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Real-space Berry curvature of itinerant electron systems with spin-orbit interaction
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By considering an extended double-exchange model with spin-orbit coupling (SOC), we derive a general
form of the Berry phase γ that electrons pick up when moving around a closed loop. This form generalizes
the well-known result valid for SU(2) invariant systems, γ = �/2, where � is the solid angle subtended by the
local magnetic moments enclosed by the loop. The general form of γ demonstrates that collinear and coplanar
magnetic textures can also induce a Berry phase different from 0 or π , smoothly connecting the result for SU(2)
invariant systems with the well-known result of Karplus and Luttinger for collinear ferromagnets with finite SOC.
By taking the continuum limit of the theory, we also derive the corresponding generalized form of the real-space
Berry curvature. The new expression is a generalization of the scalar spin chirality, which is presented in an
explicitly covariant form. We finally show how these simple concepts can be used to understand the origin of the
spontaneous topological Hall effect that has been recently reported in collinear and coplanar antiferromagnetic
phases of correlated materials.
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I. INTRODUCTION

The phenomenon of colossal magnetoresistance (CMR)
provides a clear example of the dramatic effects of magnetism
on electronic transport [1,2]. The ability of changing the longi-
tudinal electric resistivity by several orders of magnitude with
an external magnetic field generated a wide interest [3,4], not
only due to its multiple technological applications, including
magnetic recording, but also because of the rich fundamental
physics arising from the interplay between charge and spin
degrees of freedom. Indeed, colossal magnetoresistance is an
example of the profound influence of quantum mechanics on
the macroscopic behavior of correlated materials.

The phenomenon of CMR only refers to the diagonal
components of the conductivity tensor. It is natural to ask if
a similar dramatic change of the off-diagonal components of
the conductivity tensor can also be achieved by exploiting the
interplay between localized magnetic moments and conduc-
tion electrons [5]. Like in the case of CMR materials, the first
affirmative answer to this question arose from the study of
ferromagnets, whose transverse resistivity contains a term that
remains nonzero even after switching off the applied magnetic
field [6–8]. Given that the magnetization M is apparently the
only axial vector that characterizes the system in absence
of the external field, it is not surprising that the observed
“anomalous Hall effect” (AHE) turned out to be proportional
to M. However, subsequent experiments showed that ρxy can
be a nonmonotonic function of M. This key observation led
to the discovery of a much more interesting phenomenon of
quantum mechanical origin [9].

Karplus and Luttinger made a seminal contribution to
the problem of anomalous Hall effect by considering the
band structure of ferromagnets in the presence of spin-orbit

interaction [10]. They pointed out that the anomalous ve-
locity arises from interband matrix elements of the cur-
rent operator. Smit provided an alternative explanation of
the phenomenon by attributing the AHE to skew scattering
with impurities [11]. Later, another extrinsic mechanism,
side jump, was proposed by Berger, which is related to the
shift of the electron during its collision with an impurity
[12]. The skew scattering mechanism leads to a contribu-
tion to ρxy that is proportional to the longitudinal resistiv-
ity ρ. In contrast, the intrinsic and side-jump mechanisms
give ρxy ∝ ρ2. This behavior of ρxy was confirmed by a
transport measurement in the spinel CuCe2Se4−xBrx [13]. In
general, the dominant mechanism depends on the material
consideration. Our current understanding indicates that skew
scattering is dominant in relatively clean materials, while the
intrinsic mechanism is dominant in relatively dirty materials
[14,15].

The vast implications of the explanation of the AHE
offered by Karplus and Luttinger became clear after the
derivation of the Hall conductance by Thouless et al. and
their analysis of the quantum Hall effect [16]. In particular,
it was understood that the AHE can be attributed to a Berry
phase [17] associated with the Bloch wave functions in solids
[18,19]. This Berry phase can arise through different mech-
anisms. Ye et al. [20] proposed a mechanism based on the
observation that a carrier moving in a noncoplanar spin back-
ground acquires a real-space Berry phase, which affects the
motion of electrons in the same way as the Aharonov-Bohm
[21] phase arising from a physical magnetic field. References
[22,23] also discussed the relevance of noncoplanar spin con-
figurations to the AHE in the context of perovskite-type man-
ganites at high temperatures. A similar mechanism was pro-
posed for pyrochlore ferromagnets [9,24] and for noncoplanar

2469-9950/2020/101(2)/024420(15) 024420-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6991-5327
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.024420&domain=pdf&date_stamp=2020-01-22
https://doi.org/10.1103/PhysRevB.101.024420


SHANG-SHUN ZHANG et al. PHYSICAL REVIEW B 101, 024420 (2020)

antiferromagnets [25–31]. However, Jungwirth et al. [19]
showed that noncoplanar spin ordering is not actually neces-
sary to produce an AHE. They related the AHE of collinear
ferromagnets directly to a Berry phase in momentum space,
which arises from the way in which the spin-orbit coupled
Bloch wave functions depend on the wave vector. In simple
terms, the net spin magnetization of a ferromagnetic system
induces an orbital current (or orbital magnetic moment) via
the spin-orbit interaction. The combination of a net spin
magnetization and SOC then leads to an effective magnetic
field which couples to the orbital degrees of freedom of the
(spin-polarized) conduction electrons.

In the case of collinear and coplanar magnetic orderings,
the SOC can only arise from the relativistic spin-orbit inter-
action [32]. In contrast, the beauty of noncoplanar magnetic
orderings is that they produce an effective SOC in absence
of any relativistic contribution. This phenomenon arises from
the Berry phase γ acquired by the electronic wave function
when the electron moves in a closed loop, which cannot be
distinguished from the Aharonov-Bohm phase [21] produced
by a magnetic flux equal to γ�0/2π (�0 is the flux quantum).
Given that spins of an elementary plaquette can subtend a
solid angle comparable to 2π , the effective magnetic flux
produced by a noncoplanar spin ordering can be of the order of
one flux quantum per elementary plaquette. For real materials,
the area of an elementary plaquette can be as small as a
few Å2, implying that the effective magnetic field produced
by a noncoplanar spin ordering can reach values of order
105 T. This is an enormous magnetic field if we consider
that the strongest pulsed field that can be currently gener-
ated in the high magnetic field facilities are slightly higher
than 100 T.

The effective gauge field induced by noncoplanar spin
orderings [33–35] can be illustrated with the so-called s-d
exchange model. This idea originates from the seminal papers
by Zener [36], and by Anderson and Hasegawa [37], which
discuss the double-exchange interaction generated in the limit
of large exchange coupling between the local moments and
the conduction electrons. In this limit, the spin of the electron
is forced to be aligned with the underlying spin field. As a
consequence, the effective hopping matrix element between
two sites j and k with local classical magnetic moments
S j = Sn j and Sk = Snk becomes

t̃k j = tk j〈n j |nk〉 = tk j cos (χk j/2)ei�n jk/2, (1)

where |nk〉 is the coherent spin state polarized along the nk

direction Sk · nk|nk〉 = S|nk〉, χk j is the angle between the
j and k local moments χk j = arccos(n j · nk ), and �n jk is
the solid angle subtended by n j , nk , and a reference unit
vector n. When the electron moves in a closed loop, such
as a triangular plaquette, it picks up a Berry phase equal
to the sum of the phases �n jk of each hopping amplitude.
This sum is independent of the reference vector n (gauge
invariance) and equal to half of the solid angle enclosed by
the loop of spins on the unit sphere. In the continuum limit
(infinitesimal small loops), this solid angle is proportional to
the scalar spin chirality n j · nk × nl , which then acts as an
effective magnetic field on the orbital degree of freedom of
the conduction electrons [38].

In general, the spin-orbit interaction, which is always
present in solids, modifies the above argument based on the
scalar spin chirality. For example, a theoretical study of Mo
oxides has proposed that the spin-orbit interaction signif-
icantly modifies the Hall conductivity of the noncoplanar
phase, producing a much larger Hall effect in multiband
systems [39]. However, to date, a systematic understanding
of how the spin-orbit interaction modifies the geometric pic-
ture associated with the scalar spin chirality mechanism is
lacking. The purpose of this paper is to derive the effective
gauge field that emerges from a given magnetic texture in
the presence of finite SOC. The SOC enters in the single-
electron tight-binding Hamiltonian as a fixed SU(2) gauge
field (defined on the lattice bonds) [40,41], whose value is
determined by the interplay between the relativistic spin-orbit
interaction and the crystal structure. We note that this field
can fluctuate in theories where the ionic positions are allowed
to fluctuate (e.g., theories that include electron-phonon cou-
pling). In this work, we only include the electronic degrees
of freedom, implying that the SU(2) gauge field remains
frozen. The inclusion of finite SOC coupling in the hopping
term of the s-d model leads to a more general form of
the real-space Berry curvature (or effective magnetic field)
in the double-exchange limit. In particular, it will become
evident that noncoplanarity of the magnetic structure is no
longer a requirement for producing a nontrivial real-space
Berry curvature, i.e., collinear and coplanar structures can
also produce an effective magnetic field in the presence of
SOC. We will also see that the case of collinear ferromagnets
that was originally considered by Karplus and Luttinger [10]
is simply a limiting case of the general formula that we
will derive here. Moreover, by taking the continuum limit
of the model Hamiltonian under consideration, we derive an
explicitly gauge-invariant form of the Berry curvature that
generalizes the notion of scalar spin chirality. Finally, we
consider a few simple examples to illustrate the applicability
of these simple concepts to models and materials that exhibit
topological Hall effect induced by coplanar and collinear
magnetic orderings.

The presentation of our results is organized as follows. In
Sec. II we formulate the general problem and we introduce
the model Hamiltonian that will be used in the rest of the
paper. Section III introduces a geometric approach for the
computation of the electronic Berry phase in the presence of
SOC. Mathematically oriented readers may find this approach
more appealing than the algebraic treatment that is introduced
in Sec. IV. However, the algebraic approach is probably more
amenable for the general reader, who can skip Sec. III in a first
reading of the paper. A similar consideration can be applied to
the continuum limit of the theory that is described in Sec. V.
While it is important to understand how the notion of scalar
spin chirality [i.e., the source of the Berry curvature in the
SU(2) invariant case] must be generalized in the presence
of SOC, this is not a requirement for understanding the
subsequent section, which is devoted to applying the gener-
alized form of the real-space Berry curvature to simple lattice
models. These simple models in Sec. VI capture the essence
of the topological Hall effect that has been recently observed
in materials with coplanar and collinear antiferromagnetic
orderings, such as Mn3Sn [42] and CoNb3S6 [43].
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II. GENERAL FORMULATION

We will consider itinerant electrons that interact with
localized magnetic moments via an exchange coupling J .
For simplicity, we will assume that quantum fluctuations are
small, implying the localized spins can be approximated by
classical moments S j = Sn j , where n j is a normalized vector
field

n j = (sin θ j cos φ j, sin θ j sin φ j, cos θ j ), (2)

representing the direction of the classical moment S j . In
this classical limit, the sign of the exchange interaction J
can be changed by the unitary transformation: S j → −S j .
Consequently, without loss of generality, we will adopt a
ferromagnetic sign J > 0. The simplest Hamiltonian that de-
scribes this physics is

H = Ht + HJ ,

Ht =
∑

jk

(tk jc
†
kUk jc j + t∗

k jc
†
jU

†
k jck ),

HJ = −JS

2

∑
j

c†
jσc j · n j . (3)

where σ = (σ1, σ2, σ3) is a vector of the Pauli matrices. Here
we are using the spinor notation

ck =
[

ck↑

ck↓

]
, c†

k = [c†
k↑ c†

k↓]. (4)

The unitary operator Uk j is an SU(2) rotation matrix taking
the general form

Uk j = exp

[
− iαk j

2
(ak j · σ )

]
, (5)

where αk j is the rotation angle induced by the finite spin-orbit
interaction, ak j is the unit vector in the direction of the rotation
axis. The complex hopping amplitudes tk j can be expressed
as tk j = |tk j |eiβk j . We note that H becomes SU(2) invariant in
absence of SOC: αk j = 0 (∀ k j).

We will also assume that the exchange interaction J is
comparable or larger than the bandwidth of the itinerant elec-
trons. In this so-called double-exchange limit, the electronic
spin orientation must remain parallel to the underlying local-
ized spin. The resulting low-energy Hamiltonian is simply a
spinless fermion tight-binding model with effective complex
hopping amplitudes,

t̃k j = τk je
iγk j , (6)

determined by the configuration of the underlying magnetic
moments:

τk j = tk j

√
1 + nk · Rk j · n j

2
. (7)

The SO(3) rotation matrix

Rk j = exp[αk j (ak j · L)] (8)

corresponds to the SU(2) rotation defined by the matrix Uk j

in Eq. (5), where L = (Lx, Ly, Lz ) is a vector of the standard
SO(3) generators [La]bc = −εabc. This is just a generalization

of the Anderson-Hasegawa or double-exchange model to the
case with finite SOC [36,37].

We are interested in the net phase � jkl that the electronic
wave function picks up as the electron moves around the tri-
angle jkl . This phase is equal to the sum of two contributions:

� jkl = β jkl + γ jkl , (9)

where β jkl = β jl + βlk + βk j is the phase that arises from the
complex nature of the hopping amplitudes tk j , which must be
equal to 0 or π because Ht is time-reversal invariant. The
Berry phase

γ jkl = γ jl + γlk + γk j (10)

arises from the strong exchange interaction between the elec-
tronic spin and the local moments, i.e., from the projection
of the electronic spin state of each site j into the low-energy
state:

|n j〉 = cos
θ j

2
|↑〉 + sin

θ j

2
eiφ j |↓〉. (11)

While our requirement of adiabaticity is not necessary for
generating a real-space Berry curvature, it greatly simplifies
the analysis. In particular, it helps to identify the Berry
curvature with a fictitious magnetic field that couples to the
orbital motion of the itinerant electrons. In the absence of
SOC, the flux of this effective magnetic field (in units of the
flux quantum) through a closed loop is equal to half of the
solid angle subtended by the local moments when moving
around that loop. Correspondingly, in the long-wavelength
limit, the fictitious magnetic field on a triangular plaquette
jkl is proportional to the scalar product of the three local
moments: n j · nk × nl .

In the presence of finite SOC, the Berry connection γk j

becomes

γk j = arg[〈nk|Uk j |n j〉], (12)

where Uk j is the unitary operator in Eq. (5) describing the
spin rotation as the electron hops from j to k. The goal
of the next sections is to understand how this extra spin
rotation induced by finite SOC modifies the effective magnetic
field generated by the underlying vector field n. Along this
process, we will find an explicitly covariant expression for
this effective magnetic field and we will learn that such a
field can be nonzero for collinear and coplanar magnetic
orderings, in addition to the noncoplanar orderings that are
required for SU(2) invariant systems. We will see that this
result unifies under a common frame the different magnetic
orderings, such as collinear ferromagnetism and noncoplanar
antiferromagnetism, that were previously identified as distinct
potential sources of topological Hall effect.

III. GEOMETRIC APPROACH

A. Geodesic spin rotations

For any two spin states |p〉 and |q〉 corresponding to
noncollinear unit vectors p and q, we can define a “geodesic”
SU(2) rotation Ũq,p that rotates the spin direction from p to q
along a geodesic (i.e., a great circle) of the Bloch sphere. If
we choose the geodesic spin rotation to be along the shorter
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FIG. 1. (a) Great circle connecting the unit vectors n j and nk . (b) The spin direction is first rotated around the axis ak j and then along the
great circle containing Rk j · n j and nk . (c) The spin direction is first rotated along the great circle containing n j and R−1

k j · nk and then around
the axis ak j . (d) Unit vectors vk j and wk j along the great circle perpendicular to ak j . Using these two intermediate unit vectors, the spin rotation
Uk j becomes a geodesic spin rotation Ũwk j ,vk j .

arc of the great circle containing both p and q, it is unique and
is given by

Ũq,p = exp

[
− iχq,p

2
(uq,p · σ )

]
, (13)

where the rotation angle χq,p = arccos(p · q) < π is the angle
between the two unit vectors p and q, and the unit vector
specifying the rotation axis is

uq,p = p × q
|p × q| = p × q

sin χq,p
. (14)

It is instructive to consider the matrix element of this geodesic
spin rotation Ũq,p between the two spin states |p〉 and |q〉. By
construction, Ũq,p|p〉 ∝ |q〉, and the geodesic matrix element
〈q|Ũq,p|p〉 is thus a complex number of unit modulus. To
determine its complex argument, we first expand Ũq,p in the
standard way:

〈q|Ũq,p|p〉 = 〈q|
[
cos

χq,p

2
− i(uq,p · σ ) sin

χq,p

2

]
|p〉

= cos
χq,p

2
〈q|p〉

− i

2

[
cos

χq,p

2

]−1
〈q|[(p × q) · σ]|p〉. (15)

With some straightforward algebra, it can then be shown
that the matrix element in the second term of Eq. (15) is
proportional to the overlap in the first term:

〈q|[(p × q) · σ]|p〉 = 2i sin2 χq,p

2
〈q|p〉. (16)

Using this relation, the geodesic matrix element in Eq. (15)
can be written as

〈q|Ũq,p|p〉 =
[
cos

χq,p

2

]−1
〈q|p〉 = 〈q|p〉

|〈q|p〉| . (17)

Since |〈q|p〉| is real and positive by definition, the argument
of the geodesic matrix element 〈q|Ũq,p|p〉 is identical to the
argument of the overlap 〈q|p〉.

B. SU(2) invariant case

If the electron spin is not rotated as it hops between
different sites of the triangle, the Berry connection in Eq. (12)

takes the simplified form

γk j = arg[〈nk|n j〉]. (18)

Employing Eq. (17) to turn the overlap in Eq. (18) into a
geodesic matrix element, this Berry connection can be written
as

γk j = arg[〈nk|Ũnk ,n j |n j〉] = arg
[〈nk|

(
Ũ 1/N

nk ,n j

)N |n j〉
]

= arg
[〈nk|Ũnk ,n

(N−1)
k j

. . . Ũn(2)
k j ,n(1)

k j
Ũn(1)

k j ,n j
|n j〉

]
, (19)

where N → ∞ is a large number, and n(n)
k j in terms of n =

1, 2, . . . , N − 1 are unit vectors equally spaced along the great
circle connecting n j and nk [see Fig. 1(a)]. At the intermediate
step between the infinitesimal spin rotations Ũn(n)

k j ,n(n−1)
k j

and

Ũn(n+1)
k j ,n(n)

k j
in Eq. (19), the spin state is proportional to |n(n)

k j 〉
by construction. If we then use the orthogonality relation
〈−p|p〉 = 0 and the resolution of identity

|p〉〈p| + |−p〉〈−p| = 1 (20)

for |p〉 = |n(n)
k j 〉 at each intermediate step, and also Eq. (17) to

turn each geodesic matrix element back into an overlap, the
Berry connection in Eq. (19) becomes

γk j = arg
[〈nk|Ũnk ,n

(N−1)
k j

∣∣n(N−1)
k j

〉
. . .〈

n(2)
k j

∣∣Ũn(2)
k j ,n(1)

k j

∣∣n(1)
k j

〉〈
n(1)

k j

∣∣Ũn(1)
k j ,n j

|n j〉
]

= arg
[〈

nk

∣∣n(N−1)
k j

〉]+ · · · + arg
[〈

n(2)
k j

∣∣n(1)
k j

〉]
+ arg

[〈
n(1)

k j

∣∣n j
〉]
. (21)

Consequently, the Berry phase in Eq. (10) is a sum of infinitely
many infinitesimal Berry connections along a closed loop in
the Hilbert space and can thus be converted into an appropriate
integral of the Berry curvature along a surface bounded by this
closed loop. For spin states, it is well known that the Berry
curvature is 1

2 everywhere on the Bloch sphere, and the Berry
phase γ jkl in Eq. (10) is therefore half the solid angle of the
spherical triangle spanned by n j , nk , and nl .
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C. General case with spin-orbit interaction

To calculate the general Berry connection in Eq. (12), we
first notice that Uk j |n j〉 ∝ |Rk j · n j〉. Using Eq. (20) for |p〉 =
|Rk j · n j〉, the Berry connection in Eq. (12) then becomes

γk j = arg[〈nk|Rk j · n j〉〈Rk j · n j |Uk j |n j〉]. (22)

Next, if we employ Eq. (17) to turn the overlap into a geodesic
matrix element, and use Eq. (20) with |p〉 = |Rk j · n j〉 again,
the Berry connection takes the form

γk j = arg[〈nk|Ũnk ,Rk j ·n j |Rk j · n j〉〈Rk j · n j |Uk j |n j〉]
= arg[〈nk|Ũnk ,Rk j ·n jUk j |n j〉]. (23)

In this representation, the spin direction is first rotated around
the axis ak j and then along the great circle containing Rk j · n j

and nk [see Fig. 1(b)]. By exploiting the identity

U −1
k j Ũnk ,Rk j ·n jUk j = ŨR−1

k j ·nk ,n j
, (24)

we can also obtain an alternative formula for the Berry con-
nection:

γk j = arg
[〈nk|Uk jŨR−1

k j ·nk ,n j
|n j〉

]
. (25)

In this representation, the spin direction is first rotated along
the great circle containing n j and R−1

k j · nk and then around
the axis ak j [see Fig. 1(c)]. Generically, in either of these two
representations, the rotation around the axis ak j is not along a
great circle of the Bloch sphere. However, there is a “mixed”
representation between these two “pure” representations in
which the spin direction is rotated along great circles all
the way from n j to nk: first along the one containing n j

and R−1
k j · nk , then along the one perpendicular to ak j , and

finally along the one containing Rk j · n j and nk . To find the
corresponding formula for the Berry connection, we start from
Eq. (25) and notice that there is a general identity

Uk jŨR−1
k j ·nk ,n j

= ±Uk jŨR−1
k j ·nk ,vk j

Ũvk j ,n j

= ±Ũnk ,Rk j ·vk jUk jŨvk j ,n j (26)

for any unit vector vk j along the great circle containing n j

and R−1
k j · nk . The sign ambiguity in Eq. (26) reflects that the

left-hand side and the right-hand side may differ in a 2π spin
rotation eiπ = −1. We ignore this sign ambiguity as it does
not matter for our purposes. Next, if the unit vector vk j is also
along the great circle perpendicular to ak j [see Fig. 1(d)], the
spin rotation Uk j becomes a geodesic spin rotation Ũwk j ,vk j ,
where wk j = Rk j · vk j , and thus Eq. (26) takes the form

Uk jŨR−1
k j ·nk ,n j

= ±Ũnk ,wk jŨwk j ,vk jŨvk j ,n j . (27)

The unit vector vk j is then along the intersection of the great
circle perpendicular to ak j and the great circle containing n j

and R−1
k j · nk:

vk j = ak j × [
n j × (

R−1
k j · nk

)]
∣∣ak j × [

n j × (
R−1

k j · nk
)]∣∣ , (28)

while the unit vector wk j is along the intersection of the great
circle perpendicular to ak j and the great circle containing Rk j ·

n j and nk:

wk j = Rk j · vk j = ak j × [(
Rk j · n j

)× nk
]∣∣ak j × [(

Rk j · n j
)× nk

]∣∣ . (29)

Note that −vk j and −wk j are also along the intersections of
the same great circles and could thus be used instead of vk j

and wk j in Eq. (27). Substituting Eq. (27) into Eq. (25), and
using Eqs. (17) and (20), the Berry connection finally becomes

γk j = arg
[±〈nk|Ũnk ,wk jŨwk j ,vk jŨvk j ,n j |n j〉

]
= arg

[±〈nk|Ũnk ,wk j |wk j〉〈wk j |Ũwk j ,vk j |vk j〉〈vk j |Ũvk j ,n j |n j〉
]

= arg[〈nk|wk j〉] + arg[〈wk j |vk j〉]
+ arg[〈vk j |n j〉] (mod π ).

Consequently, the Berry phase is a sum of nine Berry connec-
tions, each taking the simplified form of Eq. (18). Repeating
the steps of Sec. III B, the Berry phase γ jkl in Eq. (10) is then
half the solid angle of the spherical nonagon spanned by n j ,
vk j , wk j , nk , vlk , wlk , nl , v jl , and w jl . While this result is only
valid modulo π , it can be used to deduce if the effective flux
produced by the combination of magnetic ordering and SOC
breaks the time-reversal symmetry or not.

The most important consequence of this result is that the
Berry curvature (i.e., the effective magnetic field) can be
nonzero even for collinear or coplanar spin configurations if
the spin-orbit interaction is finite. This feature will become
clearer in the next section, where we solve the same problem
by using a convenient rotation of the local reference frame at
each individual spin.

IV. ALGEBRAIC APPROACH

A. SU(2) invariant case

We have seen in the previous section that, in absence of
spin-orbit coupling, the Berry phase γ jkl picked up by an
electron as it moves around a triangle of spins jkl is half the
solid angle subtended by the three spins:

γ jkl = � jkl

2
. (30)

This simple equation can be rederived in the following way.
We first introduce an arbitrary unit vector n that we choose as
our quantization axis, i.e., n = ẑ. In this frame, the states of
the spins j and k are

|n j〉 = cos
θ j

2
|↑〉 + eiφ j sin

θ j

2
|↓〉,

|nk〉 = cos
θk

2
|↑〉 + eiφk sin

θk

2
|↓〉. (31)

Given that φ j − φk is defined modulo 2π , we will use this
freedom to require that |φ j − φk| � π . In absence of SOC,
the Berry connection becomes

γk j = arg[〈nk|n j〉]

= arg

[
cos

θ j

2
cos

θk

2
+ ei(φ j−φk ) sin

θ j

2
sin

θk

2

]
, (32)
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implying that

tan γk j = sin (φ j − φk )

cot θ j

2 cot θk
2 + cos (φ j − φk )

= tan
�(φ j − φk, θ j, θk )

2
, (33)

where �(φ j − φk, θ j, θk ) is the solid angle subtended by the
vectors (n, n j, nk ). Since the quantization axis n is the same
for the three bonds of the triangle, the Berry phase is indeed
given by Eq. (30):

γ jkl = γk j + γlk + γ jl = � jkl

2
, (34)

where � jkl is the solid angle subtended by the vectors
(n j, nk, nl ) corresponding to the spin directions.

B. General case with spin-orbit interaction

Our next goal is to generalize Eq. (34) for the case of finite
SOC, where

γ jkl = arg[〈nk|Uk j |n j〉〈nl |Ulk|nk〉〈n j |Ujl |nl〉]. (35)

We first notice that the Berry phase γ jkl is invariant under local
rotations of the spin reference frame,

|n′
j〉 = U j |n j〉, |n′

k〉 = Uk|nk〉, |n′
l〉 = Ul |nl〉, (36)

n′
j = R j · n j, n′

k = Rk · nk, n′
l = Rl · nl , (37)

where R j is the SO(3) rotation matrix associated with the
SU(2) matrix U j , if we simultaneously transform the unitary
operator on each bond in the following way:

U ′
k j = UkUk jU†

j , U ′
lk = UlUlkU†

k , U ′
jl = U jUjlU†

l . (38)

This observation simply reflects the gauge invariance of the
Berry phase under rotations of the local spin reference frame
and it motivates the introduction of the Wilson loop operator

A jkl = UjlUlkUk j = exp

[
− iα jkl

2
(a jkl · σ)

]
, (39)

which is also a gauge-invariant quantity. We note that the
exchange Hamiltonian HJ between the spins of the itinerant
electrons and the local magnetic moments remains invariant
under the local spin rotations described by Eqs. (36) and (37).

The next step is to perform a convenient rotation of the
local reference frame of two spins (say k and l) such that
the unitary operator becomes the identity on two out of three
bonds (say k j and jl). To this end, one can use the local
unitary transformations

U j = I, Uk = U †
k j, Ul = Ujl ,

R j = I, Rk = RT
k j, Rl = Rjl . (40)

Given that the Wilson loop remains invariant under such a
transformation, the unitary operator on the third bond lk must
then be equal to the Wilson loop A jkl .

The final step is to align the global quantization axis n with
the rotation axis of the Wilson loop operator: n = a jkl . The

Berry connections can then be easily computed in the new
reference frame:

γk j = arg [〈n′
k|n′

j〉] = �(φ′
j − φ′

k, θ
′
j, θ

′
k )

2
,

γ jl = arg [〈n′
j |n′

l〉] = �(φ′
l − φ′

j, θ
′
l , θ

′
j )

2
,

γlk = arg [〈n′
l |A jkl |n′

k〉]

= arg

[
e− i

2 α jkl cos
θ ′

k

2
cos

θ ′
l

2
+ ei(φ′

k−φ′
l + 1

2 α jkl ) sin
θ ′

k

2
sin

θ ′
l

2

]

= −α jkl

2
+ �(φ′

k − φ′
l + α jkl , θ

′
k, θ

′
l )

2
. (41)

Thus, the Berry phase picked up by an electron as it moves
around the triangle jkl is

γ jkl = �′
jkl

2
+ γ̂ jkl , (42)

where �′
jkl is the solid angle subtended by the three vectors

(n′
j, n′

k, n′
l ) corresponding to the rotated spin directions in the

new reference frame, and

γ̂ jkl = −α jkl

2
+ δ�′

jkl

2
, (43)

in terms of

δ�′
jkl = �(φ′

k − φ′
l + α jkl , θ

′
k, θ

′
l ) − �(φ′

k − φ′
l , θ

′
k, θ

′
l ),

(44)
is an additional contribution due to the Wilson loop A jkl .

Equation (42) generalizes Eq. (30), which is only valid for
SU(2) invariant systems. In particular, it is easy to demon-
strate that collinear or coplanar configurations can induce a
Berry phase different from 0 or π , which acts as an effective
magnetic flux. As an example, we can consider the case of a
collinear ferromagnet n j ‖ nk ‖ n j with the three vectors ak j ,
alk , and a jl being parallel (or antiparallel) to the magnetiza-
tion. In this case, Eq. (42) tells us that that γ jkl = −α jkl/2,
implying that the combination of ferromagnetism and SOC
generates a real-space Berry phase that is proportional to the
rotation angle of the Wilson loop. In this way, we recover the
essential result of Karplus and Luttinger [10] in the minimal
model that we are considering here. The potential emergence
of real-space Berry curvature in coplanar antiferromagnets
will become clearer in the next section, where we discuss the
limit of small SOC. However, one can immediately verify that
Eq. (42) also gives a finite Berry curvature for the coplanar
spin configuration illustrated in Fig. 2.

C. Limit of small spin-orbit interaction

We will now consider the quite general case of small
spin-orbit coupling: αk j  1 for all bonds k j connected by
finite hopping amplitudes tk j (the hopping amplitudes are
assumed to be zero beyond a characteristic distance of a
few lattice spaces because of the exponential decay of the
atomic orbitals). Expanding Eqs. (5) and (39) up to first order
in αk j and α jkl , respectively, the parameters of the Wilson
loop operator then easily follow from those of the individual
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j

kl

nj

nknl

x̂

ŷ

ẑ

FIG. 2. Coplanar configuration with Berry phase different from
0 or π . The clockwise circulation indicates the bond orientations
required to define the directions of the spin-orbit vectors ak j , alk , and
a jl , indicated with blue arrows.

unitary operators:

α jkl = |v jkl |, a jkl = v jkl

|v jkl | ,

v jkl = αk jak j + αlkalk + α jla jl . (45)

Moreover, the contribution to the Berry phase in Eq. (43) can
be expanded up to first order in α jkl as

γ̂ jkl = α jkl

2

[
−1 + ∂�(φ′

k − φ′
l + α, θ ′

k, θ
′
l )

∂α

∣∣∣∣
α=0

]
, (46)

and can be brought to a simple form via Eq. (33):

γ̂ jkl = − α jkl (cos θ ′
k + cos θ ′

l )

2[1 + cos θ ′
k cos θ ′

l + sin θ ′
k sin θ ′

l cos(φ′
k − φ′

l )]
.

(47)
In particular, when the spin directions are close to a ferromag-
netic configuration, such that θ ′

k ≈ θ ′
l ≈ θ ′ and φ′

k ≈ φ′
l ≈ φ′,

this contribution becomes

γ̂ jkl = −α jkl cos θ ′

2
, (48)

which is simply the projection of the net spin-orbit rotation to
the common direction of the spins.

In the special case when the Wilson loop is equal to the
identity (α jkl = 0), the Berry phase γ̂ jkl in Eq. (43) vanishes.
The total Berry phase γ jkl in Eq. (42) is then half the solid
angle �′

jkl subtended by the three magnetic moments in the
local reference frame that is required to “gauge away” the
SOC. Clearly, even in this case, an antiferromagnetic ordering
that is coplanar in the original reference frame can be non-
coplanar in the rotated reference frame and thus produce a
finite real-space Berry curvature.

For example, in the C3 invariant system depicted in Fig. 2,
the three angles αk j = αlk = α jl = α  1 are identical, and
the three vectors ak j , alk , and a jl are related by 2π/3 rotations
around the ẑ axis. Consequently,

v jkl = α(ak j + alk + a jl ) = 0 (49)

if the z component of ak j vanishes. In other words, to first
order in the SOC, the Wilson loop is equal to the identity:

A jkl = I . To the same order, the three spin directions in the
new reference frame are

n′
j = n j, n′

k = nk − αak j × nk, n′
l = nl + αa jl × nl ,

(50)
and the Berry phase is thus given by

γ jkl = �′
jkl

2
= π − 6α + O(α2). (51)

The simple message of this example is that, whenever the SOC
can be gauged away in a particular local reference frame (i.e.,
the Wilson loop is equal to the identity), the magnetic ordering
must be noncoplanar in that reference frame to produce a
finite real-space Berry curvature. It is easy to imagine that
antiferromagnetic orderings that are collinear or coplanar in
the original reference frame can become noncoplanar in the
rotated reference frame leading to a finite Berry curvature.

V. CONTINUUM LIMIT

The simple ideas that we discussed in the previous sec-
tion can be presented in a more formal and elegant way
by taking the continuum limit. This limit is appropriate for
describing situations where the SU(2) Wilson loop bond field
defined by A jkl , associated with the SOC, and the magnetic
texture vary over a length scale which is much longer than
the lattice parameter. The first condition can be realized by
long-wavelength lattice deformations induced by strain. The
second condition arises naturally in materials with a very
small magnetic ordering wave vector.

By taking the continuum limit, we will find an explicitly
covariant form of the effective magnetic field or real-space
Berry curvature produced by the underlying vector field n j in
presence of SOC. We have seen that the unitary “hopping”
matrices Ujk correspond to a non-Abelian SU(2) gauge field
which is fixed by the interplay between the lattice structure
and the SOC.1 After taking the continuum limit, the bond
matrices Ujk become infinitesimal SU(2) rotations connect-
ing the points x and x + dx which are parametrized by the
field Aa

μ:

Ux+dx,x = exp
[

1
2σ aAa

μdxμ

]
, (52)

where repeated indices are implicitly summed over.
Once again, we want to compute the Berry phase that the

electronic wave function acquires when the electron moves
along a one-dimensional closed path C = {xμ(τ ) with τ ∈
[0; T ], xμ(0) = xμ(T )}. As we did for the lattice case, we will
first derive the well-known expression of the Berry phase in
the SU(2) invariant case and we will use this result as an
introduction for obtaining a gauge-invariant form of the Berry
curvature or effective magnetic field in the presence of SOC.

A. SU(2) invariant case

For the SU(2) invariant case on the lattice, we have seen
that the Berry phase for a closed loop C : j → k → l →

1This field becomes a dynamical variable if the ionic positions are
allowed to fluctuate.
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· · · → m → j is

γC = arg[〈n j |nm〉 . . . 〈nl |nk〉〈nk|n j〉]. (53)

Note that an arbitrary closed loop can be obtained from a
superposition of multiple “elementary” triangular loops. To
find the counterpart of Eq. (53) in the continuum, we will
divide the interval T into N equal subintervals �τ = T/N to
finally take the N → ∞ limit. In this way we obtain

γC = lim
N→∞

arg

⎧⎨
⎩

N−1∏
j=0

〈nx(τ j+�τ )|nx(τ j )〉
⎫⎬
⎭

= lim
N→∞

arg

⎧⎨
⎩

N−1∏
j=0

[1 − 〈nx(τ j )|∂τ |nx(τ j )〉�τ ]

⎫⎬
⎭

= lim
N→∞

arg

⎧⎨
⎩

N−1∏
j=0

exp [−〈nx(τ j )|∂τ |nx(τ j )〉�τ ]

⎫⎬
⎭

= i lim
N→∞

N−1∑
j=0

〈nx(τ j )|∂τ |nx(τ j )〉�τ

= i
∫ T

0
〈nx(τ )|∂τ |nx(τ )〉dτ, (54)

where τ j = j�τ . The geometric character of the Berry phase
becomes evident after reexpressing Eq. (54) in terms of a
closed integral over the loop C:

γC = i
∮
C
〈n|∂μ|n〉dxμ = 1

2

∫
SC

n · [∂μn × ∂νn]d2σμν = �C
2

,

(55)
where SC is the area enclosed by the loop C, while �C is the
solid angle subtended by the vector field n around the loop C.
This equation corresponds to the continuum limit of Eq. (30).

B. General case with spin-orbit interaction

For the lattice problem with finite SOC, Eq. (53) must be
generalized to

γC = arg[〈n j |Ujm|nm〉 . . . 〈nl |Ulk|nk〉〈nk|Uk j |n j〉]. (56)

In the continuum limit, the unitary matrices Uk j become
infinitesimal unitary transformations generated by an SU(2)
matrix A(t ):

j → x(τ ),

k → x(t ) + ẋ(τ )dτ,

Uk j → eiA(τ )dτ = I + iA(τ )dτ + O(dτ 2), (57)

where

A(τ ) = 1
2σ aAa

μẋμ(τ ) (58)

is the tangential component of the SU(2) gauge potential.
After noting that,

〈nx(τ+dτ )|eiA(τ )dτ |nx(τ )〉 = 1 + [i〈nx(τ )|A(t )|nx(τ )〉
− 〈nx(τ )|∂τ |nx(τ )〉]dτ + O(dτ 2),

and following the same steps that appear in the derivation of
Eq. (54), we obtain

γC = i
∮
C
〈n|Dμ|n〉dxμ ≡

∮
C
Aμdxμ. (59)

Here, we have introduced the covariant derivative

Dμ ≡ ∂μ − iσ a

2
Aa

μ, (60)

and the covariant Berry connection

Aμ = i〈n|∂μ|n〉 + 1
2 naAa

μ, (61)

to make the gauge invariance of γC more explicit.
We can now use Stokes theorem to convert the closed

integral of Eq. (59) into an integral over the area SC :∮
C
Aμdxμ =

∫
SC

[∂μAν − ∂νAμ]d2σμν

= 1

2

∫
SC

[
∂μ

(
naAa

ν

)− ∂ν

(
naAa

μ

)]
d2σμν

+ 1

2

∫
SC

n · [∂μn × ∂νn]d2σμν. (62)

The second term is the contribution (55) that we derived for
the SU(2) invariant case. While this term is zero for collinear
or coplanar magnetic orderings, the first term can still be
finite, implying that collinear and magnetic textures can gen-
erate an effective magnetic field if the SOC is finite. In these
cases, the effective magnetic field is Bη = εημν∂μ(naAa

ν )/2. In
other words, the effective U(1) vector potential is obtained by
projecting the SU(2) vector potential into the direction of the
n field.

Our next goal is to find a covariant form for the two
contributions that appear in Eq. (62). The integral that appears
in the first term can be reexpressed as∫

SC

[
∂μ

(
naAa

ν

)− ∂ν

(
naAa

μ

)]
d2σμν

=
∫

SC

[
na∂μAa

ν − na∂νAa
μ + (∂μna)Aa

ν − (∂νna)Aa
μ

]
d2σμν

=
∫

SC

[
naF a

μν + naεabcAb
μAc

ν + Aa
ν∂μna − Aa

μ∂νna
]
d2σμν,

(63)

where

F a
μν = ∂μAa

ν − ∂νAa
μ − εabcAb

μAc
ν (64)

refers to the non-Abelian field strength.
When applied to the vector field n, the covariant derivative

takes the form

Dμ = ∂μ − LaAa
μ, (65)

where L is the vector of SO(3) generators introduced in
Eq. (8). The natural covariant extension of the solid angle
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density is

n · (Dμn × Dνn)

= εabcna
(
δbn∂μnn − εbmnAm

μnn
)(

δcl∂νnl − εckl Ak
νnl
)

= εabcna∂μnb∂νnc − εabcεbmnnaAm
μnn∂νnc

− εabcεckl na∂μnbAk
νnl + εabcεbmnεcklnaAm

μAk
νnnnl

= εabcna∂μnb∂νnc − ∂νncAc
μ + ∂μnbAb

ν + εckl Ac
μAk

νnl . (66)

By combining this equation with Eqs. (62), (63), and (64), we
find a concise covariant form of the Berry phase:

γC = 1

2

∫
SC

[
naF a

μν + n · (Dμn × Dνn)
]
d2σμν. (67)

This final equation is one of the key contributions of this work.
This equation simply tells us that the strength of the effective
U(1) gauge field that is generated by the localized magnetic
moments is the sum of the covariant scalar spin chirality
and the the projection of the SU(2) field strength along the
local direction n of the localized moments [44,45]. This is
essentially the same result that was obtained in Eq. (48) by
working on the lattice and taking the long-wavelength limit at
the end of the process.

Another interesting aspect of this derivation is that it can
be immediately generalized to the case of time-dependent
magnetic configurations by allowing the Greek indices μ and
ν to run from 0 to d , where 0 is the time coordinate and the d is
the spatial dimension of the system under consideration. The
zeroth component of the SU(2) vector potential arises from a
Zeeman coupling between the spin of the conduction electrons
and an external magnetic field H ,

Aa
0 = −gμB

2
Ha, (68)

where g is the g factor of the electron and μB is the Bohr
magneton. The action that results from adding the Zeeman
term to the effective Hamiltonian in Eq. (3),

S[�] =
∫

dt (dx�†i∂t� − H), (69)

preserves the invariance under time-dependent transforma-
tions of the local spin reference frame [41]

� → U�, Aa
μσ a → UAa

μσ aU−1 − 2i(∂μU )U−1, (70)

where � is the electronic wave function in the contin-
uum and U = eiθa (x,t )σ a/2. Equation (70) generalizes the
time-independent rotations of the local reference frame in
Eqs. (36)–(38) that were introduced for the lattice Hamilto-
nian. The effective electromagnetic field tensor produced by a
time-dependent configuration of the local magnetic moments
is then given by

1
2

[
naF a

μν + n · (Dμn × Dνn)
]
, (71)

where 0 � μ, ν � d and the strength of the SU(2) gauge field
is still given by Eq. (64). This equation generalizes then well-
known result for SU(2) invariant systems [38].

23

1

u1

u2

x̂

ŷ

ẑ

a⊥
12

a⊥
23

a⊥
31

FIG. 3. Uniform 120◦ magnetic ordering (black arrows) on the
kagome lattice. This is a straightforward extension of the single
triangle state shown in Fig. 2. The clockwise circulation indicates the
bond orientation. The in-plane components of the SOC vectors a⊥

12,
a⊥

23, a⊥
31 are indicated with blue arrows. u1,2 are the primitive lattice

vectors of the Bravais lattice.

VI. MOMENTUM-SPACE BERRY CURVATURE

In this section we will discuss a few examples to apply
the notion of the generalized Berry curvature that was intro-
duced in previous sections. In particular, we will consider an
extended version of the model Hamiltonian (3) that includes
potentially anisotropic exchange interactions between the lo-
cal moments:

H = Ht + HJ + HH , (72)

where Ht and HK have been introduced in Eq. (3) and

HH =
∑
〈 jk〉

Sμ
j J

μν

jk Sν
k . (73)

We will consider different 2D and 3D variants of this model
comprising single or vertically stacked kagome layers. The
first case corresponds to a very simple version of the model,
which is useful for illustrating the connection between real-
space Berry curvature introduced in the previous sections and
the resulting momentum-space Berry curvature and AHE.

A. Single kagome layer

We will first assume that Ht is a tight-binding Hamiltonian
on a single kagome layer with nearest-neighbor hopping t and
that HH stabilizes the ground-state magnetic ordering shown
in Fig. 3: S j = Sn j , with

n1 = ŷ, n2 =
√

3x̂

2
− ŷ

2
, n3 = −√

3x̂

2
− ŷ

2
. (74)

The SOC vectors introduced in Eq. (5) are

a23 = cos θa⊥
23 + sin θ ẑ,

a31 = cos θa⊥
31 + sin θ ẑ,

a12 = cos θa⊥
12 + sin θ ẑ, (75)

where a⊥
i j = −εi jknk . Before proceeding with the actual cal-

culation, it is instructive to analyze the distribution of the
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C(n=1) = +1

C(n=2) = −3

C(n=3) = +2

C(n=4) = +2

C(n=5) = −3

C(n=6) = +1

FIG. 4. Band structure of the tight-binding model of Eq. (77) for
Hamiltonian parameters J = 0.5t , α = 0.2π , θ = 0.

real-space Berry curvature in the double-exchange limit
J/t → ∞. For θ = π

2 , the SOC vectors ai j are collinear and
parallel to the ẑ axis. The Berry phase γ123 picked up by
an electron that moves around the triangle 123 (see Fig. 3)
is equal to π (the same is true for the hexagonal plaque-
ttes).2 Given that these π phases remain invariant under time-
reversal symmetry, there is no effective magnetic field in real
space. The tight-binding spectrum of the double-exchange
Hamiltonian exhibits two Dirac points at the K points of the
Brillouin zone (BZ): (± 4π

3u , 0) with u ≡ |u1|. In the opposite
limit of in-plane SOC vectors (θ = 0), the Berry phase be-
comes γ123 = π − 6α to first order in the strength of the SOC
(αk j ≡ α). The resulting effective magnetic flux per triangle
gaps out the two Dirac points, giving rise to a finite Chern
number C = −sign(α) of the lower band of the massive Dirac
fermions.

In the more general case (away from the double-exchange
limit), we need to consider six bands. The matrix of Ht + HJ

in momentum space is the 6 × 6 matrix

[Hk] =

⎡
⎢⎢⎣

H11
k H12

k

(
H31

k

)†(
H12

k

)†
H22

k H23
k

H31
k

(
H23

k

)†
H33

k

⎤
⎥⎥⎦ (76)

with

H12
k = tei α

2 σ·a12 (1 + e−ik·(u2−u1 ) ),

H23
k = tei α

2 σ·a23 (1 + e−ik·u1 ), H31
k = tei α

2 σ·a31 (1 + eik·u2 ),

H11
k =−JS

2
n1 ·σ, H22

k =−JS

2
n2 ·σ, H33

k =−JS

2
n3 ·σ.

In the absence of SOC (α = 0), the tight-binding model hosts
multiple Dirac points. As explained above, these Dirac points
are gapped out for finite SOC (α �= 0) as long as the in-plane
component of ai j is nonzero. The resulting energy bands
become topologically nontrivial, namely, they acquire a finite

2From the geometric approach, the Berry phase γ123 is equal to the
solid angle of the spherical nonagon spanned by n1, v12, w12, n2, v23,
w23, n3, v31, w32. In the present example, the nine unit vectors are
coplanar, implying that the solid angle is 2π and γ123 = π . The same
result can be obtained using the algebraic approach [see Eqs. (42)–
(44)].

Chern number. We note that this result is consistent with our
simple analysis of the double-exchange limit. As an example,
for J = 0.5t , α = 0.2π , and θ = 0, the Chern numbers of
each band are C(n=1) = 1, C(n=2) = −3, C(n=3) = 2, C(n=4) =
2, C(n=5) = −3, and C(n=6) = 1, where n = 1 (n = 6) refers to
the lowest (highest) energy band. The resulting energy bands
for this example are shown in Fig. 4. Note, however, that these
bands are not adiabatically connected with the six bands that
are obtained in the double-exchange limit (three low-energy
bands separated by an energy J from the three high-energy
bands) because the Chern numbers in the double-exchange
limit must satisfy the property C(n) = −C(n+3) for 1 � n � 3.
This is just a consequence of the opposite sign of the real-
space Berry curvature for bands of opposite spin, i.e., aligned
or antialigned with the local moments.

B. Vertically stacked kagome layers

We first consider a toy model of vertically stacked kagome
layers with an SU(2) invariant hopping between adjacent
layers. The intralayer magnetic ordering is assumed to be the
same uniform 120◦ structure that we used in the previous
2D analysis, while the interlayer ordering is assumed to be
ferromagnetic. For concreteness, we will assume that the
interlayer hopping is finite only between nearest-neighbor
(t1

z ) and next-nearest-neighbor (t2
z ) sites on adjacent kagome

layers. The resulting interlayer Hamiltonian in momentum
space is

H̃ inter
k =

⎡
⎢⎢⎣

H̃11
k H̃12

k

(
H̃31

k

)†(
H̃12

k

)†
H̃22

k H̃23
k

H̃31
k

(
H̃23

k

)†
H̃33

k

⎤
⎥⎥⎦, (77)

where

H̃12
k = 2t2

z cos(k · u3)(1 + e−ik·(u2−u1 ) ),

H̃23
k = 2t2

z cos(k · u3)(1 + e−ik·u1 ),

H̃31
k = 2t2

z cos(k · u3)(1 + eik·u2 ),

H̃11
k = 2t1

z cos(k · u3), H̃22
k = H̃11

k , H̃33
k = H̃11

k ,

and u3 is the primitive lattice basis vector along the c axis.
We will start by considering the trivial 2D limit of zero

interlayer hopping. In this limit the spectrum does not depend
on kz, i.e., it is the same for each two-dimensional layer
(kx, ky) in momentum space. We have seen that, in the absence
of SOC, each (kx, ky) layer hosts several Dirac points, which
become nodal lines in the 3D BZ. These nodal lines are fully
gapped out by a finite SOC, implying that we can introduce a
kz-independent Chern number on any (kx, ky) plane, C(n)(kz ),
for each of the six bands.

The band structure obtained in the 2D limit changes qual-
itatively for finite interlayer hopping because the Dirac lines
are gapped everywhere, except for isolated points that turn
out to be Weyl points of the 3D band structure. The finite
interlayer hopping leads to a kz dependence of the single-
particle dispersion and, consequently, of the Chern number
C(n)(kz ). The Chern number remains well defined unless the
(kx, ky) layer crosses the Weyl points and the spectrum is thus
gapless. In terms of momentum-space Berry curvature, the
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FIG. 5. Chern number C(kz ) for each (kx, ky ) plane in momentum
space. The in-plane parameters are the same as in Fig. 4, while the
interlayer hopping amplitudes are t1

z = 0.1t and t2
z = 0.3t .

Weyl points are magnetic monopoles, i.e., sources and sinks of
the momentum-space Berry curvature. From Gauss’s law, we
get that the difference between the nth band Chern numbers
at the kz and k′

z planes is equal to the sum of the charges of
the Weyl points connected to that band which are enclosed by
the two planes. Figure 5 shows an example of C(n)(kz ), where
each kagome layer is identical to that in Fig. 4, and a finite
interlayer hopping is included. Only the Chern numbers of the
lower and the upper two bands (n = 1, 2, 5, 6) are changing
because the n = 2 and 3 bands are not connected to any Weyl
point.

C. Minimal model for Mn3Sn

We will consider now a modified version of the previous
model that can be regarded as a minimal Hamiltonian for
the lattice and magnetic ordering of Mn3Sn [42,46]. While
this Hamiltonian is not a realistic model for Mn3Sn, it in-
cludes the essential ingredients that are required for capturing
the qualitative behavior of this material. More specifically,
the model reveals the origin of the real-space Berry curvature
that leads to the Weyl points that are obtained by more
realistic band structure calculations [46–48] and that are the
sources and drains of momentum-space Berry curvature. The
crystallographic unit cell of Mn3Sn is shown in Fig. 6(a): each
unit cell includes six Mn atoms distributed in two kagome
layers. As shown in Fig. 6(b), the P63/mmc space group of
this material includes the following:

(i) mirror symmetries Mi, i = 1, 2, 3;
(ii) glide symmetries Gi ≡ M′

i ⊗ T 1
2
, i = 1, 2, 3, with T 1

2

the translation along c axis by 1
2 u3;

(iii) mirror symmetry Mz about the kagome layer;
(iv) inversion symmetry I.
The experimental data [42] shows that Mn3Sn displays

the magnetic ordering depicted in Fig. 7, which is stable
within the temperature range 50 K < T < TN , with a Néel
temperature TN � 420 K. To a good approximation, this mag-
netic ordering consists of a 120◦ structure with fixed vector
spin chirality: the spin rotates anticlockwise when circulating
clockwise around each triangular plaquette. Several discrete
symmetries are spontaneously broken by this magnetic or-
dering. The residual symmetry group includes M1, G2 ⊗ �,

FIG. 6. (a) Crystallographic unit cell of Mn3Sn containing six
Mn atoms (3 in the z = 0 plane and 3 in the 1

2 plane). Mz with
z = 1

2 is a mirror-symmetry plane. (b) Vertical mirror planes Mi and
glide planes Gi (i = 1, 2, 3). The white circle at z = 1

4 indicates an
inversion center.

Mz ⊗ �, and I, where � is the time-reversal operation. The
C3 symmetry is spontaneously broken because the spin and
the lattice must be rotated in opposite directions to keep the
system invariant.

Once again, we will use the minimal Hamiltonian (3) to
capture the essential features of Mn3Sn. The site index j (or
k) in Eq. (3) will be decomposed into two indices (α, r),

FIG. 7. Magnetic order (thick black arrows) and spin-orbital
vectors ak j (red arrows) on interlayer bonds connecting the orange
kagome layer at z = 0 and the green kagome layer at (a) z = 1

2 and
(b) z = − 1

2 .
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where, as shown in Fig. 6(a), α = 1, . . . , 6 is a sublattice
index and r is the coordinate of the crystallographic unit
cell. We will also assume that the above-mentioned magnetic
ordering of the Mn moments is stabilized by the additional
exchange interaction term that is included in Eq. (72). The
corresponding orientations of the magnetic moments on each
sublattice are

n1 = n4 = x̂,

n2 = n5 = −1

2
x̂ +

√
3

2
ŷ,

n3 = n6 = −1

2
x̂ −

√
3

2
ŷ. (78)

The unit vectors a jk are constrained by symmetry consid-
erations. For instance, the in-plane components of ak j vanish
for bonds lying in each kagome layer because of the mirror-
symmetry plane Mz, implying that ak j = α̂z. In addition,
as shown in Fig. 6(a), the two kagome layers in the unit
cell are related by the inversion symmetry I: j → j̃, k → k̃,
implying that ak j = ak̃ j̃ . By combining these results with the
C3 symmetry of the lattice, we obtain that the six in-plane
hopping matrices must be the same:

t12 = t23 = t31 = t45 = t56 = t64 ≡ tei α
2 σz . (79)

A similar symmetry analysis leads to the following
parametrization of the interlayer hopping matrices:

t ′
αβ = t ′ei α′

2 a′
αβ ·σ, (80)

t ′′
αβ = t ′ei α′

2 a′′
αβ ·σ, (81)

where α, β are sublattice indices connected by interlayer
bonds (see Fig. 7) and t ′

αβ (t ′′
αβ) are the hopping amplitudes

on the interlayer bonds depicted in Fig. 7(a) [Fig. 7(b)]. The
corresponding spin-orbit vectors

a′
αβ = ± cos θ ′a⊥

αβ + sin θ ′ẑ, (82)

a′′
αβ = ∓ cos θ ′a⊥

αβ + sin θ ′ẑ (83)

are constrained by the mirror symmetries M1,2,3 and Mz. The
upper (lower) sign corresponds to α = 1, 2, 3 (α = 4, 5, 6),
and the vector a⊥

αβ refers to the (normalized) projection of the
bond vector aαβ on the basal plane

a⊥
16 =

(√
3

2
,−1

2
, 0

)
, a⊥

24 =
(

−
√

3

2
,−1

2
, 0

)
,

a⊥
35 = (0, 1, 0), a⊥

62 = a⊥
35, a⊥

43 = a⊥
16, a⊥

51 = a⊥
24.

(84)

In momentum space, the electron kinetic term is Ht =∑
k ψ

†
k Hkψk with ψk = (c1k, c2k, c3k, c4k, c5k, c6k )T and

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11
k H21†

k H13
k 0 H̃15

k H̃61†
k

H21
k H22

k H32†
k H̃24†

k 0 H̃26
k

H13†
k H32

k H33
k H̃34

k H̃53†
k 0

0 H̃42
k H̃34†

k H11
−k H21†

−k H13
−k

H̃15†
k 0 H̃53

k H21
−k H22

−k H32†
−k

H̃16
k H̃26†

k 0 H13†
−k H32

−k H33
−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (85)

where the diagonal elements are Hαα
k = − 1

2 JSeα · σ, the off-

diagonal elements Hα �=β

k arise from the intralayer hopping
terms,

H21
k = t (1 + e−ik·(u2−u1 ) )ei α

2 a·σ,

H32
k = t (1 + e−ik·u1 )ei α

2 a·σ,

H13
k = t (1 + eik·u2 )ei α

2 a·σ, (86)

and the off-diagonal elements H̃α �=β

k arise from the interlayer
hopping terms

H̃61
k = t ′

16 + t ′′
16eik·u3 , H̃42

k = t ′
24 + t ′′

24eik·u3 ,

H̃53
k = t ′

35 + t ′′
35eik·u3 , H̃34

k = t ′
43 + t ′′

43e−ik·u3 ,

H̃15
k = t ′

51 + t ′′
51e−ik·u3 , H̃26

k = t ′
62 + t ′′

62e−ik·u3 . (87)

D. Weyl points

For concreteness, we will consider the following set
of Hamiltonian parameters: t ′ = t , J = 2t , α = 0.2π , α′ =
0.2π , and θ ′ = π/4 ≈ 0.785. While this set does not corre-
spond to the particular case of Mn3Sn, it is enough to illustrate
the physical origin of the Weyl points that appear in the band
structure of this material [49]. As shown in Fig. 8(a), there
are two Weyl points located at each of the K points of the
BZ, connecting the fifth and the sixth bands and the seventh
and the eighth bands at kz = 2.04. In general, the Weyl points
connecting the fifth and the sixth bands turn out to be dis-
tributed over the surface of the BZ, as shown in Figs. 8(b) and
8(c). This is not true for the other bands. Except for equivalent
points related by reciprocal lattice vectors, they are classified
according to the symmetries M1, G2 ⊗ �, Mz ⊗ �, and I.

Weyl points connecting bands n and n + 1 are singularities
of the vector field B(n)

ρ = ∑
μν ερμνB(n)

μν , where B(n)
μν is the

momentum-space Berry curvature of the n band given by the
Kubo formula3

B(n)
μν = −2

∑
m �=n

Im

[ 〈ψnk|∂kμ
H|ψmk〉〈ψmk|∂kν

H|ψnk〉
(Enk − Emk)2

]
. (88)

Enk is the dispersion relation of the nth band and |ψnk〉 is the
associated Bloch wave function. The singularity at the Weyl
point is characterized by the quantized topological charge of
the monopole

Q(n) = 1

4π

∫
�

d2s · B(n), (89)

where � is a closed surface enclosing the Weyl point. Each
Weyl point is then a source (sink) of the Berry curvature
field B(n) if Q(n) > 0 (Q(n) < 0). This charge Q(n) changes
sign under mirror and spatial inversion transformations, while
it remains invariant under time reversal. Figure 8 shows the
Weyl points with Q(n) > 0 (red color) and Q(n) < 0 (blue
color). Pairs related by the residual symmetries M1, G2 ⊗ �,
Mz ⊗ �, and I have opposite monopole charges.

The vector field B(n=5) on the kz = 0 plane is shown in
Fig. 8(c). Symmetry restrictions imply that

3One could also consider the band n + 1 instead of n, after noticing
that B(n+1)

μν = −B(n)
μν near the Weyl point.
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FIG. 8. (a) Band structure along symmetric paths of the BZ.
Red circles indicate Weyl points. (b) Weyl points in the first BZ.
Red circles correspond to Q > 0, while blue circles correspond to
Q < 0. (c) Left: vector field B(5) associated with the fifth band on the
qz = 0+ plane (taken as qz = 10−4 in numerical calculation). Right:
enlarged plot around the K2 point. The model parameters are t ′ = t ,
J = 2t , α = 0.2π , α′ = 0.2π , and θ ′ = π/4 ≈ 0.785.

(i) M1 : (kx, ky, kz ) → (−kx, ky, kz ),(
B(n)

x , B(n)
y , B(n)

z

) → (
B(n)

x ,−B(n)
y ,−B(n)

z

)
; (90)

(ii) G2 ⊗ �: (kx, ky, kz ) → (−kx, ky,−kz ),(
B(n)

x , B(n)
y , B(n)

z

) → (
B(n)

x ,−B(n)
y , B(n)

z

)
; (91)

(iii) Mz ⊗ �: (kx, ky, kz ) → (−kx,−ky, kz ),(
B(n)

x , B(n)
y , B(n)

z

) → (
B(n)

x , B(n)
y ,−B(n)

z

)
; (92)

(iv) I: k → −k, B(n) → B(n).
The first two transformations imply that B(n)

z ≡ 0 for kz =
0[kz is fixed at 10−4 in Fig. 8(c) such that B(n)

z �= 0 near the
Weyl points]. Note that B(n)

x remains even under the listed
residual symmetry transformations, while B(n)

y , B(n)
z are odd

under some of them (e.g., the mirror-symmetry plane M1).
This observation implies that the Hall conductivities σzx and
σxy must vanish.

FIG. 9. Distribution of real-space Berry curvature obtained from
the minimal model for Mn3Sn.

At this point, it is interesting to ask what is the dis-
tribution of the real-space Berry curvature that leads to
the distribution of momentum-space Berry curvature de-
picted in Fig. 8. This result is shown in Fig. 9. The
first observation is that the effective flux is zero for in-
tralayer triangles. The flux (Berry phase) is concentrated on
the triangular plaquettes that connect different layers. The
sign of the flux alternates between the two types of tri-
angles that connect consecutive layers. Identifying the ori-
gin of the real-space Berry curvature is potentially useful
for achieving a more efficient control of response func-
tions, such as the Hall response, that are strongly influ-
enced by the momentum-space Berry curvature. For in-
stance, Fig. 9 indicates that changing the lattice param-
eter or the SOC of the interlayer triangles is the cor-
rect strategy for controlling momentum-space Berry curva-
ture of Mn3Sn via the modification of its real-space Berry
curvature.

FIG. 10. Hall conductivity as a function of chemical potential μ

for the same model parameters as in Fig. 8.
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E. Hall conductivity

Our final step is to compute the Hall conductivity produced
by the momentum-space Berry curvature. The only purpose
of this calculation is to quantify the order of magnitude of
the effect. We note, however, that a finite Hall conductivity
is not the only measurable consequence of the momentum-
space Berry curvature. Another potential consequence is a
finite anomaly-related magnetoresistance that is still present
in doped Weyl semimetals [50,51].

The Hall conductivity is given by

σμν = −e2

h

∫
BZ

d3k
(2π )3

∑
n

f (Enk)B(n)
μν (k), (93)

where f (x) = 1/(e(x−μ)/kBT + 1) the Fermi-Dirac distribution
function. The residual mirror-symmetry plane M1 leads to
σzx = σxy = 0 The only nonzero component, σyz, arises from
the in-plane component of the spin-orbital vector ai j . This is
so because the mirror symmetry M2 times a spin rotation
R(S)

z (− 2π
3 ) becomes an element of the residual symmetry

group for ai j ‖ ẑ on every bond.
As expected, the value of σyz depends strongly on the

position of the Fermi level μ (see Fig. 10). However, it is
interesting to note that the order of magnitude of the overall
amplitude of the σyz(μ) curve coincides with the experimental
value in Mn3Sn [42]. In other words, our minimal model for
Mn3Sn not only captures the key qualitative aspects of the
problem, but also the correct order of magnitude of response
functions enabled by the finite momentum-space Berry curva-
ture. This attribute of the model can be exploited for further
understanding the interplay between real- and momentum-
space Berry curvature induced by the combination of mag-
netic ordering and SOC.

Finally, we mention that the small uniform magnetization
that is observed in Mn3Sn should have the same origin
as the spontaneous Hall conductivity. The same symmetry
analysis that enables a finite σyz for the antiferromagnetic
ordering depicted in Fig. 7 also enables a finite uniform orbital
magnetization along the x axis that should also produce a
uniform spin magnetization along the same direction via the
SOC. This effect can be captured by our minimal model
if we allow the antiferromagnetic state of Fig. 7 to relax
into the magnetically ordered state that minimizes the total
energy 〈Ht + HJ + HH 〉.4 As for the case of Mn3Sn [42],
this uniform magnetization, which must be present in any
antiferromagnet that produces a spontaneous Hall effect, can
be used to orient the antiferromagnetic domains and induce a
net Hall conductivity.

VII. CONCLUSIONS

In summary, we have shown that the real-space Berry
phase picked up by electrons when they move in a closed
loop while interacting with local magnetic moments is a
geometric property that combines rotation matrices associated

4Note that in our previous analysis we assumed for simplicity that
the Heisenberg term is dominant and the optimal magnetic ordering
is then determined by minimization of this term.

with the finite SOC and the underlying magnetic ordering.
From a more physical point of view, the finite SOC rotates the
electronic spin while the electron hops from one atomic orbital
to another. This rotation enables a nontrivial Berry phase
(different from 0 or π ) induced by collinear and coplanar
magnetic configurations. In view of the fact that collinear
and coplanar magnetic orderings are more common than
noncoplanar orderings, we can conclude that SOC should play
a crucial role in the discovery of new materials with large
topological Hall effect, or even finite-temperature Chern in-
sulators, induced by spontaneous antiferromagnetic ordering.
While material candidates can be identified by applying a sim-
ple symmetry analysis [32,52], understanding the underlying
microscopic mechanism for the generation of Berry curvature
is of crucial importance for the optimization and control of
the effect. Understanding the microscopic mechanism is also
necessary to estimate the value of the topological contribution
to different response functions of interest and to anticipate the
change of these response functions under the application of
external fields, such as pressure, strain, or magnetic field.

Here, we have reduced this microscopic mechanism to its
simplest form by considering the minimal model introduced
in Eq. (3). Like for the SU(2) invariant case of zero SOC,
the mechanism becomes transparent in the double-exchange
limit of this model where the low-energy theory maps into a
theory of spinless fermions coupled to an effective U(1) gauge
field. Our work provides the first derivation of the effective
U(1) gauge field produced by a given magnetic ordering in the
presence of SOC. The main result is that the strength of this
emergent U(1) gauge field has two covariant contributions.
The first contribution is the covariant SU(2) extension of the
skyrmion density in the underlying configuration of localized
magnetic moments. The second contribution is simply the
projection of the strength of the SU(2) gauge field produced
by the SOC along the direction of the localized magnetic
moments.

This simple result reveals the role of SOC in the generation
of the real-space Berry curvature and, therefore, the topolog-
ical Hall effect, which has been a long-standing debate for
many years; see, for instance, Ref. [39] of our paper. The
effect of SOC becomes particularly clear when the SOC itself
can be gauged away by a local rotation of the spin reference
frame. The real-space Berry curvature is then equal to the
skyrmion density of the localized magnetic moments in that
particular reference frame. Clearly, magnetic configurations
that are collinear or coplanar in the laboratory reference frame
can become noncoplanar in the new reference frame.

We have illustrated these concepts by applying them to a
simple minimal model that captures the essential aspects of
Mn3Sn [42]. A similar analysis can in principle be applied
to other materials that exhibit topological Hall effect induced
by coplanar or collinear magnetic orderings [52]. Moreover,
given that the SU(2) gauge field produced by the SOC is a
bond variable (i.e., it depends on the relative position of the
two ions connected by that bond), it is natural to expect that
pressure and strain could play an important role in the external
control of the topological Hall effect. This is a new control
variable enabled by the SOC, in addition to the external
magnetic field that controls the orientation of the localized
magnetic moments via the Zeeman term. It is then clear that
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SOC is crucially important for expanding the spectrum of
materials and external fields that can be used to produce and
control potentially large topological contributions to response
functions.

Finally, we remark that this work is complementary to the
quantitatively more accurate first-principle calculations in that
it aims to understand how SOC can generate a topological
Hall effect. Although it is already known from first-principle
calculations that collinear and noncollinear magnetic order-
ings can produce anomalous Hall effect in the presence of
SOC, the underlying microscopic mechanism remains unclear
in those treatments. Minimal effective models, such as the
s-d model considered here, reveal these mechanisms and
provide a crucial insight for enhancing and controlling this
phenomenon in different materials. In addition, we note that
the s-d model can also be obtained from an unconstrained
mean-field treatment of itinerant magnets, where the classical

spin variables correspond to expectation values of the itiner-
ant magnetic moment on each atom [24].
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