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Systematic derivation of realistic spin models for beyond-Heisenberg solids
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We present a systematic derivation of effective lattice spin Hamiltonians derived from a rotationally invariant
multiorbital Hubbard model including a term ensuring Hund’s rule coupling. The Hamiltonians are derived
down-folding the fermionic degrees of freedom of the Hubbard model into the proper low-energy spin sector
using Löwdin partitioning, which will be outlined in detail for the case of two sites and two orbitals at each site.
Correcting the ground state systematically up to fourth order in the hopping of electrons, we find, for spin S � 1,
the biquadratic, three-spin, and four-spin interactions beyond the conventional Heisenberg term. Comparing the
puzzling energy spectrum of the magnetic states for a single Fe monolayer on Ru(0001), obtained from density
functional theory, with the spin Hamiltonians taken at the limit of classical spins, we show that the previously
ignored three-spin interaction can be comparable in size to the conventional Heisenberg exchange.
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I. INTRODUCTION

Magnetic interactions have captivated several generations
of condensed matter physicists because of their diversity of
physical origins in very different solids, the emergence of
a vast spectrum of magnetic structures as a result of their
competition and subsequently the many interesting physical
phenomena that are arising from those magnetic structures
[1–3]. Antiferromagnets with noncoplanar spin textures and
topological magnetization solitons such as skyrmions are
current examples of complex magnetic structures with a broad
spectrum of exotic properties that are of interest for both basic
research and applications in spintronics [4]. Understanding
the properties of these novel spin textures has revitalized
the field of magnetic interactions. In this context, itinerant
magnets play an important role as the itinerant electrons give
rise to these complex magnetic structures and in turn the
complex magnetic structures give rise to interesting transport
phenomena [5–7].

In a materials specific context, the theoretical descriptions
of magnetic ground states as well as the dynamical or ther-
modynamical properties of magnetic systems are often made
possible by a realistic spin Hamiltonian typically determined
by a multiscale approach: density functional theory (DFT)
calculations are mapped onto a classical lattice spin Hamil-
tonian, i.e., a lattice of classical spins interacting according to
spin models, whose properties are then evaluated carrying out
Monte Carlo or spin-dynamic simulations [8–16]. That is to
say that the materials specificity enters through the parameters
of the model determined by DFT. The choice of the spin model
itself reflects the choice of materials and the interactions that
seem relevant to understand certain properties.

For many bulk as well as application-customized mul-
tilayer and heterostructure systems, the well known spin
S = 1/2-Heisenberg model [17] of quantum spins S is
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extrapolated to systems with higher quantum spin, S > 1/2,
and very often to classical vector spins S providing a
parametrization of an effective spin Hamiltonian successful in
describing the required magnetic properties. This holds also
true for metallic magnetic materials, in particular those for
which the longitudinal spin fluctuations are unimportant as
compared to the transversal ones. These are typically magnets
of transition metals with atomic spin moments in the order of
2 μB and more such as for Mn, Fe, Co in their bulk phases, as
alloys and multilayers commonly used in spintronic devices.

In fact, describing typical properties of those magnetic
metals one resorts to the classical Heisenberg model of bi-
linear exchange interactions of the form

H1 = −
∑

i j

′
Ji j Si · S j (1)

between pairs of classical spins S at different lattice sites
i and j with exchange interactions Ji j whose signs and
strengths depend on details of the electronic structure. The
spatial dependence of the exchange interaction follows typi-
cally the crystal anisotropy imposed by the crystal lattice. For
metals, the Ji j can be long-ranged and in part determined by
the topology of the Fermi surface, in opposite to insulators,
where they are typically short-ranged. A success of this ap-
proach is for example the prediction of magnetic structures
consistent to experiments [18] or the Curie temperatures of
bulk ferromagnets [19,20]. The minus sign in (1) is just a con-
vention we follow for all spin lattice Hamiltonians throughout
the paper. The notation

∑′ means here and throughout the
paper that we are taking the sum over all possible integer sites
i and j except for any summations of two equal sites i = j.

There are, however, well known cases where the Heisen-
berg model is insufficient to describe correctly the magnetic
ground-state structure or magnon excitations. In these cases
[21], one addresses the higher-order spin interaction beyond
the Heisenberg model. A typical signature of the higher-
order spin interaction is the occurrence of particular types of
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noncollinear states, e.g., canted magnetic states [22] or multi-
q states, a superposition of spin-spiral states of symmetry re-
lated wave vectors q. A spin-spiral state with a single q-vector
[22,23] is an exact solution of the classical Heisenberg model
for a periodic lattice. The higher-order terms couple modes
of symmetry equivalent q vectors and can lead to complex
magnetic structures of energies lower than the single-q state
[24].

One of the most commonly considered extensions of the
bilinear Heisenberg form is the addition of the biquadratic
exchange, a term of the form

H2 = −
∑

i j

′
Bi j (Si · S j )

2 . (2)

This term has been motivated by very different microscopic
origins, through superexchange [1], magnetoelastic effect
[25,26] or interlayer exchange coupling [27]. Quite generally,
according to the algebra of the spin operators, any power of
scalar products of pairs of quantum spins of total spin S at
sites i and j, can only have 2S independent powers up to
(S i · S j )2S . Thus for the biquadratic term to occur through
the interaction of electrons requires at least a total spin S = 1
at the lattice sites. As we will see below, as the power of
(S i · S j ) is related to the order of perturbation theory, the
biquadratic term [28–36] is the most essential correction to
the Heisenberg model for spins S > 1/2 involving two lattice
sites.

Involving more lattice sites, a systematic extension of the
bilinear Heisenberg form is the four-spin interaction, which
was derived by Takahashi [37] for a spin 1/2-system treat-
ing electrons by a single band Hubbard model. It arises in
fourth-order perturbation theory of electron hopping versus
Coulomb interaction [38]. The four-spin interaction consists
of four-body operators that appear by permuting all spins in a
four-membered ring and can be written in the limit of classical
spin as

H4 = −
∑
i jkl

′
Ki jkl [(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk )

− (Si · Sk )(S j · Sl )] , (3)

with the sum over all rings of four sites.
Although the higher-order spin models where mostly ap-

plied to magnets with localized electrons such as magnetic
insulators [39,40], comparing DFT results for itinerant metal-
lic magnets with spin models reveals their significance also
for these systems. Examples include contributions of the
biquadratic term to the spin-stiffness of the bulk magnets
Fe, Co and Ni [41], the conical spin spirals for a double-
layer Mn on W(110) [42], or even three-dimensional non-
collinear spin structures on a two-dimensional lattice as in
Mn/Cu(111) [24], Fe/Ir(100) [10], or Fe/Ir(111) [43]. In
case of the latter, the four-spin interaction couples spin
spirals with different propagation directions and forms a
square lattice of chiral magnetic skyrmions of atomic scale
size.

However, one became recently aware not all systems
studied with DFT could be explained purely on the basis
of the higher-order interactions discussed above. Two such
examples are the theoretically predicted [44] and recently

experimentally verified [45] so-called up-up-down-down
(uudd) state, a multi-q state, in Fe/Rh(111) or a canted uudd
state in a RhFe bilayer system on Ir(111) [46]. While an
uudd state could in general be stabilized by both considered
higher-order interactions independently, the calculated energy
spectrum revealed that the main stabilization has to originate
from another, hitherto unknown, interaction.

Summarizing the spin models discussed so far we can
view the Heisenberg, biquadratic and four-spin model as a
two-spin-two-site, four-spin-two-site, and four-spin-four-site
interaction, respectively. Heisenberg and four-spin interaction
emerge for S = 1/2, the biquadratic one requires at least
S = 1. Since typical magnetic Mn, Fe, and Co moments at
surfaces are in the order of 2 or 3 μB equivalent to S =
1 or 3/2, there should be a large number of quasi two-
dimensional non-Heisenberg magnets, in particular for sub-
strates for which the effective Heisenberg exchange is small
due to compensation of Ji j of different signs between different
neighbors.

Further, using this notion of classification, a four-spin-
three-site interaction seems missing. Indeed, various partly
phenomenological models of three-spin interactions [47] had
been proposed or derived to explain experiments mostly for
insulating magnets [30,48–53].

In this paper, we provide a consistent and systematic
derivation of expressions describing the beyond-Heisenberg
higher-order spin interactions resulting from the electron-
electron interaction up to the fourth order in the hopping
interaction strength of electrons for total spins of size S �
1/2. This includes all possible sequences of four hopping
events of electrons between orbitals at maximal four sites.
The spin-orbit interaction and the crystal field effects are
neglected at this point. The starting point is the rotationally
invariant multiorbital Hubbard model assuming half-filling,
which will be explained in the next section. The spin model
is derived down-folding the dynamical fermionic degrees of
freedom of electrons described by the Hubbard model into
the proper low-energy spin sector using Löwdin partitioning
[54,55], which is also known as Schrieffer-Wolf transforma-
tion [56,57]. The Löwdin partitioning is briefly sketched for
a dimer of S = 1 spins described by two electron orbitals
at both sites. Then, we will present our results for differ-
ent numbers of sites and orbitals and also for lattices with
different space groups like a square lattice as for example
for magnetic atoms on a (001) surface of a fcc crystal, or
on a hexagonal lattice like the (111) surface to adapt the
theoretical approach to real systems. Taking the classical spin
limit of the quantum spin models derived, we reproduce the
known spin Hamiltonians above plus the missing three-spin
interaction

H3 = −2
∑
i jk

′
Yi jk (Si · S j )(S j · Sk ) , (4)

where the sum goes over triangles of sites.
At the end, we will analyze the energy spectrum for various

magnetic structures determined by density functional theory
for a single Fe monolayer on Ru(0001). Subsequently, we
will show that the hitherto puzzling results [44] can finally
be understood.
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FIG. 1. Schematic representation of the two investigated models. (a) The multiband Hubbard model. A periodic arrangement of atoms on a
lattice is shown. The different orbitals (here two) are illustrated by gray planes located at each atom. Each orbital can host up to two electrons,
one spin-up (shown in red) and one spin-down (blue). Additionally, the hopping paths are indicated by green arrows and sites with nonzero
on-site energies (proportional to U , U ′, and JH ) are highlighted by green spheres. (b) The extended Heisenberg model in the limit of classical
spins (gray arrows) at each lattice site. Direct exchange (Si · S j) is illustrated by colored arrows. Higher-order interactions couple two of them
to form four-spin interactions involving two (B), three (Y), or four (K) sites as indicated by the springs.

II. METHODOLOGY

A. Multiband Hubbard model

In this section, we briefly introduce the Hamiltonian, from
which we start our derivations, and define the most important
parameters of our model. In the following section, we will
then focus on reducing the inherent degrees of freedom of
the Hamiltonian to the spin degrees of freedom in order to
derive effective spin models. This Hamiltonian will then be
used to generate spin Hamiltonians for different systems that
vary by the number of sites and orbitals and also by the lattice
type. Exemplary Maple scripts which were used to perform
the derivations presented throughout the paper can be found
online [58].

Earlier similar investigations [37,38] typically used the
one-band Hubbard model [59–61] as a starting point since it
is the simplest model for describing interacting electrons on
a lattice. For practical magnetic systems, which we have in
mind with typical magnetic spin moments on the order of 2
or 3 μB (S = 1 or S = 3/2), we extend our investigation to
systems with more than one orbital per site (e.g., d orbitals
of transition metals). Therefore we work with a generalized
Hubbard Hamiltonian, which not only includes the additional
hopping terms and Coulomb interactions, but contains also
additional terms to ensure Hund’s rule coupling. The Hund’s
terms are included as we are interested in states with a fixed
and stable magnetic moment S per atom or site:

H = −
∑

i< j,α,σ

ti,α, j,α (c†
i,α,σ c j,α,σ + H.c.) −

∑
i < j, σ
α �= α′

t ′
i,α, j,α′ (c†

i,α,σ c j,α′,σ + H.c.) +
∑
i,α

Ui,α n̂i,α,↑n̂i,α,↓

+
∑
i, σ

α < α′

U ′
i,α,α′ (n̂i,α,σ n̂i,α′,σ + n̂i,α,σ n̂i,α′,σ̄ ) −

∑
i, σ

α < α′

Ji,α,α′ n̂i,α,σ n̂i,α′,σ

−
∑

i,α<α′
Ji,α,α′ (c†

i,α,↑ci,α,↓c†
i,α′,↓ci,α′,↑ + H.c.) −

∑
i,α<α′

J ′
i,α,α′ (c†

i,α,↑ci,α′,↑c†
i,α,↓ci,α′,↓ + H.c.) . (5)

Here, the first (second) term represents the intersite electron
hopping between the same (different) orbital type, while
the third (fourth) term describes the Coulomb interaction of
two electrons located at the same site occupying the same
(different) orbital. The remaining terms in Eq. (5) describe
the Hund’s coupling as well as pair-hopping processes. i and
j represent the atomic sites, α and α′ stand for the orbitals
and σ denotes the quantization of the spin projection of the
electron (↑ or ↓). n̂i,α,σ = c†

i,α,σ ci,α,σ defines the number of
electrons at site i in orbital α with spin σ . t (t ′) describes the
hopping amplitude between two different sites of the same
(different [62]) orbital types. The on-site hopping between

different orbitals is not considered as we assume the orbitals to
be orthogonal with respect to each other (t ′

i,α,i,α′ = 0). Figure 1
shows a schematic visualization of the Hubbard as well as the
effective spin model.

Only on-site Coulomb interactions are taken into account
throughout the paper. Having a periodic solid in mind with
only one atom type, we assume that the intraorbital Coulomb
interaction between electrons of the same orbitals α is the
same for each site, Ui,α = U , as well as the interorbital
Coulomb interaction between electrons in different orbitals,
U ′

i,α,α′ = U ′. Analogously, Ji,α,α′ = JH and J ′
i,α,α′ = J ′

H simpli-
fies due to the absence of the site dependency.
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B. Löwdin partitioning

Here we briefly explain how Löwdin partitioning [54,55] is
used to derive an effective spin Hamiltonian. As an example,
we take the smallest interacting system with more than one
orbital per site, two sites with two orbitals each. Assuming

half-filled orbitals, we deal with four electrons, that could be
distributed among the four available orbitals. Thus an orbital
|s 〉 can be occupied with s equal to one or two electrons
or it can be unoccupied, denoted as | · 〉. The possible states
sorted according to the angular momentum quantum number
m, representing the z component of the total spin of the system
include the following product states:

m = 2 : |↑,↑,↑,↑〉;
m = 1 : |↑,↑,↑,↓〉, |↑,↑,↓,↑〉, |↑,↓,↑,↑〉, |↓,↑,↑,↑〉, |↑↓,↑,↑, ·〉, |↑,↑↓,↑, ·〉, |↑,↑,↑↓, ·〉, |↑↓,↑, ·,↑〉,

|↑,↑↓, ·,↑〉, |↑,↑, ·,↑↓〉, |↑↓, ·,↑,↑〉, |↑, ·,↑↓,↑〉, |↑, ·,↑,↑↓〉, |·,↑↓,↑,↑〉, |·,↑,↑↓,↑〉, |·,↑,↑,↑↓〉;
m = 0 : |↑,↑,↓,↓〉, |↑,↓,↑,↓〉, |↑,↓,↓,↑〉, |↓,↑,↑,↓〉, |↓,↑,↓,↑〉, |↓,↓,↑,↑〉, |↑↓,↑,↓, ·〉, |↑↓,↑, ·,↓〉,

|↑,↑↓,↓, ·〉, |↑,↑↓, ·,↓〉, |↑↓,↓,↑, ·〉, |↑↓, ·,↑,↓〉, |↑,↓,↑↓, ·〉, |↑, ·,↑↓,↓〉, |↑↓,↓, ·,↑〉, |↑↓, ·,↓,↑〉,
|↑,↓, ·,↑↓〉, |↑, ·,↓,↑↓〉, |↓,↑↓,↑, ·〉, |↓,↑,↑↓, ·〉, |·,↑↓,↑,↓〉, |·,↑,↑↓,↓〉, |↓,↑↓, ·,↑〉, |↓,↑, ·,↑↓〉,
|·,↑↓,↓,↑〉, |·,↑,↓,↑↓〉, |↓, ·,↑↓,↑〉, |↓, ·,↑,↑↓〉, |·,↓,↑↓,↑〉, |·,↓,↑,↑↓〉, |↑↓,↑↓, ·, ·〉, |↑↓, ·,↑↓, ·〉,
|↑↓, ·, ·,↑↓〉, |·,↑↓,↑↓, ·〉, |·,↑↓, ·,↑↓〉, |·, ·,↑↓,↑↓〉;

m = −1 : |↑,↓,↓,↓〉, |↓,↑,↓,↓〉, |↓,↓,↑,↓〉, |↓,↓,↓,↑〉, |↑↓,↓,↓, ·〉, |↑↓,↓, ·,↓〉, |↑↓, ·,↓,↓〉, |↓,↑↓,↓, ·〉,
|↓,↑↓, ·,↓〉, |·,↑↓,↓,↓〉, |↓,↓,↑↓, ·〉, |↓, ·,↑↓,↓〉, |·,↓,↑↓,↓〉, |↓,↓, ·,↑↓〉, |↓, ·,↓,↑↓〉, |·,↓,↓,↑↓〉;

m = −2 : |↓,↓,↓,↓〉. (6)

Here, |s1, s2, s3, s4〉 = |s1〉|s2〉|s3〉|s4〉 means that at site 1 the
first (second) orbital is occupied by s1 (s2) and at site 2 the
first (second) orbital is occupied by s3 (s4). In general, for a
system with n orbitals, the number of states for each value of
m is given by

( n
n/2+m

)2
.

Since the z component of the angular momentum vector
operator Sz commutes with the Hamiltonian (5), the Hamil-
tonian block-diagonalizes in separate subspaces of different
m, and the matrix representation of (5) can be calculated for
each subspace separately. To support our goal of contracting
Hamiltonian (5) of our model to an effective spin Hamilto-
nian, it is convenient to change the product basis |s1, s2, s3, s4〉
to one where the total spin at any site is a good quantum
number. For example, for m = 1, the first four states are
replaced by the following superpositions:

1√
2

(|↑,↑,↑,↓〉 + |↑,↑,↓,↑〉) = |1, 1〉|1, 0〉,

1√
2

(|↑,↓,↑,↑〉 + |↓,↑,↑,↑〉) = |1, 0〉|1, 1〉,

1√
2

(|↑,↑,↑,↓〉 − |↑,↑,↓,↑〉) = |1, 1〉|0, 0〉,

1√
2

(|↑,↓,↑,↑〉 − |↓,↑,↑,↑〉) = |0, 0〉|1, 1〉 , (7)

where we used the notation |S1, m1〉|S2, m2〉 with Si being the
spin quantum number and mi being the total z component at
site i.

We are essentially interested in the subspace spanned by
the first two states of (7) as we assume magnetic systems,
which have constant magnetic moments (here, S = 1) at each
site. Although there is no direct interaction between these two

states, there are indirect interactions across states where S is
not equal at all sites. These indirect interactions between inter-
mediate states in different subspaces can be down-folded into
the sector of interacting spins of constant quantum number
at each site using the so-called Löwdin partitioning [54,55].
Löwdin partitioning can be used because we are dealing with
energetically well separated subspaces of spins with differ-
ent S. This is a consequence of Hund coupling and on-site
Coulomb energies that are large with respect to the hopping
parameters, as we are discussing transition metals here.

The Löwdin partitioning is a tool to decouple these sub-
spaces perturbatively and to map the indirect interaction be-
tween two states of the same subspace over states of the other
subspaces to direct interactions between these states with
increasing order of the perturbation. For example, the indi-

rect interaction |↑,↑,↓,↓〉 ∼t↔ |↑, ·,↓,↑↓〉 ∼t↔ |↑,↓,↓,↑〉 is

mapped on a direct interaction |↑,↑,↓,↓〉 ←∼t2/U−−−→ |↑,↓,↓,↑〉
if terms up to at least second order are taken into account
in the Löwdin partitioning. By going to higher orders also
indirect interactions including more than two hopping events
are considered. These can then relate to interactions with more
than two sites.

Mathematically, this is achieved by dividing the Hamilto-
nian H into two parts,

H = H0 + H′ = H0 + H1 + H2 , (8)

a term H0 that contains the on-site contributions, i.e., the
repulsive Coulomb interaction and the Hund exchange, and a
term H′, which contains the off-diagonal matrix elements due
to the electron hopping, which are treated as a perturbation.
Here, H1 contains those terms whose matrix elements couple
within the subspaces, whereas H2 describes the coupling
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between them. The subspaces are decoupled through a canon-
ical transformation [56,57]

H̃ = e−ŜHeŜ , (9)

where hermiticity of the Hamiltonian implies Ŝ† = −Ŝ and
the generator Ŝ of the transformation is chosen such that H̃
becomes block-diagonal. This is achieved writing Eq. (9) in
the form of successive applications of commutator rules

H̃ =
∞∑

k=0

1

k!
[H, Ŝ]k =

∞∑
k=0

1

k!
[H0 + H1 + H2, Ŝ]k , (10)

with [ A , B ]k = [ [ . . . [ [ A , B ] , B ] . . . , B ] , B ] nested k
times. Considering the definitions of H1 and H2 [55], this
allows then to decouple Eq. (10) into a Hamiltonian term H̃d,
whose matrix representation is block diagonal and a term H̃o

with off-block-diagonal matrix elements as shown here:

H̃d =
∞∑

k=0

1

(2k)!
[H0+H1, Ŝ]2k +

∞∑
k=0

1

(2k + 1)!
[H2, Ŝ]2k+1,

H̃o =
∞∑

k=0

1

(2k + 1)!
[H0+H1, Ŝ]2k+1 +

∞∑
k=0

1

(2k)!
[H2, Ŝ]2k .

(11)

The requirement of block diagonalization or H̃o = 0, respec-
tively, up to a given order k in the perturbation determines the
generator Ŝ and subsequently the effective Hamiltonian H̃d.
Due to the block-diagonalization of H with respect to the basis
of Sz, the Löwdin partitioning can be carried out indepen-
dently for each angular momentum quantum number m. We
work out all spin models for either m = 0 or m ± 1/2, depend-
ing the systems have integer or half-integer total spins, since
these states denote the largest subspaces, and the Löwdin par-
titioning becomes least degenerate and the functional forms of
the spin Hamiltonians become most obviously distinct.

III. RESULTS

A. Derived spin Hamiltonians

Recalling that the spin operators

S i = (Si,x,Si,y,Si,z ) (12)

can be expressed by the electron operators ci,α,σ , c†
i,α,σ as

Si,x = 1

2

∑
α

(c†
i,α,↑ci,α,↓ + c†

i,α,↓ci,α,↑),

Si,y = − i

2

∑
α

(c†
i,α,↑ci,α,↓ − c†

i,α,↓ci,α,↑),

Si,z = 1

2

∑
α

(n̂i,α,↑ − n̂i,α,↓) , (13)

whereby the sum goes over all orbitals α at site i, we show now
how the electron Hamiltonian of a particular model system
folded down in the proper spin sector can be expressed by
spin operators and thus represents the corresponding spin
Hamiltonian or spin model of the system. In the following, we
present results up to fourth-order perturbation in (11) which

permits the investigation of interactions between 2, 3, and 4
sites. We start with spin S = 1/2, i.e., exactly one orbital per
site, and then move to S � 1.

1. Spin S=1/2

a. Two sites, spin S = 1/2. To demonstrate the general
procedure, we first discuss a S = 1/2 dimer, i.e., two sites
and only one orbital per site. For m = 0, the Hilbert space is
spanned by four possible states |↑,↓〉, |↓,↑〉, |↑↓, ·〉, |·,↑↓〉,
from which the first two span the subspace of interest with
S = 1/2 at both sites. H0 gives the same on-site energies
for both states, which we consider the origin of our energy
scale. Going up to second order in the perturbation (the first
order vanishes, because there is no direct coupling between
the states) additional terms occur which couple the states.
Those terms are, e.g., proportional to c†

2,↑c†
1,↓c1,↑c2,↓ + H.c.,

representing a hopping |↑,↓〉 ↔ |↓,↑〉. Collecting all those
terms and extending the derivation to an infinite lattice of
two-site interactions, the resulting Hamiltonian can be written
in terms of the spin operators (13) as

Htwo sites
second-order = 4 t2

U

∑
i j

′
c†

i,↑ci,↓c†
j,↓c j,↑ − n̂i,↑n̂ j,↓

= 2 t2

U

∑
i j

′
(
S i · S j − n̂in̂ j

4

)
, (14)

with n̂i = (n̂i,↑ + n̂i,↓) being the total number operator with
expectation value ni for electrons at site i. As we only consider
the low-energy subspace, charge excitations are neglected,
and only states with half-filled orbitals giving rise to maximal
S are considered. Thus the last term in Eq. (14) defines a
constant energy shift by n1n2/4 = |S1| · |S2| = S2 [63]. Thus,
by going just up to second order in the perturbation of the
hopping terms, we obtain the well-known Heisenberg term
(1), if we define the exchange parameter J as J = −2t2/U .

According to what has been said above, S = 1/2 models
with pair interaction involving electrons hopping between
two sites can only exhibit a bilinear spin Hamiltonian. This
is confirmed by the inclusion of fourth-order terms in the
perturbation (10) (the third order vanishes again), which can
be summarized to the following expression:

H2 sites
4thorder = −8 t4

U 3

∑
i j

′
(
S i · S j − n̂in̂ j

4

)
. (15)

No terms of additional spin-spin interactions show up in
fourth-order perturbation for two site interactions. This shows
that indeed a system of pair interactions of spin-1/2 sites
can be described purely by the Heisenberg interaction (1),
although the fourth-order term provides a correction of the
Heisenberg exchange parameter

J = −2 t2

U
+ 8t4

U 3
. (16)

The negative sign of the leading term means that the magnetic
ground state of a spin-1/2 system is the m = 0 singlet state
if t/U < 1/2, which we equate with the antiferromagnetic
state. If the system becomes more metallic, the hopping matrix
element t increases as well as the number of sites involved.
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TABLE I. Calculated prefactors of the Heisenberg exchange and
the four-spin interactions in terms of the model parameters t and U
of the Hubbard model (5) taken at single-orbital per site for different
numbers of sites with S = 1/2 obtained by going up to fourth order
in the Löwdin partitioning.

sites J K

2 − 2 t2

U + 8 t4

U 3 0

3 − 2 t2

U + 6 t4

U 3 0

4 − 2 t2

U + 10 t4

U 3 − 10 t4

U 3

5 − 2 t2

U + 20 t4

U 3 − 10 t4

U 3

6 − 2 t2

U + 36 t4

U 3 − 10 t4

U 3

8 − 2 t2

U + 86 t4

U 3 − 10 t4

U 3

Then the prefactor of the second term increases rapidly with
system size (see Table I) and the likelihood for ferromagnetic
interactions increases. Although discussed only for spin states
with m = 0, the same effective Hamiltonian is also able to
describe those with m = 1 and −1, respectively, as the excita-
tion energy of those states due to the hopping of electrons is
0 both in the Hubbard Hamiltonian and in the effective spin
Hamiltonian.

b. Three sites, spin S = 1/2. Since the fourth-order pertur-
bation term in (11) involves four successive hopping events of
electrons, the interaction can involve spins or orbitals, respec-
tively, beyond two sites up to four sites and thus can go beyond
the pair interaction typical for the Heisenberg model. Con-
sidering three sites, the perturbation theory results, however,
again in a pair interaction analogous to the Heisenberg model.
The only difference with respect to the system with two sites
is a change of the prefactor, i.e., of the Heisenberg exchange
parameter, respectively (cf. Table I, for simplicity we assumed
the same t for all hopping events. The effect of different
hopping elements ti j will be analyzed below). Again, this spin
Hamiltonian is capable of describing all the subspaces for
different m (here, m = −3/2,−1/2,+1/2,+3/2).

c. Four sites, spin S = 1/2. For four sites, the fourth-
order perturbation produces terms, which can be subsumed
to the Heisenberg term, but generates also additional ones, for
example, c†

4,↑c†
3,↑c†

2,↓c†
1,↓c1,↑c2,↑c3,↓c4,↓ + H.c., for four sites

with m = 0. In contrast to the terms above, this term flips four
spins instead of two.

If we collect all these terms of fourth order and express
them in terms of spin operators, we obtain

H4 sites
4thorder = 10 t4

U 3

∑
i jkl

′
(
S i · S j − n̂in̂ j

4

)(
Sk · S l − n̂k n̂l

4

)
,

(17)
which can be divided into a four-spin term

H4 sites
4 spins = 10 t4

U 3

∑
i jkl

′
(S i · S j )(Sk · S l ) , (18)

plus a Heisenberg term with the prefactor J = 10 t4/U 3, and
a constant energy shift of size 15 t4/U 3. The prefactor in
Eq. (18) will be called −K in this paper.

TABLE II. Calculated prefactors of the Heisenberg exchange (J),
the biquadratic (B), the three-spin (Y ) and the four-spin interactions
(K) for different numbers of sites with S > 1/2 obtained by going up
to fourth order in the Löwdin partitioning. We set t ′ = t and U ′ and
J ′ were set to zero (see text).

sites S J B Y K

2 1 − 2t2

U+JH

−20t4

(U+JH )3 0 0

3 1 − 2t2

U+JH
+ 36t4

(U+JH )3
−20t4

(U+JH )3
−40t4

(U+JH )3 0

4 1 − 2t2

U+JH
+ 96t4

(U+JH )3
−20t4

(U+JH )3
−40t4

(U+JH )3
−10t4

(U+JH )3

2 3/2 − 2t2

U+JH
+ 6t4

(U+JH )3
−20t4

(U+JH )3 0 0

3 3/2 − 2t2

U+JH
+ 90t4

(U+JH )3
−20t4

(U+JH )3
−40t4

(U+JH )3 0

Equation (18) is a simplified version of the more complex
four-spin interaction [8,10,43] introduced in (3), namely, for
the case when the hopping parameters between all the atoms
are the same. In a real system, this is rarely the case as the
value of the hopping parameter t depends on the distances
between the two involved atoms, the types of orbitals, but also
on the environment, for details see also Sec. III B. Carrying
out a more explicit calculation of the fourth-order term with
pair-dependent hopping parameter ti j , the prefactor K ∝ −t4

in (17), (18) changes to ring paths of hopping with Ki jkl ∝
−ti jt jktkl tli and with spin terms as in (3).

N > 4 sites, spin S = 1/2. Going up to more sites (e.g.,
5, 6, and 8) we showed no additional spin interaction terms
emerge and the previously shown spin Hamiltonians (Heisen-
berg plus four-spin) describe fully the energy landscape. The
calculated prefactors for the case that the same hopping
parameter t exists between all sites are shown in Table I.
Additional interaction terms will emerge beyond fourth-order
perturbation calculations, e.g., six-order terms for N � 6,
which is beyond the scope of this paper.

2. Spin S � 1

The extension to systems with larger spins per site, which
is made possible by more than one half-filled orbital per site, is
in principle straightforward, but in practice significantly more
complex. The Hilbert space becomes much larger and we need
to switch from a single-band to a multiband Hubbard model
with quite some additional interaction parameters, which ul-
timately adds considerable complexity to the prefactors or
the exchange parameters of the spin models, respectively (see
Appendix for details). To keep the prefactors simple and trans-
parent, we discuss here results for the simplified case, where
hopping interactions between equal and different orbitals are
identical and orbital independent, t ′ = t , and the Coulomb
repulsion and the exchange interaction of electrons at the same
site but different orbitals, U ′ = 0 and J ′ = 0, are neglected
(see Table II), valid assuming that the Coulomb energy is
larger if the electrons are not just at the same site but also
in the same orbital, i.e., for U ′ � U and J ′ � J . However,
these simplifications do not alter the functional nature of the
spin models, just simplify prefactors. The full prefactors can
be found in the Appendix.
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a. Two sites, spin S = 1. Starting again with the simplest
S = 1 model of two sites with two orbitals per site, we find
in second-order perturbation terms in which two spins are
reversed. For example, c†

2,2,↓c†
1,1,↓c1,1,↑c2,2,↑ is such a term

for m = 0. As it can be seen, there is always one orbital
per site involved in those spin flips. Collecting now all the
terms which arise in second-order perturbation we again end
up with the Heisenberg Hamiltonian, but with a prefactor of
J = −2t2/(U + JH).

In fourth-order perturbation, however, more important dif-
ferences to the system with only one orbital per site occur.
In addition to the term shown above, there appear additional
terms as

c†
2,2,↓c†

2,1,↑c†
1,2,↑c†

1,1,↓c1,1,↑c1,2,↓c2,1,↓c2,2,↑ , (19)

where all the electron spins are reversed and thus all orbitals
are involved in this interaction. For this reason, we can already
see that each site is involved twice in this interaction and
therefore has to occur twice in the effective spin Hamiltonian.
And indeed, by using the spin operators, the resulting effective
interaction can be written as

Htwo sites
fourth-order ∝

∑
i j

′
(
S i · S j − n̂in̂ j

4

)2

, (20)

which can be simplified into the biquadratic interaction (2), a
Heisenberg term, and a constant energy shift. The prefactors
for this system and the systems introduced in the following
with the previously named assumptions on the parameters of
the multiband Hamiltonian (5) can be found in Table II. The
prefactors for systems treated with an unrestricted parameter
set are shown in Appendix.

The appearance of the biquadratic interaction for S = 1
dimers is consistent with the spin-algebra, which states that
the highest independent powers of pair interactions is given
by (S i · S j )2S . For S = 1/2 dimers, the biquadratic term
can always be expressed as the sum of the Heisenberg term
and a constant shift, and thus disappears. Similarly, in S =
1 systems, higher powers of (S1 · S2)n, with n � 3, can be
expressed in a sum of the biquadratic and Heisenberg terms
as well as a constant shift, and disappear too.

b. Three sites, spin S = 1. Considering a system with three
sites and two orbitals at each site, second-order perturba-
tion theory reproduces again the Heisenberg model between
different pairs of the three sites. Fourth-order perturbation
enables the reverse of spins in four different orbitals, which
in a system with three sites can be facilitated in two different
ways: either the four orbitals are taken just at two different
sites or they are distributed over all three sites, of which one
is the site where the electron spin is reversed in both orbitals,
while at each of the other two sites only one orbital is involved
in the hopping. The former one results again in a biquadratic
interaction. The latter one includes terms like

n̂3,1,↑n̂1,2,↓c†
3,2,↓c†

2,2,↑c†
2,1,↑c†

1,1,↓c1,1,↑c2,1,↓c2,2,↓c3,2,↑, (21)

where we can clearly see that two orbitals (here, the first
orbital at site 3 and the second at site 1) are not affected by this
hopping term, while the other four change their spin direction.
At the end this can be summarized in terms of an effective

Hamiltonian

Hthree sites
fourth-order ∝

∑
i jk

′
(
S i · S j − n̂in̂ j

4

)(
S i · Sk − n̂in̂k

4

)
,

(22)

which again can be structured into three different terms,
namely a Heisenberg term, a constant shift, and

H3 sites
4 spins ∝

∑
i jk

′
(S i · S j )(S i · Sk ) , (23)

a Hamiltonian expression we identify as the three-spin in-
teraction introduced in (4). The exchange constant of the
three-spin interaction is called Y henceforth. As we can see
from the collection of prefactors in Table II and Appendix,
the three-spin constant Y is in the same order of magnitude
and even by a factor of 2 larger than the biquadratic constant,
B. Therefore we suppose that this three-spin interaction can
play an important role in systems in which other higher-order
interactions such as the biquadratic or four-spin interaction are
comparable in size to the Heisenberg one. Iron based thin-film
systems are candidates for such a behavior, because the local
magnetic moments and spins, respectively, of Fe are large in
these environments. We will demonstrate this below for the
exemplary systems Fe/Rh(111) and Fe/Ru(0001).

c. Four sites, spin S = 1. The behavior within the second-
order perturbation is the same as before. However, within
fourth-order perturbation calculations and in comparison to
the derivation of the interaction across three sites additional
interaction terms are expected since the four orbitals which are
involved in the interactions of the fourth-order perturbation
can now either be divided-up over 2, 3, or 4 sites resulting in
the biquadratic, three-spin, and four-spin interactions, respec-
tively. The prefactors can be found in Table II. So we have
shown that the four-spin interaction is not just a result that
occurs in S = 1/2 systems, but also in those with S = 1.

d. Spin S > 1. To clarify whether the previously shown
results apply only to S = 1-systems or can also be applied to
systems with larger spins, we have also investigated systems
with S = 3/2 that represent systems having three orbitals per
site exhibiting local magnetic moments of 3 μB. As we can
see in Table II the considered systems can all be explained
by the interplay of the exchange, biquadratic, three-spin, and
four-spin interactions.

Additional magnetic interaction terms making use of the
nature of at least three orbitals per site would require the
concerted hopping of six electrons, which is beyond the
fourth-order perturbation theory to which we restrict ourselves
in this paper. Candidate interactions of six-order perturbation
treatments are six-spin interactions involving 2 to 6 sites. One
obvious candidate of a sixth-order perturbation treatment is a
possible bicubic interaction

H6 ∝
∑

i j

′
(S i · S j )

3. (24)

In order to check whether this bicubic interaction occurs
within higher orders, we have decided to study the system
of two sites with three orbitals up to sixth order in the
perturbation. Indeed additional terms occur within the sixth
order, which can be explained by the bicubic interaction with
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FIG. 2. Investigated geometries: (a) a square arrangement of
atoms as it occurs e.g., at the (001) surface of a bcc or fcc crystal
and (b) a hexagonal arrangement as it occurs at the (111) surface of
an fcc crystal or the (0001) surface of an hexagonal lattice. Sketched
are the positions of the atoms and two different neighbor distances. t1

(t2) represents the hopping between nearest (next-nearest) neighbors.

a prefactor of 336t6

(U+2JH )5 . In general, however, it can be assumed
that this bicubic interaction as well as the other possible
six-order terms are small compared to the previously studied
second- and fourth-order interactions because it occurs in an
even higher order of the perturbation.

B. Spin models at surfaces due to hopping of electrons beyond
nearest neighbor

Up to now, we presented the results assuming that the
hopping properties of the electrons between all the atoms are
the same. In a real system, this is not the case as the value of
the hopping parameter t depends mainly on the distance be-
tween the two involved atoms, but also on the type of orbitals,
the symmetry, the geometry or the environment. In the case
of model Hamiltonians describing strongly localized electron
systems, the nearest-neighbor (NN) approximation is often
sufficient (all hopping parameters t = 0 between all atom
pairs except NN pairs) and the spin models derived above can
be applied practically directly. On the other hand, assuming,
the same hopping parameter t is used between all atom pairs,
for example, the interaction between four atoms corresponds
to the description of the interactions on a regular tetrahedron.
In general, there is a lot of interest in film, interface or surface
geometries of periodic lattices with atom coordinations for
which the NN or constant-pair approximation is unrealistic.
We want to take this into account and evaluate above spin
models for two common types of surfaces, the (001) or (111)
oriented surface of fcc crystals using a model with nearest and
next-nearest neighbor (NNN) hopping. We focus on a periodic
S = 1/2 system of one atom type with electron interactions
involving maximal four lattice sites as indicated in Fig. 2,
where the (001) and (111) geometry are sketched. Obviously,
the former represents a square arrangement of the surface
atoms, the latter is a triangular or diamond arrangement of
an hexagonal lattice.

Within both geometries there are two different distances
between atoms, the NN and NNN distances. Thus the re-
spective electron hopping is described by two distinct hop-
ping constants, t1 and t2, summarized to t�, with � ∈ 1, 2.
Going up to second-order perturbation we find as expected
the Heisenberg exchange which reads independent of surface

geometry

H1 = −
∑
i,δ�

′
J� S i · S i+δ�

with J� = −2 t2
�

U
,

with the respective prefactors J1 (J2) being the exchange con-
stant between NN (NNN) pairs.

∑
δ�

denotes the summation
over the NN (� = 1) and NNN pairs (� = 2). δ denotes the
number of NN (NNN) pairs. While there are two NNN pairs
for the square lattice, there is only one pair on the hexagonal
one, as one of the diagonals (see diagonal connecting atoms 1
and 3 in Fig. 2) is also a NN pair.

While the second-order expression hold independent on the
surface geometry, this is different for fourth-order corrections
to the Heisenberg exchange and for the higher-order interac-
tions, where we have to differentiate between the square and
the hexagonal lattice.

1. (100) surface

At fourth-order perturbation, we expect additional terms
to the Heisenberg model proportional to t4. For the square
lattice, fourth-order perturbation results in a correction of J1

by 10t4
1 /U 3 and a correction of J2 by (8t4

2 + 4t2
1 t2

2 − 2t4
1 )/U 3.

It is worth to point out that the correction to J2 does not
only contain the naively expected correction proportional to
t4
2 , but includes also correction terms involving NN-hopping

proportional to t2
1 t2

2 and t4
1 . This has its origin in (17) where

contributions to a ring hopping involving sites i and j have
contributions to the pair-exchange between the spins at sites i
and j.

For a S = 1/2 system and fourth-order perturbation in
electron hopping, we also obtain contributions to the four-spin
interaction, here expressed on a cluster of four sites:

H4 = − K1[ (S1 · S2) · (S3 · S4) + (S1 · S4) · (S2 · S3)

− (S1 · S3) · (S2 · S4) ] − K2(S1 · S3) · (S2 · S4).
(25)

The first term follows the functional form given in (17) and
includes all permutations of exclusive NN interaction. The
related prefactor becomes K1 = −80 t4

1 /U 3.
More precisely, the variation of the hopping amplitudes

between different sites result in preferred paths for a ring hop-
ping. Thus we expect additional contributions from the NNN
terms to the four-spin interaction. We have found that these
modifications do not affect the previously discussed NN-ring
hopping but add additional permutations of coupling strength
K2 ∝ t2

1 t2
2 of the involved sites to the Hamiltonian and can

be written in terms of the second term in Eq. (25). Taking a
geometrical picture, this corresponds to a bow-tie-shaped loop
which contains two NNN-hopping events and thus hopping
terms over the diagonals of the square. We therefore call this
term bow-tie four-spin term in the following. The prefactor of
this term was determined to be K2 = −160 t2

1 t2
2 /U 3. Thus the

ratio between the prefactors for the two mentioned four-spin
terms is

K2

K1
= 2

(
t2
t1

)2

. (26)
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Depending on the ratio of t1 and t2, the diagonal term can be
of the same order of magnitude as the conventional four-spin
term or it might even dominate and should therefore not be
neglected in applications of the spin model, e.g., Monte Carlo
or spin-dynamic simulations.

Transferring our findings to an infinite lattice, the four-spin
interactions can in general be be written as

H4 = −
∑

〈i jkl〉�

(
K1[(S i · S j )(Sk · S l ) + (S i · S l )(S j · Sk )]

+ (K2 − K1)(S i · Sk ) · (S j · S l )
)
. (27)

Here, the notation 〈i jkl〉� denotes sums over unique non-
crossing quatruplets of sites of closed loops i → j → k →
l → i.

In the case of site-independent hopping amplitude, i.e.,
t1 = t2 and thus 2K1 = K2, Eq. (27) simplifies to (23) while
it corresponds to Eq. (3) in case of pure NN hopping, i.e.,
t2 = K2 = 0. The interaction parameters J and K depend on
the hopping matrix elements t only in even powers and thus
are independent of their sign.

2. (111) surface

The diamond geometry of the hexagonal (111) lattice
offers a different ratio between NNN and NN bonds compared
to the square lattice (see Fig. 2), which is at the end reflected
in different contributions to the spin Hamiltonian.

Collecting all Heisenberg-like terms up to fourth-order
perturbation results in the following prefactors:

J1 = −2
t2
1

U
+ 8

t4
1

U 3
+ 4

t3
1 t2
U 3

− 2
t2
1 t2

2

U 3
, (28)

J2 = −2
t2
2

U
+ 8

t4
2

U 3
+ 4

t3
1 t2
U 3

− 2
t4
1

U 3
. (29)

The contributions to the four-spin interactions are equivalent
to those for the square lattice [Eq. (25)] with the exception of
the prefactor of the diagonal four-spin term which changes to
K2 = −160t3

1 t2/U 3. Therefore the ratio

K2

K1
= 2

(
t2
t1

)
(30)

makes it even more likely that this term is comparable in size
compared to the conventional four-spin term. In difference
to the square lattice, the interaction parameters J and K of
the hexagonal lattice depend not only on even powers of the
hopping matrix elements t but also on the odd ones. Therefore,
here the sign of the hopping matrix elements has a direct
impact on the interaction parameters.

C. Importance of three-spin interaction in iron based magnetic
thin-film systems

Now we turn to the description of real magnetic atomic
monolayer thick transition-metal films. Magnetic beyond-
Heisenberg behavior has been theoretically predicted and
experimentally observed for several systems [10,24,39–43].
The materials specific theoretical modeling of magnetic inter-
actions is generally carried out by means of density functional
theory (DFT) and can be pursued along two different paths: (i)
the parameters, t , U , JH, etc., entering the Hubbard model (5)

are determined directly from DFT and expressions derived
above are executed to obtain the exchange parameters of the
different magnetic interaction terms. Although it is a possible
route, the determination of the Coulomb U and the Hund JH

parameters have some uncertainties due the screening that
should be properly included as a result of those electrons not
treated in the Hubbard model explicitly, uncertainties that are
sometimes too large to determine the exchange parameters
of the spin model to the level that it is predictable. (ii) The
second approach, which we will follow, is to take the classical
limit of the spin models above, i.e., work with classical vector
spin, S, instead of vector operators, S, and calculate the total
energies for a large spectrum of magnetic states in momentum
or real space using DFT. The spin model parameters are then
obtained by comparing the total energy landscape calculated
by DFT and the spin model.

1. Fe/Rh(111)

Al-Zubi et al. [44] systematically investigated the mag-
netism of Fe monolayers on hexagonal surfaces of different
4d transition-metal substrates using DFT. They calculated
total energies of a large spectrum of magnetic structures.
This included both spin-spiral states for wave vectors q along
the high-symmetry lines of the two-dimensional Brillouin
zone and so-called multi-q states of particular q vectors that
allow superpositions of spin spirals of symmetry-equivalent
q vectors. The most remarkable finding was the prediction
of a previously unknown up-up-down-down (uudd) state as
ground state in Fe/Rh(111), recently confirmed by spin-
polarized scanning tunneling microscopy (SP-STM) measure-
ments [45]. The uudd state can be interpreted as interference
of two spin spirals with wave vectors of opposing directions
(2Q state).

In order to understand the origin of this unknown uudd
state, they mapped the DFT results onto a spin Hamiltonian,
which included the Heisenberg interaction extended by the
biquadratic and the four-spin interaction, the two latter within
the nearest-neighbor approximation, and determined the ex-
change parameters. The choice of the spin Hamiltonian was
taken ad hoc, but motivated by previous successes of simi-
lar systems [24,42,43]. However, they made some puzzling
observations. While the energy difference of two unrelated
uudd states (see Fig. 2 of Ref. [44]) characterized by two
different wave vectors q should be the same in comparison
to the spin-spiral state (1Q state) with the corresponding q
vector, i.e.,

E2Q − E1Q = 4 (2K − B) , (31)

not only the absolute value, but also the sign varied for both.
Several attempts were made to resolve this discrepancy, but

only the extension of the spin Hamiltonian by the three-spin
interaction, which we systematically derived in this paper
on grounds of the Hubbard model as an ignored interaction
being on the same level as the previously applied biquadratic
and four-spin terms, was able to resolve this issue. In fact,
depending on the sign of the exchange parameter, the three-
spin interaction selects one of the two uudd states to become
ground state and indeed it was shown that this explains the
magnetic ground state of Fe/Rh(111) [45].
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2. Fe/Ru(0001)

We show here that a monolayer of Fe deposited on
Ru(0001) is a further materials system with beyond-
Heisenberg behavior and a system which requires the con-
tribution of the three-spin interaction in addition to the bi-
quadratic and four-spin interaction for a proper description
of the magnetic properties by a spin model. In difference to
Fe/Rh(111), DFT calculations of Al-Zubi et al. [44] revealed
the 120◦ Néel-state (from atom to atom the direction of the
magnetic moment changes by 120◦) as the energetically most
favorable of all investigated states, and thus the higher-order
interactions do not directly determine the ground state, but
the DFT calculations show that this system exhibits a simi-
larly puzzling energy spectrum as Fe/Rh(111) and a proper
spin model is required for the description of spin-dynamics,
spin excitation and the determination of thermodynamic
properties.

In the following, we determine the exchange parameter
B, Y , and K of the three beyond-Heisenberg interactions,
biquadratic, three-spin, and four-spin, respectively, in the NN
approximation analyzing the ab initio data of Al-Zubi et al.
[44]. While the single-wave-vector spin spiral (1Q state) is
an eigensolution of the classical Heisenberg model for a pe-
riodic lattice, beyond-Heisenberg interactions couple modes
of different 1Q states to multi-Q states with different energy
and show that this can result in a more accurate descrip-
tion of Fe/Rh(0001). Therefore we focus in the following
on those single-Q vectors in the two-dimensional hexagonal
Brillouin zone of q vectors defined in reciprocal space as
q = (q1, q2) in units of the inplane reciprocal lattice vec-
tors b1(2) = (2π/a)(1/

√
3, (−) 1), where a is the hexagonal

in-plane lattice constant, that can form multi-Q states out
of symmetry-equivalent 1Q states. This includes the high-
symmetry point M = (1/2, 1/2) representing the row-wise
antiferromagnetic state, that can form a 3Q state and the two
states (�M)/2 = ±(1/4, 1/4) and 3/4(�K) = (±1/4,∓1/4)
on the high-symmetry lines of the Brillouin zone whose super-
position of propagating and counterpropagating waves, e.g.,
(�M)/2 and −(�M)/2, form 2Q or uudd states, respectively.

Inserting now the spin structure expressed as a spin-
spiral wave, Si = S(cos(qRi ), sin(qRi ), 0), where Ri denotes
the position vector to site i, for wave vector q, or linear
combination of those into the respective expressions for the
Heisenberg, biquadratic, three- and four-spin interactions we
obtain the following expressions:

E3Q − EM = 16

3
(2K + B − Y ) = 4.6 meV, (32)

E2Q, �M
2

− E �M
2

= 4 (2K − B − Y ) = −30.3 meV, (33)

E2Q, 3�K
4

− E 3�K
4

= 4 (2K − B + Y ) = 7.5 meV, (34)

which we compared with the energy differences (in meV)
obtained from DFT. As one can see, the previously identical
energy differences for the two uudd states are now separated
by 8Y due to the three-spin interaction. For the prefactors of
the three interactions, we obtain

B = 4.22 meV, Y = 4.73 meV, K = 0.68 meV. (35)

The value of the three-spin exchange parameter, Y , is in the
same order of magnitude as the biquadratic interaction, but
is also significantly large compared to the NN-Heisenberg
exchange constant J1 (J1 = −6.4 meV) [64] and should there-
fore not be neglected.

Based on our investigation we would argue that the pre-
viously puzzling results for Fe/Ru(0001) are the result of
the interplay between the biquadratic and a strong three-spin
interaction, which favors one of the magnetic uudd textures
over the other, an energy difference that could not be resolved
before when the three-spin interaction had been neglected.

A final comment on the evaluation of the three-spin in-
teraction. Analogously to the discussion of (25) and (27) the
expression (23) can be simplified to

H3 = − 2Y
∑
〈i jk〉�

[(S j · Si )(Si · Sk ) + (Si · S j )(S j · Sk )

+ (Si · Sk )(Sk · S j )] (36)

summing over triangles of NN sites.

IV. SUMMARY AND CONCLUSIONS

In this paper, we derived consistently and systematically
the spin Hamiltonian due to interacting electrons up to fourth-
order perturbation theory in the Löwdin partitioning algo-
rithm. Starting point was the rotationally invariant multiorbital
Hubbard model that described the interacting electrons on a
lattice. We showed that Löwdin’s downfolding technique is an
efficient approach to map the effect of the interacting electrons
onto an effective spin model. As a result we obtain the spin
Hamiltonian

H = (H1 + H4){for S � 1/2} + (H2 + H3){for S � 1} ,

(37)

which consists of the Heisenberg Hamiltonian H1 (1), the
biquadratic (four-spin-two-site) H2 (2), the three-spin (four-
spin-three-site) H3 (4), and the four-spin Hamiltonian (four-
spin-four-site) H4 (3). The Heisenberg term emerges already
in second-order perturbation, but the fourth-order perturbation
term adds to the exchange coupling parameter. Characteristic
of the fourth-order terms is the hopping of electrons between
four orbitals that connect maximally four sites. This form
remains correct also for higher spins S treated up the fourth-
order perturbation theory. On the other hand S = 3/2 has
also sixth-order contributions and S = 2, would have sixth-
and eighth-order contributions, which we have not calculated.
Since the dimension of the matrices H0 and H1 in the Löwdin
algorithm grows binomially with the number of orbitals as
( n

n/2 )2, the algorithm becomes quickly involved and at the
same time the exchange coupling parameters are becoming
increasingly smaller and the terms less important. The ex-
change coupling parameters of the different Hamiltonians Hi,
with i = 1, . . . , 4, are summarized in detail in the Appendix.

The spin-orbit interaction and the crystal field effects
were neglected. Subject to the spin-orbit interaction, Sz

does not commute anymore with the Hamiltonian, thus
the Hamiltonian does not block-diagonalize anymore for
different m, and the Löwdin partitioning becomes more
involved.
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We showed that our technique is capable of verifying the
commonly applied Heisenberg model, as well as the four-
spin and biquadratic interaction, but unraveled in addition
the occurrence of the three-spin interaction. The importance
of the three-spin interaction was verified for the systems of
one monolayer Fe on Rh(111) and Ru(0001), where ab initio
calculations [44] predicted puzzling results on the magnetic
states that now could be consistently explained. The unusual
up-up-down-down ground state stabilized by the three-spin
interaction in Fe/Rh(111) could recently be confirmed exper-
imentally [45].

Our derivations suggest a direct determination of the
magnetic interaction parameters by calculating the Hubbard
parameters, i.e., the hopping, Coulomb as well as Hund’s
coupling parameters, directly from DFT. Yet, not only the
calculation of the parameters can become quite elaborated for
extended systems involving partly additional approximations,
but also the determination of the exact relations in accordance
with the crystal structure of the system as can be concluded
from the Appendix. Therefore, in this work, we focused in the
material specific section of this paper on the well-established
total energy approach, but it is worth to explore the direct
evaluation of the parameters in the future.
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APPENDIX: PREFACTORS FOR THE
COMPLETE MODEL

In the main text, we focused on presenting the prefactors,
or exchange parameter, respectively, of the different spin
models for the simplified case of orbital independent hopping
interactions (ti,α, j,α = t ′

i,α, j,α′ = t) and for the limits J ′ = 0
and U ′ = 0. Here, we show the extension of the results for
which the hopping interaction between the same (ti,α, j,α = t)
and between different orbitals (t ′

i,α, j,α′ = t ′) are distinct. Anal-
ogously the distinction between intra- and interorbital onsite
Coulomb repulsion U , and U ′, respectively, and exchange
interaction, J and J ′, respectively, is taken into account.
Otherwise, all interaction parameters are kept orbital indepen-
dent for simplicity and remain site independent assuming a
periodic lattice of one atom type.

In the following, we will denote exchange parameters
as Xs×o with X ∈ (J , B, K , Y ) and s and o denoting
the number of sites and orbitals, respectively. The pref-
actors are calculated up to fourth order in the Löwdin
partitioning.

J2×2 = − t2 + t ′2

U + JH
+ 4(t2 + t ′2)2

(U + JH)3
− 16t2t ′2

(U + JH − U ′ − J ′
H)(U + JH)2

,

B2×2 = − 2(t2 + t ′2)2

(U + JH)3
+ (t2 − t ′2)2

2(U + JH)2JH
+ 4(t2 − t ′2)2

(2U + U ′)(U + JH)2
+ t4 − 14t2t ′2 + t ′2

(U + JH − U ′ − J ′
H)(U + JH)2

+ (t2 − t ′2)2

(U + JH − U ′ + J ′
H)(U + JH)2

,

J3×2 = − t2 + t ′2

U + JH
+ 12(t2 + t ′2)2

(U + JH)3
− 3(t4 + 6t2t ′2 + t ′4)

(2U + 2JH − U ′ − J ′
H)(U + JH)2

− (t2 − t ′2)2

(
− 27

4J2
H(U + JH)

+ 12

J2
H(2U + JH)

+ 3

4J2
H(U + 3JH)

− 3

2JH(U + JH)2
+ 3

(2U + 2JH − U ′ + J ′)(U + JH)2
+ 3

(2U + JH + U ′)(U + JH)2

)
,

B3×2 = − (t2 + t ′2)2
(

+ 2

(U + JH)3
+ 3

(U + JH − U ′ − J ′
H)(U + JH)2

)
− (t2 − t ′2)2

(
− 1

2JH(U + JH)2

− 1

(U + JH − U ′ + J ′
H)(U + JH)2

− 4

(2U + U ′)(U + JH)2
− 4

(U + JH − U ′ − J ′
H)(U + JH)2

)
,

Y3×2 = − 16t2t ′2

(U + JH − U ′ − J ′
H)(U + JH)2

+ 2t4 + 12t2t ′2 + 2t ′4

(2U + 2JH − U ′ − J ′
H)(U + JH)2

− 6t4 + 20t2t ′2 + 6t ′4

(U + JH)3

− (t2 − t ′2)2

(
− 1

2J2
H(U + 3JH)

+ 1

JH(U + JH)2
+ 9

2J2
H(U + JH)

− 8

J2
H(2U + JH)

− 2

(2U + JH + U ′)(U + JH)2
− 2

(2U + 2JH − U ′ + J ′
H)(U + JH)2

)
,
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J4×2 = − t2 + t ′2

U + JH
− (t2 − t ′2)2

(
+ 24

J2
H(2U + JH)

− 27

2J2
H(U + JH)

+ 3

2J2
H(3JH + U )

− 3

JH(U + JH)2

+ 6

(2U + 2JH − U ′ + J ′
H)(U + JH)2

+ 6

(2U + JH + U ′)(U + JH)2

)

+ 23t4 + 58t2t ′2 + 23t ′4

(U + JH)3
− 6t4 + 36t2t ′2 + 6t ′4

(2U + 2JH − U ′ − J ′
H)(U + JH)2

+ 16t2t ′2

(U + JH − U ′ − J ′
H)(U + JH)2

,

B4×2 = − (t2 − t ′2)2

(
− 1

2JH(U + JH)2
− 4

(2U + U ′)(U + JH)2
− 1

(U + JH − U ′ + J ′
H)(U + JH)2

)

− 2(t4 + 2t2t ′2 + t ′4)

(U + JH)3
+ t4 − 14t2t ′2 + t ′4

(U + JH − U ′ − J ′
H)(U + JH)2

,

Y4×2 = − (t2 − t ′2)2

(
− 2

(2U + 2JH − U ′ + J ′
H)(U + JH)2

− 2

(2U + JH + U ′)(U + JH)2
− 8

(2U + JH)J2
H

+ 9

2(U + JH)J2
H

− 1

2J2
H(U + 3JH)

+ 1

(U + JH)2JH

)
+ 2t4 + 12t2t ′2 + 2t ′4

(2U + 2JH − U ′ − J ′
H)(U + JH)2

− 16t2t ′2

(U + JH − U ′ − J ′
H)(U + JH)2

− 6t4 + 20t2t ′2 + 6t ′4

(U + JH)3
,

K4×2 = − 5(t4 + 6t2(t ′2) + t ′4)

4(U + JH)3
,

J2×3 = − 2

3

(t2 + 2t ′2)

(U + 2JH)
− 8t ′2(t − t ′)2

3(U + 5JH − U ′ − J ′
H)(U + 2JH)2

− (t2 + 2tt ′ + 3t ′2)(t − t ′)2

(U + JH + U ′)(U + 2JH)2
+ 4(t2 + 2t ′2)2

(U + 2JH)3

− (t2 + 2tt ′ + 3t ′2)(t − t ′)2

2(U + 2JH − U ′ + J ′
H)(U + 2JH)2

− 3t4 + 76t2t ′2 + 76tt ′3 + 25t ′4

6(U + 2JH − U ′ − J ′
H)(U + 2JH)2

− (t2 − t ′2)2

9(U + 2JH)2JH
,

B2×3 = + (t2 + 2tt ′ + 3t ′2)(t − t ′)2

3(U + 2JH − U ′ + J ′
H)(U + 2JH)2

+ 3t4 − 52t2t ′2 − 52tt ′3 − 7t ′4

9(U + 2JH − U ′ − J ′
H)(U + 2JH)2

+ 16t ′2(t − t ′)2

9(U + 5JH − U ′ − J ′
H)(U + 2JH)2

+ 2(t2 + 2tt ′ + 3t ′2)(t − t ′)2

3(U + JH + U ′)(U + 2JH)2
+ 2(t − t ′)2(t + t ′)2

27(U + 2JH)2JH
+ 8(t2 + 2t ′2)2

9(U + 2JH)3
,

J3×3 = − 2

3

(t2 + 2t ′2)

(U + 2JH)
− −3t4 + 20t2t ′2 + 20tt ′3 − t ′4

6(U + 2JH − U ′ − J ′
H)(U + 2JH)2

− −110t4 − 456t2t ′2 − 16tt ′3 − 444t ′4

9(U + 2JH)3

− −10t4 − 80t2t ′2 − 40tt ′3 − 50t ′4

3(2U + 4JH − U ′ − J ′
H)(U + 2JH)2

− (t − t ′)2

[
+ t2 + 2tt ′ + 3t ′2

(U + 2JH)2

(
− 20(U + 2JH)

27JH(5JH + U )
+ 1

U + JH + U ′

+ 20

3(2U + 3JH + U ′)
+ 1

2(U + 2JH − U ′ + J ′
H)

+ 10

3(2U + 4JH − U ′ + J ′
H)

)

+ 23t2 + 46tt ′ + 63t ′2

27(U + 2JH)2JH
− 8t ′2

3(U + 5JH − U ′ − J ′
H)(U + 2JH)2

]
,

B3×3 = + (t − t ′)2

(U + 2JH)2

(
2t2 + 4tt ′ + 6t ′2

3(U + JH + U ′)
+ 16t ′2

9(U + 5JH − U ′ − J ′
H)

+ t2 + 2tt ′ + 3t ′2

3(U + 2JH − U ′ + J ′
H)

+ 2(t + t ′)2

27JH

)

+ 3t4 − 52t2t ′2 − 52tt ′3 − 7t ′4

9(U + 2JH − U ′ − J ′
H)(U + 2JH)2

+ 8(t2 + 2t ′2)2

9(U + 2JH)3
,

Y3×3 = − (t − t ′)2 (t2 + 2tt ′ + 3t ′2)

[
− 1

(U + 2JH)2

(
16

9(2U + 3JH + U ′)
+ 8

9(2U + 4JH − U ′ + J ′
H)

+ 16

81JH

)

+ 16

243(U + 2JH)J2
H

− 16

243(5JH + U )J2
H

]
− 1

(U + 2JH)2

[
− 8t4 + 64t2t ′2 + 32tt ′3 + 40t ′4

9(2U + 4JH − U ′ − J ′
H)

+ 16t ′2(t ′ + 2t )2

9(U + 2JH − U ′ − J ′
H)

+ 64t4 + 384t2t ′2 + 128tt ′3 + 288t ′4

27(U + 2JH)

]
.
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