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Nuclear spin-1/2 lattices where each spin has a small effective number of interacting neighbors represent a
particular challenge for first-principles calculations of free induction decays (FIDs) observed by nuclear magnetic
resonance. The challenge originates from the fact that these lattices are far from the limit where classical spin
simulations perform well. Here we use the recently developed method of hybrid quantum-classical simulations
to compute nuclear FIDs for 29Si-enriched silicon and fluorapatite. In these solids, the small effective number of
interacting neighbors is either due to the partition of the lattice into pairs of strongly coupled spins (silicon), or
due to the partition into strongly coupled chains (fluorapatite). We find a very good overall agreement between
the hybrid simulation results and the experiments. In addition, we introduce an extension of the hybrid method,
which we call the method of coupled quantum clusters. It is tested on 29Si-enriched silicon and found to exhibit
excellent performance.
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I. INTRODUCTION

Nuclear free induction decay (FID) measured by nuclear
magnetic resonance (NMR) is a quantity proportional to an
infinite temperature time auto-correlation function of the nu-
clear total spin polarization [1,2]. The Fourier transform of
the FID gives the shape of NMR absorption peak [1–3]. The
measurements of FIDs can be used to extract microscopic
information about solids such as the distances between nu-
clear spins or electronic spin susceptibility. Beyond NMR, the
simulations of high-temperature spin dynamics belong to the
broader field of dynamic thermalization.

First-principles calculation of NMR FID in solids is a
long-standing problem, which is almost as old as the field of
NMR itself [1,3,4]. Quite a number of methods for the first-
principles calculations were proposed in the past [1,2,5–18],
however, none of them are widely applied today. This situation
is, in part, due to the nonperturbative character of the FID
problem: There is no clear separation of timescales, hence,
there is no apparent small parameter for an approximate ex-
pansion. As a result, the above-cited methods were, typically,
based on uncontrolled approximations. Another reason for the
absence of a widespread adoption of a single method is that
the FID approximation schemes were rarely tested beyond
the case of the NMR benchmark material calcium fluoride
(CaF2) [19]. As a consequence, the predictive performance
of these schemes for a broader class of systems remained
unclear.
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Recently, we proposed [20] a hybrid quantum-classical
method based on simulating a large quantum spin lattice
by a small cluster of quantum spins coupled to an environ-
ment of interacting classical spins via a correlation-preserving
scheme. The unique feature of the method is that it affords
an effective estimate of the uncertainty of its predictions by
comparing the results of simulations for different sizes of
the quantum cluster. This means that the reliability of the
hybrid predictions can be assessed without comparing with
an experiment or with a numerically exact quantum result. In
Ref. [20], we extensively tested the hybrid method on various
model one- and two-dimensional lattices of spins-1/2 with
nearest-neighbor interactions, as well as on the experimentally
measured FIDs in CaF2 [19]. In almost all the cases, the
observed performance was excellent, and when it was not, the
above-mentioned uncertainty estimate indicated a discrepancy
prior to the comparison with the reference data.

For spin lattices where each spin strongly interacts with
a sufficiently large number of neighbors neff, purely classical
simulations were found to describe the FIDs quite accu-
rately [18]. An example here is CaF2. In this case, the hybrid
method generates results that exhibit only small deviations
from the classical predictions. Hybrid calculations are still
useful for large-neff lattices, because the deviation between
the classical and the hybrid results quantifies the predictive
uncertainty of both methods [20]. However, the true value of
the hybrid method is in the simulations of three-dimensional
spin-1/2 lattices with small neff. In such a setting, classical
simulations are not expected to be quantitatively accurate,
while direct purely quantum simulations are not feasible.

Two examples of small-neff spin-1/2 systems are 29Si-
enriched silicon, where, for certain orientations of external
magnetic field, the lattice breaks into strongly interacting spin

2469-9950/2020/101(2)/024428(11) 024428-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.024428&domain=pdf&date_stamp=2020-01-31
https://doi.org/10.1103/PhysRevB.101.024428


GRIGORY A. STARKOV AND BORIS V. FINE PHYSICAL REVIEW B 101, 024428 (2020)

pairs, and fluorapatite Ca10(PO4)6F2, where 19F nuclei are
positioned in parallel chains with weak interchain coupling. In
the present paper, we test the hybrid method by comparing its
predictions with the measured FIDs in 29Si-enriched silicon
and fluorapatite. In addition, we introduce an extension of the
hybrid method, which we call the method of coupled quantum
clusters. The latter method is tested on 29Si-enriched silicon.

II. GENERAL FORMULATION

Let us consider a material with one type of magnetic nuclei
and no disorder.

The FID experiment in solids measures the relaxation
of the total spin magnetization transverse to a strong static
magnetic field B0. In the Larmor rotating reference frame, the
relaxation is described by the effective truncated Hamiltonian
of the general form

H =
∑
α,i< j

Jα
i, jS

α
i Sα

j , α ∈ {x, y, z}, (1)

where Sα
i is the operator of spin projection on axis α for the

ith lattice site and the z axis is chosen along the direction of
B0. The coupling constants Jα

i, j correspond to the magnetic
dipolar interaction between nuclear spins averaged over the
fast Larmor precession. They have the form

Jz
i, j = −2Jx

i, j = −2Jy
i, j = γ 2h̄2(1 − 3 cos2 θi j )

|ri j |3 . (2)

Here, ri j is the vector connecting lattice sites i and j, θi j is
the angle between ri j and B0, γ is the gyromagnetic ratio of
nuclear spins.

The effective number of interacting neighbors, which con-
trols the applicability of the classical simulations, is defined
as [18]

neff ≡
[ ∑

i

(
Jx

i, j
2 + Jy

i, j
2 + Jz

i, j
2)]2

∑
i

(
Jx

i, j
2 + Jy

i, j
2 + Jz

i, j
2)2 . (3)

The signal measured in an FID experiment is proportional
to the equilibrium infinite-temperature time auto-correlation
function Cx(t ) of the total spin polarization Mx(t ) along a
transverse direction,

Cx(t ) = 〈Mx(t )Mx(0)〉, (4)

where

Mx =
∑

i

Sx
i . (5)

In the case of purely quantum dynamics, the notation 〈...〉 in
Eq. (4) is defined as

〈Mx(t )Mx(0)〉 = 1

D
Tr [Mx(t )Mx(0)], (6)

where D is the dimensionality of the Hilbert space of the entire
lattice.

III. HYBRID METHOD

The idea of the hybrid method is to approximate the
dynamics of the fully quantum lattice by that of the hybrid

one consisting of a cluster of quantum spins surrounded by an
environment of classical spins [20,21]. We denote the set of
all sites of the hybrid lattice as L. Among them, we choose
the subset of lattice sites Q ∈ L for the spins of the quantum
cluster, the latter being described by a wave function |ψ〉. The
spins on the rest of the lattice sites C = L/Q are treated clas-
sically, i.e., they are described as a set of three-dimensional
vectors {sm}. The entire hybrid lattice has periodic boundary
conditions.

The evolution of the quantum and the classical parts of
the system are determined by the quantum and the classical
Hamiltonians HQ and HC , respectively,

HQ =
i, j∈Q∑
i< j,α

Jα
i, jS

α
i Sα

i −
∑
i∈Q

hCQ
i · Si, (7)

HC =
m,n∈C∑
m<n,α

Jα
m,nsα

msα
n −

∑
m∈C

hQC
m · sm, (8)

where Sα
i are the operators of spin projections as in Eqs. (1),

sm ≡ (sx
m, sy

m, sz
m) are vectors of length

√
S(S + 1) repre-

senting the classical spins. In this paper, S = 1/2, hence√
S(S + 1) = √

3/2. Also, hCQ
i and hQC

m are the effective
magnetic fields coupling the quantum cluster and the classical
environment to each other:

hCQ
i = −

∑
n∈C

⎛
⎜⎝

Jx
i,nsx

n

Jy
i,nsy

n

Jz
i,nsz

n

⎞
⎟⎠, (9)

hQC
m = −

√
DQ + 1

∑
j∈Q

⎛
⎜⎜⎝

Jx
m, j〈ψ |Sx

j |ψ〉
Jy

m, j〈ψ |Sy
j |ψ〉

Jz
m, j〈ψ |Sz

j |ψ〉

⎞
⎟⎟⎠, (10)

where DQ = 2NQ is the dimensionality of the Hilbert space of
the quantum cluster consisting of NQ spins. The equilibrium
noise of quantum expectation values 〈ψ |Sα

i |ψ〉 is smaller than
its classical counterpart sα

m by the factor 1/
√

DQ + 1 (for
the explanation, see Refs. [20,21]). The above suppression is
compensated by the factor

√
DQ + 1 in Eq. (10). This factor

corrects the amplitude mismatch between hQC
m and hQC

m that
would happen in its absence.

According to the Hamiltonians (7) and (8), the equations
of motion for the hybrid lattice take the form

|ψ̇ (t )〉 = − i

h̄
HQ|ψ (t )〉, (11)

ṡm = sm × (
hCC

m + hQC
m

)
, (12)

where

hCC
m = −

n∈C∑
n �=m

⎛
⎜⎝

Jx
m,nsx

n

Jy
m,nsy

n

Jz
m,nsz

n

⎞
⎟⎠. (13)

The hybrid version of the total spin polarization is defined as

Mx(t ) =
√

DQ + 1 〈ψ (t )|
∑
i∈Q

Sx
i |ψ (t )〉 +

∑
m∈C

sx
m(t ). (14)
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Our actual implementation of the hybrid method involves
the following technical detail. Due to the translational invari-
ance of the original quantum system, the quantum correlation
function (4) can be re-expressed as [20,21]

Cx(t ) = NL

NQ′
〈Mx(t )M ′

x〉, (15)

where Q′ ∈ L is an arbitrary subset of lattice sites, NL is the
total number of spins in the lattice, NQ′ is the number of spins
in the subset Q′, and

M ′
x =

∑
i∈Q′

Sx
i . (16)

Once we transition to the hybrid dynamics, the presence
of the quantum-classical border breaks the translational in-
variance of the lattice, thereby making different choices of
Q′ inequivalent. To minimize the influence of the quantum-
classical border, we take Q′ in the fully quantum definition
(15) to consist of one or several central spins within the
quantum cluster Q.

Finally, the exact quantum correlation function (15) is
replaced by the one for the infinite-temperature equilibrium
noise generated by the hybrid dynamics,

Cx(t ) = NL

NQ′
[Mx(t )M′

x(0)]i.c., (17)

where [· · · ]i.c. denotes the averaging over initial condi-
tions [22], Mx(t ) is given by Eq. (14) and

M′
x(t ) =

√
DQ + 1 · 〈ψ (t )|

∑
m∈Q′

Sx
m|ψ (t )〉. (18)

The infinite-temperature ensemble of initial conditions is
generated through a fully random choice of |ψ (0)〉 in the
Hilbert space of the quantum cluster and fully random orien-
tations of classical spins sα

m(0). The time evolutions of |ψ (t )〉
and sα

m(t ) are computed using the fourth-order Runge-Kutta
routines for direct time integration as in Refs. [18,20,21,23].
The numbers and the durations of the computational runs be-
hind the plots presented below are given in the Supplemental
Material [24].

IV. METHOD OF COUPLED QUANTUM CLUSTERS

Classical spins in the hybrid method can be thought of as
each representing the quantum-mechanical expectation values
for a quantum cluster consisting of one spin 1/2 [20]. From
such a perspective, the hybrid method partitions the original
quantum lattice into a larger central quantum cluster Q and
one-spin clusters represented by classical spins.

In this section, we formulate a generalization of the hybrid
method, which we call the method of coupled quantum clus-
ters. It is based on partitioning the original quantum lattice
into quantum clusters of arbitrary sizes and then coupling
these clusters using the quantum-mechanical expectation val-
ues of the relevant observables. This method is to be tested
in Sec. V on the FID in 29Si-enriched silicon, where the
lattice can be naturally divided into pairs of spins 1/2. (In
fluorapatite, magnetic nuclei form a more complex lattice,
which cannot be naturally partitioned into small clusters.)

Let us partition the quantum lattice defined by the Hamil-
tonian (1) into smaller clusters. A cluster labeled by index μ

contains a set of sites Qμ. It is represented by wave function
|ψμ〉 belonging to the Hilbert space of dimension DQμ

. The
Hamiltonian for cluster Qμ is defined as

HQμ
=

i, j∈Qμ∑
i< j,α

Jα
i, jS

α
i Sα

i −
∑
i∈Qμ

hQμ

i · Si, (19)

where

hQμ

i = −
ν �=μ∑

ν

√
DQν

+ 1
∑
j∈Qν

⎛
⎜⎝

Jx
m, j〈ψν |Sx

j |ψν〉
Jy

m, j〈ψν |Sy
j |ψν〉

Jz
m, j〈ψν |Sz

j |ψν〉

⎞
⎟⎠. (20)

The dynamics of each wave function |ψμ〉 is governed
by the Schrödinger equation |ψ̇μ(t )〉 = − i

h̄HQμ
|ψ (t )〉. This

leads to a system of coupled differential equations for all clus-
ters, which is to be solved by the method of direct numerical
time integration.

The “clustered” version of the total spin polarization is
defined as

Mx(t ) =
∑

μ

√
DQμ

+ 1 〈ψμ(t )|
∑
i∈Qμ

Sx
i |ψμ(t )〉. (21)

As in the hybrid method, one can choose within each cluster
Qμ a subset of sites Q′

μ maximally separated from cluster’s
boundary and define

M′
x(t ) =

∑
μ

√
DQμ

+ 1 〈ψμ(t )|
∑
i∈Q′

μ

Sx
i |ψμ(t )〉. (22)

Finally, the expression for the correlation function of interest
is still given by Eq. (17), but now the definitions (21) and (22)
should be substituted there.

The computational advantage of the method of coupled
quantum clusters in comparison with the hybrid method is
that each simulation run produces more statistically indepen-
dent contributions to M′

x(t ), because it tracks simultaneously
many quantum clusters. The disadvantage, obviously, is that
the time evolution of many quantum clusters is more compu-
tationally expensive to calculate than that of classical spins.
Here, however, interesting compromises can be explored with
not-too-large quantum clusters.

The method of coupled quantum clusters as defined in this
section is qualitatively different from the correlated cluster
expansions reviewed in Ref. [25] both in terms of the character
of the simulations and in terms of the agenda. Our method
aims at describing strongly correlated dynamics of a dense
spin system, while the correlated cluster expansion targets
the decoherence of a central spin in an environment of a di-
lute spin bath. At the same time, as far as the coupling scheme
between different quantum clusters is concerned, the present
method has certain parallels with the cluster truncated Wigner
approximation proposed in Ref. [26].

V. FID FOR 29Si-ENRICHED CRYSTALLINE SILICON

A. Preliminary remarks

Crystalline silicon has a diamond-type crystal structure—
same as regular diamonds made of carbon atoms. Both silicon
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FIG. 1. Diamond-type crystal structure of crystalline silicon. The
red arrows represent the primitive vectors of the lattice.

and carbon have stable isotops with nuclear spins 1/2: 29Si
and 13C, respectively. The natural abundance of these isotopes
is quite low: 4.7% for 29Si and 1.1% for 13C. However,
crystals enriched to almost 100% content of these particular
isotopes have been grown artificially.

The FIDs of 99% 13C-enriched diamond were measured in
the past by Lefmann et al. [27] and Schaumburg et al. [28],
while the FIDs of 96.9% 29Si-enriched silicon were measured
by Verhulst et al. [29]. The FID shapes obtained in both
cases are supposed to coincide once the time axes are prop-
erly rescaled, and, indeed, the two experimentally measured
FIDs reasonably agree with each other provided experimental
uncertainties are taken into account (see the Supplemental
Material [24]). These uncertainties are, however, noticeable,
as manifested, in particular, by the asymmetry of the measured
absorption curves (the Fourier transforms of the FIDs) and by
the discrepancy between the experimental and the theoretical
values of second moments M2 ≡ −C′′

x (0)/Cx(0), the latter be-
ing computed for the truncated magnetic dipolar interaction.

In the present paper, we chose to compare the hybrid
method predictions with the 29Si FIDs measured by Ver-
hulst et al. [29]. The gyromagnetic ratio for 29Si is γ =
−5319 rad s−1 Oe−1. Our theoretical calculations are to be
done for 100% 29Si-enriched samples.

On the theoretical side, the Fourier transforms of the
FIDs for the diamond lattice were calculated by Schaumburg
et al. [28], who used the exact calculation of a five-spin
problem supplemented by a Gaussian broadening of the re-
sulting lineshapes; by Jensen [13], with the help of a continued
fraction representation of the Laplace transform of the FID;
and by Lundin and Zobov [30], who relied on the scheme
introduced in the 1996 work of Lundin [14], which, in turn,
was based on the hypothesis of the asymptotic similarity of
correlation functions of various orders.

B. Lattice structure of silicon

The diamond-type crystal structure of silicon is presented
in Fig. 1. It is a face-centered cubic lattice with a two-site
basis. The center of the unit cell is an inversion center of the
lattice. As a consequence, two lattice sites of the unit cell are
equivalent. In terms of the orthonormal vectors (â, b̂, ĉ) shown

in Fig. 1, the primitive vectors of the lattice are expressed as

l1 = a0

2
(â + b̂), l2 = a0

2
(b̂ + ĉ), l3 = a0

2
(â + ĉ), (23)

and two vectors of the basis are

v0 = 0, v1 = a0

4
(â + b̂ + ĉ), (24)

where a0 is the period of the fcc lattice (see also Ref. [31]).
For silicon diamond, a0 = 5.431 Å.

According to definition (3), the effective numbers of in-
teracting neighbors neff for the external magnetic field B0

oriented along the [001], [011], and [111] crystal directions
are, respectively, 27.4, 5.9, and 2.4. As explained in the
introduction, we are primarily interested in small neff, which
are supposed to yield more rigorous tests of the hybrid
method. Hence, we primarily focus on the setting where B0

is parallel to the [111] direction. In this case, neff is small,
because each spin has one very strongly coupled neighbor
along the [111] direction [cos θi j = ±1 in Eq. (2)]. The dis-
placement vectors pointing at the three other nearest neigh-
bors, while having the same length, are oriented with respect
to [111] at angles corresponding to cos θi j = ∓1/3, which
makes the absolute value of the coupling constants (2) by a
factor of three smaller than the largest one.

In the above setting, the full quantum lattice can be natu-
rally partitioned into pairs of strongly coupled spins 1/2. The
two spins within such a pair are displaced with respect to each
other along the [111] direction. Each of them is the strongest-
coupled neighbor of the other one, which, in turn, implies that
the interaction between different pairs is significantly smaller
than the interaction within a pair. Given such a hierarchy, it is
natural to expect that the method of coupled quantum clusters
introduced in Sec. IV would be particularly efficient, provided
the strongly coupled spin pairs are chosen as quantum clusters
Qμ into which the full lattice is partitioned.

C. Simulations vs experiment for silicon

The results of our simulations for B0 along the [111]
direction both by the hybrid method and by the method of
coupled quantum clusters are presented and compared with
the experiment of Verhulst et al. [29] in Fig. 2. Frame (a)
displays the absorption line shape f (ν), which is given by the
Fourier transform of the FID:

f (ν) = 2

Cx(0)

∫ +∞

0
dt Cx(t ) cos 2πνt . (25)

Frame (b) displays the FID.
To estimate the accuracy of the hybrid simulations, we

compare the hybrid results for two different quantum clusters
shown in Fig. 3. The very small difference between the two
results is a measure of the predictive uncertainty of the hybrid
method. Detailed information about the simulations can be
found in the Supplemental Material [24].

The simulations by the method of coupled quantum
clusters were performed by partitioning the full quantum
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FIG. 2. (a) Absorption line shape and (b) FID in 29Si-enriched silicon for B0 along the [111] crystal direction: comparison of the results
of simulations with the experiment of Verhulst et al. [29]. The simulations were done by the hybrid method and by the method of correlated
quantum clusters. The schemes of quantum clusters 1 and 2 used in the hybrid simulations are displayed in Fig. 3. The coupled quantum
cluster simulations were based on partitioning the full quantum lattice into pairs of strongly coupled spins 1/2 as described in the text. The
experimental absorption line shape is extracted directly from Ref. [29], while the experimental FID is obtained by the Fourier transform of the
absorption line shape. The shaded area around the experimental lines is a measure of nonsystematic experimental error obtained as explained
in Ref. [24].

lattice into clusters Qμ consisting of pairs of strongly coupled
spins 1/2 as described at the end of Sec. V B. We also chose
Q′

μ = Qμ. The plots for the coupled quantum clusters in
Fig. 2 nearly coincide with the hybrid plots. At the same
time, the convergence of the statistical averaging for coupled
quantum clusters method is significantly faster than that for
the hybrid method.

As one can see in Fig. 2, the agreement between both
kinds of simulations and the experiment is very good, and,
moreover, the small residual discrepancy might be due to
experimental uncertainties or due to microscopic details not
included into the model Hamiltonian. The former can be quan-
tified through the ratio 1.33 of the experimental and the first-
principles theoretical values of the second FID moments [24].
The latter can be associated with crystal defects, paramagnetic
impurities, or less than 100% abundance of 29Si. As further
illustrated in Fig. 6 of Appendix A, the theoretical predictions
of Jensen and of Lundin and Zobov appear to exhibit some-
what larger deviations from the experiment.

It is worth remarking that the absorption line shape
in Fig. 2(a) inherits its two-peak structure from the Pake

doublet [32] associated with an isolated pair of spins 1/2. The
Pake doublet is sometimes viewed as an essentially quantum
phenomenon originating from the discreteness of quantum
energy levels. Yet, even in this case, simulations of two
classical spins were shown [33] to qualitatively reproduce
the two-peak character of the absorption line shape. This is
an example of a rather subtle relation between classical and
quantum dynamics: On the one hand, classical spin systems
can be useful for practical calculations [8,18,34,35] and also
exhibit significant qualitative similarities with quantum ones
as far as the long-time relaxation is concerned [36–41]; on the
other hand, classical spin lattices are chaotic [42,43], while
quantum lattices are not [44] in the sense of the absence of the
Lyapunov regime, even though they can imitate the Lyapunov
regime over a limited time range [45]. In Fig. 2, to highlight
the difference between quantum and classical FIDs for small
neff, we also include the results of purely classical simulations
of the kind done in Ref. [18].

Finally, we also performed hybrid and classical simulations
for B0 parallel to the [011] and [001] crystal directions. The
results are presented in Appendix A.

FIG. 3. Schemes of the quantum clusters Q for the hybrid simulations of 29Si-enriched silicon for B0 ‖ [111] presented in Fig. 2: (a) and
(b) show cluster 1 and cluster 2, respectively. In (a), two sites belonging to the subset Q′ are marked with +. In (b), all sites belonging to Q
also belong to Q′.
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FIG. 4. Scheme of a unit cell of fluorapatite. Only fluorine (blue)
and phosphorous (red) atoms are shown.

VI. 19F FID FOR FLUORAPATITE

A. Preliminary discussion

Fluorapatite Ca10(PO4)6F2 is a material often used to study
spin dynamics of low-dimensional lattices [46–52]: Fluorine
nuclei in fluorapatite are arranged in parallel chains. For the
orientation of external magnetic field parallel to the chains, the
interactions between them are much smaller than the interac-
tion within the chain. As a result, neff ≈ 2, which means the
fluorapatite lattice with coupling constants (2) can be viewed
as a collection of weakly coupled spin chains. In this section,
we focus on 19F FID in the above setting. We compute
this FID and compare the result with the measurements of
Engelsberg et al. [53].

In terms of contributions to nuclear magnetism, fluorapatite
contains stable nuclear isotopes 19F and 31P, which have
spins 1/2 and natural abundances 100%. We include both
of them in the simulations. Their gyromagnetic ratios are
γF = 25166.2 rad s−1 Oe−1 and γP = 10829.1 rad s−1 Oe−1

respectively. At the same time, magnetically active isotopes
of calcium and oxygen have natural abundances less then 1%;
hence, we neglect them.

B. Lattice structure of fluorapatite

Fluorapatite has hexagonal crystal structure with the space
group P63/m [54]. The lattice parameters are a = b =
9.462 Å and c = 6.849 Å. We denote the respective primitive
vectors as a, b, and c. The angle between a and b is 120◦, and
the c axis is orthogonal to the hexagonal ab plane. The basis
cell of the sublattice of magnetically active nuclei contains
two F nuclei at positions

[0.0, 0.0, 0.25], [0.0, 0.0, 0.75] (26)

and six P nuclei at positions

[x, y, 0.25], [1 − y, x − y, 0.25],

[y − x, 1 − x, 0.25], [1 − x, 1 − y, 0.75],

[y, y − x.0.75], [x − y, x, 0.75], (27)

where x = 0.369 and y = 0.3985. The coordinates are given
in the basis of vectors a, b, and c. An illustration of the
unit cell of fluorapatite is presented in Fig. 4. The positions
of the 19F nuclei inside the basis cell are equivalent, since

they are transformed into each other by the discrete symmetry
transformations of the lattice. The positions of the 31P nuclei
inside the basis cell are equivalent as well.

The above-mentioned strongly coupled chains of 19F nu-
clei extend along the [001] direction. The interchain distance
between nuclei is approximately 2.8 times smaller then the in-
trachain one. In the case where the external magnetic field B0

is parallel to the [001] direction, the largest value of intrachain
coupling is at least 21 times smaller then the nearest-neighbor
coupling within a chain.

In comparison with CaF2 and silicon, the simulations of
19F FID in fluorapatite are complicated by the presence of
“unlike” 31P nuclei and by lattice disorder. Below we intro-
duce technical modifications required to accommodate these
two aspects.

C. Unlike spins

Two nuclear spins with different gyromagnetic ratios are
referred to in NMR literature as “unlike spins” [2]. The
truncated Hamiltonian averaged over fast precession of 19F
and 31P nuclear spins, takes the form similar to Eqs. (1)
and (2):

H =
∑
i< j,α

Jα
i, jS

α
i Sα

j +
∑

k<l,α

˜̃Jα
k,l I

α
i Iα

j +
∑
i,k,α

J̃α
i,kSα

i Iα
k . (28)

Here, Sα
i and Iα

k are the spin operators of 19F and 31P nuclei,

respectively. The coupling constants Jα
i, j ,

˜̃Jα
k,l and J̃α

i,k are

Jx
i, j = Jy

i, j = −1

2
Jz

i, j = γ 2
F (1 − 3 cos 2θi j )

r3
i j

, (29)

˜̃Jx
k,l = ˜̃Jy

k,l = −1

2
˜̃Jz
i, j = γ 2

P (1 − 3 cos 2θkl )

r3
kl

, (30)

J̃x
i, j = J̃y

i, j = 0, (31)

J̃ z
i, j = γF γP(1 − 3 cos 2θik )

r3
ik

. (32)

As in the homonuclear case, the 19F FID is proportional to
Cx(t ) defined by Eq. (4), but the dynamics is now determined
by the Hamiltonian (28).

D. Lattice disorder

The main type of defects in fluorapatite is the substitutions
of F− ions by other X− ions. Usually, F− ions are substituted
by Cl− ions or by hydroxyl groups (OH)− [54]. The pres-
ence of defects disrupts the fluorine chains and, in principle,
leads to an adjustment of the positions of the neighboring
atoms. In addition, both the stable isotopes of chlorine and
protons of the (OH)− group are magnetically active. While
the gyromagnetic ratio of chlorin nuclei is relatively small
and hence the respected site can be treated as nonmagnetic
vacancy, the strongly magnetic proton spins would generate
the inhomogeneous broadening of the z components of the
local magnetic fields sensed by the neighboring 19F and
31P nuclei. In principle, an accurate calculation of the 19F
FID should account for all such effects. However, to the
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best of our knowledge, there is no detailed data about the
concentrations of different types of defects in the sample used
in the experiment [53]. Therefore, we choose to follow the
approach of Ref. [55], namely, we assume that the fluorine
atoms in fluorapatite are randomly replaced by nonmagnetic
substitutions with probability ρ. The concentration of non-
magnetic substitutions is then determined by matching the
experimentally measured second moment of the FID.

Let us consider some particular realization of disorder in
the system. It can be specified by introducing a set of inde-
pendent random binary variables {pi}, which take value 0 with
probability ρ and value 1 with probability (1 − ρ). Here i is
the index of the fluorine lattice site and ρ is the concentration
of defects. The values pi = 1 or pi = 0 correspond to the spin
being either present or absent on site i, respectively. As a
result, in the full truncated dipolar-dipolar Hamiltonian given
by Eq. (28), spin operators Sα

i are substituted by piSα
i .

The definition of the autocorrelation function measured in
experiment [Eqs. (4) and (6)] is now changed to

Cx(t ) ≡
〈

1

D{p} Tr
[
eiHt M{p}

x e−iHt M{p}
x

]〉
{p}

, (33)

where {p} denotes a particular realization of disorder, 〈· · · 〉{p}
is the disorder average, and

M{p}
x =

∑
i

piS
x
i . (34)

According to the hybrid scheme, the correlation function
(33) is then reexpressed as a counterpart of Eq. (17),

Cx(t ) = NL

NQ′

[
M{p}

x (t )M′{p}
x (0)

]
i.c.,{p}, (35)

where

M{p}
x (t ) =

√
D{p}

Q + 1 〈ψ (t )|
∑
i∈Q

piS
x
i |ψ (t )〉 +

∑
m∈C

pmsx
m(t ),

(36)

and

M′{p}
x (t ) =

√
D{p}

Q + 1 〈ψ (t )|
∑
i∈Q′

piS
x
i |ψ (t )〉. (37)

E. Simulations vs experiment for fluorapatite

The comparison of the results of hybrid simulations with
the experimental data of Ref. [53] is presented in Fig. 5.
We used the concentration of fluorine vacancies ρ = 0.077
obtained by fitting of the experimental second moment of the
FID with the theoretical value computed from first principles
(see the Supplemental Material [24]). The size of the sim-
ulated hybrid lattice was 9 × 9 × 7 basis cells. The central
quantum cluster Q was chosen as a single chain of fluorine
spins extending along the c axis: it covered seven basis cells
and, therefore, included 14 fluorine spins. The rest of the
spins were simulated classically. Since the quantum cluster
Q in this case was closed periodically, all its spins were
equivalent with respect to the classical environment. Hence,
each of the 14 lattice sites belonging to Q also belonged to
the subset Q′ appearing in the definition (35) of the hybrid

0 50 100 150 200
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−0.25

0.00

0.25

0.50

0.75

1.00

C
x
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C

x
(0

)

Hybrid simulations

Experiment

FIG. 5. 19F FID in fluorapatite. Comparison of the results of the
hybrid simulations including fluorine spins, phosphorous spins, and
lattice disorder with the experimental data of Engelsberg et al. [53].

correlation function. We also performed hybrid simulations
for a smaller system of 9 × 9 × 6 basis cells with the central
quantum cluster of 12 fluorine spins. The difference between
the computed FIDs for the two hybrid lattices is smaller than
the thickness of the plot lines in Fig. 5. This implies that the
above result amounts to a quantitatively reliable prediction
of the FID of the fully quantum dynamics for the given
interaction Hamiltonian and the chosen model of the lattice
disorder. In Appendix B, we also present the results of hybrid
FID calculations without the lattice disorder for an isolated
fluorine chain and for a three-dimensional lattice with and
without phosphorus nuclear spins.

Overall, the agreement between the numerical and the
experimental results shown in Fig. 5 is good. However, there
is still a discrepancy, which, while being small in absolute
terms, is larger than the predictive uncertainty estimate for
the hybrid simulations. Therefore, this discrepancy is due
to either the experimental uncertainty or the approximate
character of our lattice disorder model, which we had to
resort to in the absence of more detailed information about the
material.

Finally, we note that, in principle, it is possible to also
apply the method of coupled clusters (Sec. IV) to fluorapatite.
One can, for example, divide the 19F sublattice into parallel
chains along the ĉ direction. However, one also needs to
take into account 31P spins. If 31P spins are included in
quantum clusters, then the Hilbert space of each cluster would
become impractically large. A feasible alternative is to treat
31P spins as classical, but then we do not expect the results
to be much different from the hybrid calculation presented
earlier. Using coupled quantum clusters for fluorapatite would
be further complicated by the need to incorporate random
lattice vacancies, which, in turn, would make different clusters
nonequivalent. In view of the above considerations, we did not
attempt to apply the method of coupled quantum clusters to
fluorapatite.

VII. CONCLUSIONS

Overall, we observe good quantitative agreement of the
hybrid simulations of FIDs in 29Si-enriched silicon and in
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FIG. 6. (a) Absorption line shape and (b) FID in 29Si diamond for B0 along [111] crystal direction: Comparison of the theoretical
predictions of Jensen [13] and of Lundin and Zobov [30] with the experiment of Verhulst et al. [29]. The experimental lines are the same
as in Fig. 2.

fluorapatite with experiments. Both settings are characterized
by a low effective number of interacting neighbors neff of each
nuclear spin and, hence, are crucial for testing the predictive
performance of the hybrid method as far as the essentially
quantum aspects of the FID behavior are concerned. However,
the conclusive assessment of the predictive power of the
hybrid method is hindered by the experimental uncertainties
and/or by the insufficient knowledge about lattice disorder,
including vacancies, substitutions, and paramagnetic impuri-
ties. More accurate NMR experiments on better characterized
samples with small neff need to be performed to conduct
more stringent tests of the hybrid method. We also introduced
the coupled quantum clusters method, which was shown to
exhibit excellent performance when applied to the FID in
29Si-enriched silicon with the orientation of the external
magnetic field imposing the natural partition of the full lattice
into pairs of strongly coupled spins. Given these promising
results, the performance of the latter method for a broader
class of systems merits further systematic investigation.
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APPENDIX A: ADDITIONAL CALCULATIONS AND
DISCUSSION OF FIDs IN 29Si-ENRICHED SILICON

To facilitate the comparison between the performance of
the hybrid method for the calculation of 29Si FID with
B0||[111] as presented in Fig. 2 with the performance of
alternative theoretical methods, we include in Fig. 6 the same
kind of theory-vs-experiment plots for the (properly rescaled)
theoretical predictions of Jensen [13] and of Lundin and
Zobov [30].

We also computed 29Si FIDs for the external magnetic field
B0 parallel to [011], [001]. The values of neff in these two
cases are 5.9 and 27.4, respectively. According to the inves-
tigations of Elsayed and Fine [18], the classical simulations
are expected to perform well when neff > 4. Thus, following
the argumentation of Ref.[20], we estimate the uncertainty of
the hybrid simulations by comparing their results with the
results of purely classical simulations. The schemes of the
quantum clusters used in the hybrid simulations are shown in
Fig. 7. For the details of the simulations, see the Supplemental
Material [24].

The results of our simulations are presented in Figs. 8 and 9
for external magnetic field B0 along [011] and [001] crystal di-
rections respectively. The figures have identical structure. The
upper row [frames (a) and (b)] presents the comparison of the

FIG. 7. Schemes of the quantum clusters for the hybrid simulations of 29Si-enriched silicon presented in Figs. 8 and 9: (a) for B0 ‖ [011];
(b) for B0 ‖ [001]. Sites belonging to the subset Q′ are marked with +: two in (a) and one in (b).
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FIG. 8. (a, a′) Absorption line shapes and (b, b′) FIDs in 29Si-enriched silicon for B0 ‖ [011]. (a, b): Comparison of the results of hybrid
simulations with the experiment of Verhulst et al. [29] (a′, b′): Comparison of the theoretical predictions of Jensen [13] and of Lundin and
Zobov [30] with the same experimental data. The scheme of the quantum cluster used in the hybrid simulations is displayed in Fig. 7(a).

results of our simulations with experimental data of Verhulst
et al. [29]. The lower row [frames (a′) and (b′)] presents the

comparison of the theoretical predictions of Jensen [13] and
of Lundin and Zobov [30] with the same experimental data.

FIG. 9. (a, a′) Absorption lineshapes and (b, b′) FIDs in 29Si-enriched silicon for B0 ‖ [001]. (a, b): comparison of the results of hybrid
simulations with the experiment of Verhulst et al. [29] (a′, b′): comparison of the theoretical predictions of Jensen [13] and of Lundin and
Zobov [30] with the same experimental data. The scheme of the quantum cluster used in the hybrid simulations is displayed in Fig. 7(b).
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FIG. 10. 19F FID in fluorapatite. Comparison of hybrid simula-
tions with the experiment of Engelsberg et al. [53] for different levels
of modeling defined in the text: black dotted line—single fluorine
chain, green dotted line—three-dimensional lattice of fluorine nuclei
only; magenta dashed line—three dimensional lattice of fluorine and
phosphorous nuclei. None of the hybrid simulations presented in this
figure included lattice disorder.

In the case of B0||[001], we are reasonably confident that
the large discrepancy between the hybrid predictions and the
experiments is due to the experimental uncertainties, which is
evidenced by the fact that the ratio of the experimental and the
theoretical second moments in this case is 2.73. In the case of
B0||[011], the second moment ratio is 1.4, i.e. closer to 1, and
hence the agreement between the hybrid calculations and the
experiment is more satisfactory.

In the Supplemental Material, we also included the plots
of the rescaled experimental results of Lefmann et al. [27]

for 13C-enriched diamond together with the data presented in
Figs. 2, 6, 8, and 9.

APPENDIX B: ADDITIONAL CALCULATIONS AND
DISCUSSION OF FID IN FLUORAPATITE

In Fig. 10, we present the results of the hybrid simulations
for different levels of modeling 19F FID in fluorapatite. We
consider a series of models, which gradually become more
realistic:

(1) isolated fluorine chain without disorder;
(2) three-dimensional fluorine lattice without disorder and

without phosphorus nuclear spins;
(3) three-dimensional lattice with phosphorus nuclei, but

without disorder;
(4) three-dimensional lattice with phosphorus nuclei and

disorder.
Model (iv) corresponds to the simulations described in

Section VI and presented in Fig. 5.
The parameters of the simulated hybrid lattices are the

following. For model (i) the hybrid lattice was a chain of
length 201 with periodic boundary conditions; the size of
the quantum cluster Q was 12 and the subset Q′ included
two central spins of cluster Q. For model (ii), the fluorine
sublattice of the size 7 × 7 × 13 spins was used, and both Q
and Q′ were chosen in the form of a periodic 13-spin fluorine
chain. The parameters for model (iii) were the same as for the
model (iv) used in Section V: the lattice size was 9 × 9 × 7
basis cells, while Q and Q′ were chosen as a 14-spin fluorine
chain.

We, finally, note that the results of the simulations for
models (i) and (ii) nearly coincide with each other, thereby
corroborating the quasi-one-dimensional character of the flu-
orine sublattice.
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