.,
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FIG. 3. Average magnetization components: (a) along the in-plane x axis (〈mx〉), (b) along the in-plane y axis (〈my〉), and (c) along the
out-of-plane z axis (〈mz〉). The dark blue region in (a) represents the static in-plane AP state for 〈mx〉 = −1, and is accurately defined by the
analytically determined dash-dot lines [Eq. (14)]. In (b), the blue and red regions occurring at positive current range (close to the dash-dot
lines) indicate a slight tilt of the magnetization precession cone towards the +y axis and −y axis for the negative and positive applied fields,
respectively. The blue and red regions in (c) represent the static out-of-plane states for 〈mz〉 = −1 and 〈mz〉 = +1, respectively. These regions
are defined by the analytically determined boundaries of the dynamical area, i.e., the two solid lines [Eq. (9)]. The static states occurring in the
area where these two stability regions overlap are degenerate. Current values, I , are normalized by I0

c , i.e., the current value at the crossing of
the critical lines for dynamics (the crossing point of the solid lines). Field values Bext are normalized by the effective out-of-plane anisotropy
Bk⊥ . Magnetic configurations corresponding to static and dynamic states are marked with black and white arrows, respectively.

for 〈mx〉 = +1 [shown in Fig. 3(a)], and the two out-of-plane
states, i.e., for 〈mz〉 = +1 and 〈mz〉 = −1 [see Fig. 3(c)].

The average magnetization along the in-plane y axis is
plotted in Fig. 3(b). The blue and red regions appearing
between the solid lines at positive current range (i.e., in the
region of dynamics) indicate a slight tilt of the magnetization
precession cone towards the y axis, which gradually increases
while approaching the stability area of the AP state (i.e., close
to the dash-dot lines). For positive applied fields and ϕ ≈ 90◦
the in-plane spin-transfer torque acts along the field torque,
resulting in an increase of the precession speed (so also its
frequency) and, thus, a decrease of the precession angle. For
ϕ ≈ 270◦, however, the in-plane STT acting antiparallel to the
field torque brings about a decrease of the precession speed
(and the frequency), leading to an increase of the magnetiza-
tion precession angle. This eventually leads to tilting of the
magnetization precession cone towards the −y direction. By
analogy, at the negative applied fields, the precession cone tilts
towards the +y direction.

In the area where the analytical lines define the stability
region of the AP state (at the dash-dot lines), both the mx and
my components are nonzero [see Figs. 3(a) and 3(b), respec-
tively]. Moreover, according to the corresponding dynamical
diagram, shown in Fig. 2, there is no out-of-plane dynamics in
the region exactly at the dash-dot lines. All these arguments
lead us to the conclusion that, between the stability area of
the AP state and the area of OOP steady-state precession,
there is a transition region of static canted states, where the
magnetization is tilted from the −x direction towards the y
axis.

Figure 3(c) shows the average magnetization components
along the z axis. The blue and red regions indicate the
presence of static out-of-plane states in the system (i.e., for
〈mz〉 = −1 and 〈mz〉 = +1, respectively), which can be also
defined with the analytical solution for the onset current for
dynamics (solid lines), according to Eq. (9). This means
that, for currents below the onset current for dynamics, the
magnetization is stabilized along the direction of the applied

field. The area where these two stability regions overlap is
characterized by various static states [see “degenerate state”
in Figs. 3(b) and 3(c)]; in particular, canted states with the
magnetization laying in the yz plane [indicated by nonzero
〈my〉 and 〈mz〉 components at negative currents in Figs. 3(b)
and 3(c)], or the in-plane P state [see red points at negative
currents in Fig. 3(a)]. In this region, at each point on the
diagram, a final state depends on the initial position of the
magnetization (here, set as random). Thus, in order to define
static states in this area, numerical simulations with defined
initial states should be performed (not discussed in this paper).

B. Influence of the bias dependence of TMR

1. Steady-state precession

Assuming the following linear bias dependence of the
resistance difference between the P and the AP states


R = −∂RAP

∂V
· |V | + 
R0 (15)

for the instant angle between the magnetic moments of
two layers, the expression for the voltage across the barrier
[Eq. (4)] converts into

V = Idc
RP + 1

2
R0(1 − m · p)

1 + 1
2 |Idc| ∂RAP

∂V (1 − m · p)
. (16)

Taking into account both the angular dependence and the bias
dependence of the TMR, the whole calculation procedure be-
comes much more complex and, according to our knowledge,
not solvable with the previous approach [i.e., by solving the
integral (3)]. Therefore, the LLGS equation is first expressed
with the spherical coordinates

ϕ̇ = sin θ
∂ϕ

∂t
= γ

μ0Ms

∂W

∂θ
+ α

∂θ

∂t

+ ∂τ‖
∂V

V (px sin ϕ − py cos ϕ),
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θ̇ = − sin θ
∂θ

∂t
= γ

μ0Ms

∂W

∂ϕ
+ α sin θ2 ∂ϕ

∂t

+ ∂τ‖
∂V

V [sin θ cos θ (px cos θ + py sin ϕ) − pzsin θ2],

(17)

where

∂W

∂θ
= −μ0Msμ0Heff

∂m
∂θ

,

∂W

∂ϕ
= −μ0Msμ0Heff

∂m
∂ϕ

are the energy derivatives with respect to all degrees of
freedom of the system (here μ0Heff is the effective field).
In order to find the instability condition for which the static
out-of-plane state becomes unstable, the following equations
must be fulfilled:

tr(J) = ∂ṁϕ

∂ϕ
+ ∂ṁθ

∂θ
< 0,

(18)
det(J) = ∂ṁϕ

∂ϕ

∂ṁθ

∂θ
− ∂ṁθ

∂ϕ

∂ṁϕ

∂θ
> 0.

Here, J is the Jacobian matrix of the system, i.e., the matrix
of the first-order derivatives of function (17), and tr(J) and
det(J) are the trace and determinant of the Jacobian matrix,
respectively.

Solving Eq. (17) expressed in the coordinate system shown
in Fig. 1(a) leads us to two inequalities consisting of a
contradiction equation (having no solution) and an identity
equation (fulfilled for all real numbers). Therefore, in order
to make Eq. (17) solvable, we rotate the coordinate system
in the following way: (x, y, z) → (x, z,−y). Now, in the new
coordinate system, the precession angle θ is expressed as
(π/2 − θ ), while the angle in the sample plane is still defined
by ϕ. In this way, the poles of the previous coordinate system
are moved from the positions of the calculation limits (i.e.,
positions of θ = 0 and θ = π are moved away from the z
axis), which enables us to solve Eq. (18). Equations (18) are
now expressed as

∂W

∂θ
= −μ0Ms

×
⎛
⎝ 0

−μ0(Hext + Hk⊥ sin θ sin ϕ)
0

⎞
⎠

⎛
⎝cos θ cos ϕ

cos θ sin ϕ

− sin θ

⎞
⎠

= μ0Ms(μ0Hext + μ0Hk⊥ sin θ sin ϕ) cos θ sin ϕ,

∂W

∂ϕ
= −μ0Ms

×
⎛
⎝ 0

−μ0(Hext + Hk⊥ sin θ sin ϕ)
0

⎞
⎠

⎛
⎝− sin θ sin ϕ

sin θ cos ϕ

0

⎞
⎠

= μ0Msμ0(Hext + Hk⊥ sin θ sin ϕ) sin θ cos ϕ.

Subsequently, the coordinate system is rotated back to its
initial position, shown in Fig. 1(a), according to the following
rotation: (x, z,−y) → (x, y, z). Applying the limits of θ → 0
and θ → π leads us to the final equation for the critical lines

defining the region where static out-of-plane states become
unstable:

μ0H θ→0
ext (Idc) <

∣∣∣∣∣
∂τ‖
∂V

α


R0 − |Idc| ∂RAP
∂V RP(

2 + |Idc| ∂RAP
∂V

)2 Idc − μ0Hk⊥

∣∣∣∣∣. (19)

2. Static states

Similar to the case where the bias dependence of the
resistance is neglected, for small fields and high currents, one
expects STT‖ to stabilize the static AP state of the free layer.
In order to find a solution for the AP state for the case of
∂RAP/∂V > 0, we used a similar calculation procedure as the
one presented in Sec. III A [see Eqs. (10)–(14)], only that now
the bias dependence of the resistance is additionally taken into
account by incorporating condition (16) to Eq. (10), which
brings us to the following formula:

μ0Hext + ∂τ‖
∂V

Idc
1 + 1

2 |Idc| ∂RAP
∂V (1 − cos ωt )

RP + 1
2
R0(1 − cos ωt )

sin ωt = 0.

(20)
Considering that | sin ωt | � 1 leads to∣∣∣∣∣−

μ0Hext
∂τ‖
∂V Idc

1 + 1
2 |Idc| ∂RAP

∂V (1 − cos ωt )

RP + 1
2
R0(1 − cos ωt )

∣∣∣∣∣ � 1. (21)

Eventually, applying the condition that | cos ωt | � 1 brings
us to the final solution for the static AP state of the hybrid
STNO device:

μ0Hext (Idc) �
∣∣∣∣∂τ‖
∂V

RPIdc

∣∣∣∣. (22)

Note that Eq. (14) and Eq. (22) are identical; namely, the
analytical solution for the static AP state remains unchanged
compared to the case when the bias dependence of the resis-
tance is neglected. This indicates that the bias dependence of
the TMR does not influence the stability region of the AP state
occurring at zero- and low applied fields.

The analytical solutions for stable out-of-plane dynamics
[Eq. (19)] and the static AP state [Eq. (22)], defining the
region of out-of-plane dynamics, are plotted in Fig. 4 with
solid and dash-dot lines, respectively. Similar to the results
presented in Sec. III A, the critical lines marking the onset of
dynamics (solid lines) are simultaneously the boundaries of
the stability regions of static out-of-plane states (dotted areas).
It is, however, worth remembering that the analytical results
represent a simplified case, neglecting the narrow transition
area of the static canted state between the regions of the AP
state and OOP dynamics (i.e., exactly at the dash-dot lines),
observed in the numerical data (see description to Fig. 3).

3. Numerical integration of LLGS equation

In order to prove that the solutions (19) and (22), in-
deed, determine the boundaries of the steady-state preces-
sion region, the analytical results were double-checked with
numerical simulation data. Figure 4 shows consistent results
of the analytical calculations (solid and dash-dot lines) and
numerical integration (color scale representing the magni-
tude of intensity of magnetization dynamics) for the case
when the bias dependence of magnetoresistance is taken into
account. In the simulations, we used the same parameters
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FIG. 4. Dynamical phase diagram of an STNO with hybrid ge-
ometry for the case when both the angular and bias dependencies
of TMR are included (∂RAP/∂V is taken as 100 �/V ). The diagram
shows results of numerical integration (dynamics occurs in the col-
ored areas) and analytically determined onset currents (solid lines).
The dash-dot lines [see Eq. (14)] defining the stability area of the
static in-plane AP state (striped area) remain unchanged compared
to the case when ∂RAP/∂V = 0 �/V . The solid lines [see Eq. (19)]
are boundaries between the region of OOP dynamics (colored areas)
and the static OOP state (dotted areas), and exhibit a specific bended
shape reflecting a gradual quenching of dynamics with an increasing
current for currents above I/I0

c = 3.5. Current values, I , are normal-
ized by I0

c , i.e., the current value at the crossing of the critical lines
for dynamics for the case of ∂RAP/∂V = 0 (the crossing point of the
solid lines in Fig. 2). The magnetic field μ0Hext is normalized by the
effective out-of-plane anisotropy of the free layer (μ0Hk⊥ ). Magnetic
configurations corresponding to static and dynamic states are marked
with black and white arrows, respectively.

as in Sec. III A and, additionally, a realistic value of the
proportionality constant defining the linear bias dependence
of the TMR, i.e., ∂RAP/∂V = 100 �/V [24].

According to the results shown in Fig. 4, for currents
between I/I0

c = 1 and I/I0
c = 3.5, the diagram exhibits a

nonlinear (quasiparabolic) increase of the critical current for
dynamics as a function of the applied field, while for currents
above I/I0

c = 3.5, the boundaries of the dynamical region are
bending towards each other while increasing the applied dc
current and, finally, cross at I/I0

c = 6.5. Consequently, the
dynamical area is now significantly reduced compared to the
extended dynamical region presented in Fig. 2, determined
for the case when the bias dependence of the resistance is
neglected, i.e., for ∂RAP/∂V = 0 �/V . Moreover, above a
certain current value (here, above I/I0

c = 3.5), any further
increase of the magnitude of the dc current leads to a decrease
of the intensity of magnetization dynamics, as well as the
reduction of the dynamical region (colored area). This effect,
opposite to the one observed for the case when ∂RAP/∂V =
0 �/V (see Fig. 2), is undesirable from the point of view of
potential STNO applications. Thus the minimization of the
∂RAP/∂V parameter, which is mostly a material parameter
of MTJ stacks, should be one of the priority aspects while
designing a final commercial device, in order to limit the
output power loss at large applied currents. The phenomenon

FIG. 5. Average magnetization precession angle θ as a function
of the applied current and field for the realistic case of ∂RAP/∂V ≈
100 �/V . Analytically determined stability region of the AP state
and the critical lines for dynamics are plotted with the white dash-dot
lines [in agreement with Eq. (14)] and black solid lines [in agreement
with Eq. (19)], respectively.

of quenching of dynamics at large applied currents in hybrid
geometry STNOs was also observed by us experimentally (see
Ref. [24]).

4. Precession angle

The numerically obtained precession angle, θ , as a function
of current and field determined for ∂RAP/∂V ≈ 100 �/V is
shown in Fig. 5. Within the dynamical regions (i.e., corre-
sponding to the color areas in Fig. 4), the precession angle
increases gradually from around 10◦ up to around 85◦, when
approaching the stability region of the AP state (i.e., when
moving closer to the white dash-dot lines). Regarding the
stable static states in the system, the stability regions of static
OOP states (corresponding to the dotted areas in Fig. 4) are
characterized by the precession angle close to 0◦ (purple
region outside the solid lines), while the stability region of
static AP state (marked with the striped area in Fig. 4), is
represented by the 90◦ angle (dark brown area between the
dash-dot lines).

Figure 5 clearly shows a discrepancy between the ana-
lytical solution for stable OOP dynamics (i.e., solid lines)
and the numerical results (color areas). Namely, while the
solid lines define the boundaries of the dynamical region
where the precession angle approaches zero (θ → 0◦), in the
numerical data, the precession angle at these lines reaches
already around 30◦. Consequently, the analytically obtained
onset fields for precession, marked with the black solid lines,
are underestimated. One of the reasons for this discrepancy
may be the assumption of a constant precession angle θ

for a given applied current (used in the analytical calcula-
tions), since according to the numerical results (which, in
fact, reproduce the magnetization motion in a more realistic
way), the precession angle deviates by around 10◦ when the

024430-8



SPIN-TRANSFER DYNAMICS IN MGO-BASED MAGNETIC … PHYSICAL REVIEW B 101, 024430 (2020)

FIG. 6. Variation of the magnetization precession angle ver-
sus time for the case of ∂RAP/∂V = 100 �/V for I/Ic = 3 and
μ0H/μ0Hk⊥ = 0. The local minima reaching 63◦ and 71◦ correspond
to ϕ = 0 (P state) and ϕ = π (AP state), respectively.

magnetization changes its position from ϕ = 0 to ϕ = π (to
be more specific, the precession cone is tilted towards −x
direction). For instance, for the case of ∂RAP/∂V = 100 �/V
for I/Ic = 3 and μ0H/μ0Hk⊥ = 0.2, the angle reaches the
maximum of 71◦ close to the AP state (where the STT‖
opposes the damping torque) and the minimum of 63◦ close
to the P state (where the STT‖ acts like the damping torque),
as shown in Fig. 6. It is, then, important to note that the
magnetization precession angle plotted in Fig. 5 is just an
average value calculated from all instant positions of the
magnetization within the last 2 ns of the simulation.

5. Case of a large ∂RAP/∂V constant

Within the previous paragraphs, the dynamic and static
states in hybrid geometry MgO-MTJs are described for the
two cases: the realistic case, where the bias dependence of
the TMR is included (for ∂RAP/∂V ∼ 100 �/V ), and the
ideal case, where the bias dependence of the resistance is
neglected (i.e., in the limit of ∂RAP/∂V → 0). Now, let us
move the ∂RAP/∂V parameter to the hypothetical limit of
a large number, i.e., ∂RAP/∂V ∼ 1000 �/V , and use it in
Eq. (19) and in the equivalent numerical simulation.

All three cases are presented in Fig. 7. The results of the nu-
merical and analytical calculations for ∂RAP/∂V = 100 �/V
and ∂RAP/∂V = 0 �/V are recalled for the comparison in the
first and the second column, respectively. The third column
contains a corresponding dynamical diagram [Fig. 7(c)], as
well as static in-plane [Figs. 7(f) and 7(i)] and static out-
of-plane diagrams [Fig. 7(l)] for ∂RAP/∂V = 1000 �/V . Ac-
cording to these diagrams, in the limit of a large ∂RAP/∂V
constant, OOP dynamics occur for the opposite current sign
[represented with colored area in Fig. 7(c)], i.e., for electrons
flowing from the reference to the free layer, favoring the P
state. Due to the change of the current polarity from negative
to positive, the gap in the dynamics at zero- and low fields
is now the stability region of the in-plane P state [see the red
area in Fig. 7(f)]. Similar to the cases of ∂RAP/∂V = 100 �/V
and ∂RAP/∂V = 0 �/V [Figs. 7(j) and 7(k), respectively],
the static OOP states [red and blue areas in Fig. 7(l)] are

stabilized outside the dynamical region, while static states
in the overlapping area of the two static OOP states are
degenerate.

The static diagram showing an average my component,
shown in Fig. 7(i), exhibits some similarities to the graphs
presented in Fig. 7(g) and Fig. 7(h); namely, a nonzero my

component in the area of “degenerate static state” [marked in
Fig. 7(l)], as well as a small my component in the dynamical
region [marked in Fig. 7(c)], which indicates a slight tilt of the
magnetization precession cone [see description to Fig. 3(b)].

In order to find the reason for the presence of dynamics
for the opposite current sign in the limit of a large ∂RAP/∂V
constant, the analytical solutions for different ∂RAP/∂V pa-
rameters were analyzed. It was found that, in the case of
∂RAP/∂V → 1000 �/V , the slope of the bias dependence of
the RAP is so steep that the onset current for precession is
already in the voltage range where RAP < RP, which results
in a change of the TMR sign from positive to negative, and
eventually leads to a stabilization of dynamics for the opposite
current polarity. To clarify, let us go back to our initial
considerations shown in the scheme in Fig. 1, which are based
on the assumption that the spin-transfer torque overcomes the
damping on the half of the precession trajectory where the
MTJ resistance is larger (i.e., close to the AP configuration).
Namely, for the most common case of positive TMR (where
RAP > RP), shown Fig. 1(b), STT overcomes the damping
when the m vector approaches the AP state (i.e., dynamics
occur for Idc > 0), while for the case of the negative TMR
(where RAP < RP), STT overcomes the damping on the other
half of the precession trajectory, i.e., close to the P state
(where dynamics occur for Idc < 0).

Numerical results obtained for ∂RAP/∂V → 1000 �/V
represent the general case of negative tunnel magnetoresis-
tance. Negative TMR ratios have been experimentally mea-
sured in magnetic tunnel junctions with specific compositions,
like in TMR multilayers based on LSMO [41,42] or Mn-Ga
Heusler alloys [43,44]. In hybrid geometry STNOs based on
such materials, one should then expect dynamics to occur
for opposite current sign compared to transition metal-based
MTJs. It is also worth noting that STNO devices based on Mn-
Ga compounds exhibit a nontrivial bias dependence of TMR,
where TMR changes a sign as a function of applied voltage
[44,45], which may lead to a specific dynamic characteristic
of such devices, e.g., where dynamics are allowed for both
current directions.

6. Influence of STNO parameters

Figure 8 shows how the magnitude of ∂RAP/∂V constant
influences the critical lines for STNO dynamics. For the case
of ∂RAP/∂V = 0 (black lines), the dynamical region (i.e., a
triangular area in the region between the lines at the positive
current range) is the largest. An increase of the ∂RAP/∂V up
to around 100 �/V (see blue lines) brings about a significant
decrease of the dynamical region. A further increase of the
∂RAP/∂V constant results in a decay of dynamics (see red
lines for ∂RAP/∂V = 300 �/V ), and eventually leads to an
appearance of a dynamical region at the positive current range
(see dashed lines for ∂RAP/∂V = 1000 �/V ).
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FIG. 7. Dynamic and static diagrams of STNOs with the considered geometry for the case where both the angular and the bias dependence
of TMR are included: for the realistic case of ∂RAP/∂V ∼ 100 �/V [(a), (d), (g), and (j)], for the limit of ∂RAP/∂V → 0 �/V [(b), (e), (h),
and (k)], and for the limit of a large ∂RAP/∂V parameter, ∂RAP/∂V = 1000 �/V [(c), (f), (i), and (l)]. The diagrams show results of numerical
integration: colored areas represent the intensity of magnetization dynamics in (a), (b), and (c); red and blue areas show the average mx [(d),
(e), (f)], my [(g), (h), (i)], and mz [(j), (k), (l)] components, indicating the presence of given static states. The analytically determined onset
currents for precession are plotted with black solid lines, and the analytically determined borders of stability regions of the in-plane P/AP
states are plotted with dash-dot lines. Current values, I , are normalized by I0

c , i.e., the current value at the crossing of the critical lines for
dynamics for the case of ∂RAP/∂V = 0 (the crossing point of the solid lines in Fig. 2). Field values μ0Hext are normalized by the effective
out-of-plane anisotropy μ0Hk⊥ . Corresponding magnetic configurations of static states are marked with arrows.

The influence of parameters other than ∂RAP/∂V on the
critical lines of the STNO diagram is shown in Fig. 9.
Here, we consider the following parameters: the resistance
difference between the AP and P states (
R), the resis-
tance of the P state (RP), the damping constant (α), and
the effective out-of-plane anisotropy (μ0Hk⊥ ). As shown

in Fig. 9, by changing the magnitudes of these param-
eters, one can tune the critical currents for dynamics at
given applied fields (i.e., by decreasing α and μ0Hk⊥ , or
by increasing 
R) or broaden the operation field range
(i.e., by decreasing α, μ0Hk⊥ , and RP, or by increasing

R).

024430-10



SPIN-TRANSFER DYNAMICS IN MGO-BASED MAGNETIC … PHYSICAL REVIEW B 101, 024430 (2020)

FIG. 8. Critical lines for STNO dynamics [see Eq. (19)] for
different values of the ∂RAP/∂V constant.

7. STT angular asymmetry

The intensity of dynamics in hybrid geometry STNOs
is directly proportional to the skewness of the angular de-
pendence of the in-plane STT component, STT‖; namely,
the larger the deviation from a sine-type function, the more
power is pumped into the system due to more effectively
overcoming the damping torque. Indeed, higher asymmetry

of the STT‖ angular dependence results in a larger magneti-
zation precession angle θ , which the STNO output power is
directly proportional to. According to the LLGS Eq. (2), the
magnitude of the in-plane spin-transfer torque is a sine-type
function of the angle β between the magnetizations of the
two ferromagnetic layers in the system. However, including
the angular and the bias dependence of the TMR leads to the
following expression for STT‖:

STT‖(β ) = ∂τ‖
∂V

Idc
RP + 1

2
R0(1 − cos β )

1 + 1
2 |Idc| ∂RAP

∂V (1 − cos β )
sin β. (23)

The angular dependence of the in-plane STT term for an
applied current of Idc = 1.5I0

c is presented in Fig. 10. The
black line for ∂RAP/∂V = 0 �/V exhibits the spin-transfer
torque asymmetry with the maximum torque at a relative
angle of 102◦, arising solely from the cosine dependence of
the resistance, when experiments are conducted at a constant
applied current and the in-plane STT scales as the correspond-
ing voltage across the device. For this particular case, we can
observe the highest asymmetry, which, according to Fig. 8
(see black critical lines), corresponds to the lowest critical
currents for dynamics for ∂RAP/∂V = 0 �/V .

Increasing the value of ∂RAP/∂V to 100 �/V and 300 �/V
(see the blue and red lines in Fig. 8) shifts the maximum
of STT‖ closer to 90◦ (i.e., to 98◦ and 88◦, respectively).

FIG. 9. Change in the critical lines for STNO dynamics [see Eq. (19)] as a function of following STNO parameters: (a) the resistance
difference between P and AP states (
R), (b) the resistance of the P state (RP), (c) the damping constant (α), and (d) the effective out-of-plane
anisotropy (μ0Hk⊥ ). Current values, I , are normalized by I0

c , i.e., the current value at the crossing of the critical lines for dynamics for the case
of ∂RAP/∂V = 0 (the crossing point of the solid lines in Fig. 2). In the graphs (a), (b), and (c), field values B are normalized by the assumed
effective out-of-plane anisotropy μ0Hk⊥ = 120 mT. The critical lines for the stability of the static in-plane states (marked with dash-dot lines)
are influenced only by the RP parameter, as shown in (b).
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FIG. 10. In-plane STT component (STT‖) as a function of the
angle between magnetizations of the free and the reference layers (β)
for an applied current of Idc = 1.5I0

c and different values of ∂RAP/∂V .
Both the angular and the bias dependence of the TMR are included.

Indeed, increasing a ∂RAP/∂V constant reduces the TMR
amplitude at the considered applied bias and, hence, coun-
teracts the amplitude of the cosine-type oscillations of the
resistance as a function of the angle β between the two
magnetizations, thereby decreasing the spin-torque asymme-
try. For instance, for the used set of parameters, the asym-
metry disappears for ∂RAP/∂V = 330 �/V at Idc = 1.5I0

c . It
is also worth noting that the inclusion of the bias depen-
dence of TMR results in the reduction of the STT‖ angular
dependence asymmetry and, simultaneously, brings about a
decrease of the dynamical area in the current versus field
phase diagram (see the blue lines for ∂RAP/∂V = 100 �/V in
Fig. 8).

Further increase of the ∂RAP/∂V constant eventually leads
to the total cancellation of the asymmetry (see the symmet-
ric sine function for ∂RAP/∂V ≈ 300 �/V in Fig. 10, and
corresponding critical lines for dynamics in Fig. 8). When
∂RAP/∂V is so large that the TMR becomes negative for
the considered current range (i.e., RP is larger than RAP for
currents above the onset current for precession), we observe

that the maximum of STT‖ shifts towards the parallel con-
figuration of the two magnetizations (i.e., towards β = 0 ◦;
see the dashed line in Fig. 10). This results in an opening of
the precession angle θ close to the parallel configuration, not
to the antiparallel one [as shown in Fig. 1(b)], which results
in the presence of OOP dynamics at negative currents (see
dashed critical lines for dynamics in Fig. 8).

IV. SUMMARY

To summarize, we present the dynamical phase diagrams
of the MgO-based MTJ with IP polarizer and OOP free layer
determined from the energy integral within a single magneti-
zation precession period. We assumed that the spin-transfer
torque asymmetry results from the cosine-type angular de-
pendence of the tunnel magnetoresistance ratio, and proved
that it is in fact the responsible mechanism for precession in
STNOs of this geometry. We have also determined the phase
diagrams of STNO dynamics taking into account the bias
dependence of the MTJ resistance. To this end, we solved
the stability condition for the Jacobian matrix of the out-
of-plane static state, and proved that this bias dependence
exhibits drastic impact on the STNO phase diagram. With
increasing slope of the AP state bias dependence (∂RAP/∂V ),
the critical current for dynamics increases, the dynamical
region is reduced, and, according to the numerical integration,
the intensity of the observed dynamics (i.e., output power)
decreases. Indeed, the reduction of TMR due to its bias
dependence suppresses the STT‖ angular dependence asym-
metry, which is in fact responsible for sustaining precession
in the spin-torque nano-oscillator. The analytical results show
a very good agreement with equivalent simulation data and
compare well to our previous experimental results published
in Ref. [24].
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