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Goldstone modes in the emergent gauge fields of a frustrated magnet

S. J. Garratt and J. T. Chalker
Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

(Received 18 August 2019; published 15 January 2020)

We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with
weak exchange disorder, focusing on the nearest-neighbor pyrochlore-lattice Heisenberg model at large spin.
The low-energy degrees of freedom in this system are represented by three copies of a U(1) emergent gauge
field, related by global spin-rotation symmetry. We show that the Goldstone modes associated with spin-glass
order are excitations of these gauge fields, and that the standard theory of Goldstone modes in Heisenberg spin
glasses (due to Halperin and Saslow) must be modified in this setting.
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I. INTRODUCTION

Gauge fields arise as low-energy degrees of freedom for
frustrated magnets in a variety of contexts [1–4]. Their
emergence is particularly transparent in the classical limit,
where the systems of interest have macroscopically degen-
erate ground states and ground-state spin configurations can
be mapped to configurations of a divergenceless vector field
[2]. An important application of these ideas has been in
research on spin-ice materials, represented by the Ising an-
tiferromagnet on the pyrochlore lattice [5,6]. In spin ice,
the emergent gauge field is described by a U(1) theory, and
magnetic monopole excitations act as its sources and sinks
[7]. Extending the approach to n-component classical spins, a
distinct flavor of U(1) field arises from each spin component:
global spin rotations act as rotations between these flavors,
and magnetization density is a vector source for flux.

Such gauge fields may acquire dynamics by a number of
different routes. Starting from a classical model, a natural step
is to introduce quantum tunneling between pairs of ground
states that are related via rearrangement of small numbers of
spins [8,9]. In quantum versions of spin ice this leads to a
theory of the standard form familiar from quantum electrody-
namics [10,11]. An alternative is to build on the precession of
the spins in the exchange fields arising from their neighbors.
In Heisenberg models the global rotational symmetry then
gives rise to theories of gauge fields with a conserved vector
charge. A treatment of the Heisenberg antiferromagnet on the
pyrochlore lattice that combines precessional dynamics with
a description in terms of emergent gauge fields is appropriate
under two conditions: the system should be at low enough
temperatures that it is close to its ground-state manifold, but
not at such low temperature that quantum order by disorder
[12,13] establishes the Neél state. Both conditions are satisfied
in a window below the Curie-Weiss temperature that is wide at
large spin. In this temperature range the gauge field dynamics
arising from precession is overdamped, with a relaxation rate
that is predicted [14–16] and observed [17] to be proportional
to temperature.

Quenched exchange randomness offers a way to explore
this physics further. It leaves the gauge fields as distinct

degrees of freedom if its amplitude � is much less than the
mean exchange J , and it enables the system to evade order
by disorder, instead stabilizing the spin-glass state below a
freezing temperature TF ∼ � [18–20]. The frozen state cor-
responds to a particular gauge field configuration (selected
by the exchange randomness), which spontaneously breaks
symmetry under global spin rotations. Consequently it offers
a platform to understand the role of the global rotational sym-
metry in the gauge field dynamics. A key question is whether
excitations in this state can be viewed both as excitations of
the gauge degrees of freedom and also as Goldstone modes. In
this paper we establish a theoretical treatment of these modes,
demonstrating how the two perspectives are consistent in the
low-energy limit.

The theory of Goldstone modes in conventional spin
glasses was established some time ago in work by Halperin
and Saslow [21], and by Ginzburg [22], and describes the
interplay between smooth rotations of the spin configuration
and a conserved magnetization density. Within that approach,
the long-distance properties of the ordered state are charac-
terized by the uniform magnetic susceptibility χ0 and the
long-wavelength spin stiffness ρ. Modes of frequency ω and
wave vector k have a linear dispersion relation ω = ck with
speed c = √

ρ/χ0. For a spin glass having nearest-neighbor
interactions with mean strength zero and variance J 2, one
has χ ∼ J −1 and ρ ∼ J a2, where a is the lattice spacing.
As a result, c ∼ J a. A direct attempt to extend the conven-
tional theory to the spin-glass state in geometrically frustrated
Heisenberg antiferromagnets with weak disorder suggests the
result c ∼ a

√
J�. If correct, this form would imply that the

modes mix gauge fields with high-energy degrees of freedom,
since it combines J and �.

We show below that this is not in fact the behavior in the
pyrochlore antiferromagnet. Instead, the results of our inves-
tigation in the regime 0 < � � J are as follows. We find that
fluctuations of the emergent gauge fields acquire a stiffness of
order �, and that the lowest-energy degrees of freedom are
smooth rotations of the frozen state. Further, we show that the
low-frequency magnons associated with these rotations have
speed c ∼ a�, where a is the lattice spacing. Since this is
independent of J , it is at odds with the conventional theory. To
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expose the new features of the spin glass state in geometrically
frustrated magnets, we develop a continuum description of the
low-frequency magnons, thereby extending the hydrodynamic
theory to these systems. Our modified hydrodynamic theory
reveals that, in the limit of vanishing exchange randomness,
the low-energy modes involve only the emergent gauge fields.

A number of geometrically frustrated antiferromagnetic
materials are well described in a first approximation by the
Heisenberg model. Many of them show spin freezing with
a transition temperature much smaller than the dominant
interaction scale (which is characterized by the Curie-Weiss
constant) and this freezing is plausibly attributed to weak
exchange disorder. A large magnetic heat capacity CM at low
temperature is characteristic of these systems [23–26], sug-
gesting soft, gapless modes. The Goldstone modes described
by the theory we develop here give rise to a large value for CM

because the excitation speed is small if exchange disorder is
weak.

II. MODEL AND GROUND STATES

We study the classical Heisenberg model with Hamiltonian

H =
∑
〈r,r′〉

Jr,r′ Sr · Sr′ . (1)

Here spins Sr are three-component unit vectors, the sum is
over nearest-neighbor pairs of sites r, r′ on the pyrochlore
lattice, and Jr,r′ = J + � · Rr,r′ , where Rr,r′ is a Gaussian
random variable with zero mean and unit variance. Our focus
is on the weak-disorder limit � � J .

In the absence of disorder (� = 0) this model has macro-
scopically degenerate ground states. These states are ones
in which each tetrahedron α of the pyrochlore lattice has
total spin Mα ≡ ∑

r∈α Sr = 0, since H = (J/2)
∑

α |Mα|2 +
const. For N spins under periodic boundary conditions, the
number of ground-state degrees of freedom is N/2 + 3, a
result that can be obtained simply (up to the finite-size term)
by subtracting from the total number (2N) of degrees of
freedom the number (3N/2) of scalar constraints implied by
the conditions Mα = 0 [14,15].

The ground states can be represented as configurations of
an emergent gauge field as follows [2]. Noting that centers of
tetrahedra lie on a bipartite lattice, one introduces unit real-
space vectors with components ei

r at each site r, directed from
one sublattice to the other. The emergent flux at site r is Bai

r =
Sa

r ei
r, where a labels spin components and i space components.

The net flux into or out of a tetrahedron α is∑
r∈α

Bai
r ei

r =
∑
r∈α

Sa
r , (2)

which is zero in ground states, so Bai
r is divergenceless.

In the presence of weak disorder this model undergoes
a spin freezing transition at low temperature [19,20]. The
disorder realization can be thought of as selecting a particular
flux configuration from the ground-state manifold of the clean
system. By minimizing the energy of a single cluster, and
by direct numerical calculation, we find random ground-state
magnetizations of magnitude |Mα| ∼ �/J . These magnetiza-
tions represent canting away from the ground-state manifold
of the � = 0 system, and vanish smoothly as �/J → 0 with

fixed Rr,r′ . The frozen flux configurations, which are local
minima of the energy landscape, are therefore smoothly con-
nected to ground-state flux configurations of the disorder-free
model.

III. FLUCTUATIONS

We are concerned for � 
= 0 with small-amplitude exci-
tations around a frozen spin configuration. As is standard in
semiclassical treatments of fluctuations in Heisenberg mag-
nets, these are characterized in two complementary ways:
the energy costs of small-amplitude static fluctuations are
represented by a Hessian; and the dynamics of fluctuations are
given by normal modes of the linearized equations of motion.

Let Sr denote a minimum energy configuration with energy
E . Write Sr = (1 − 1

2 m2
r )Sr + mr for |mr| � 1 with mr · Sr =

0 at leading order. It is also useful to describe fluctuations
in terms of a spin rotation θr, by writing mr = θr × Sr. We
take θr · Sr = 0 so that mr and θr both have two dynamically
conjugate degrees of freedom at each site.

Static properties of excitations are characterized by the
inverse susceptibility matrix χ−1 or Hessian. At quadratic
order

H − E = 1
2 ma

r [χ−1]ab
r,r′ mb

r′ ≡ 1
2θa

r τ ab
r,r′θ

b
r′ , (3)

where the right-hand side of (3) defines the matrix τ . Let λn

for n = 1 . . . 2N denote the eigenvalues of the Hessian, and
define their integrated density N (λ) ≡ N−1 ∑

n 
(λ − λn),
where 
 is the step function.

Dynamical properties follow from the precessional equa-
tion of motion

∂t Sr = −
∑

r′
Jr,r′ Sr × Sr′ . (4)

After linearization, this can be written as

∂t m
a
r = −εabcS

b
r [χ−1]cd

r,r′ md
r′ . (5)

We denote the magnon eigenfrequencies by ωn for
n = 1 . . . 2N and define their integrated density D(ω) ≡
N−1 ∑

n 
(ω − |ωn|). Writing ma
r (t ) = ma

r e−iωt in (5) and
taking its complex conjugate, we see that eigenfrequencies
come in N pairs ±ω.

For � = 0 the Hessian has N/2 + 3 zero eigenvalues, with
the corresponding eigenvectors forming local coordinates for
the ground-state manifold. The vanishing of 1/4 (as N → ∞)
of the Hessian eigenvalues λ reflects the extensive ground-
state degeneracy. From the equation of motion, we see that
the same fraction of dynamical eigenvalues are zero [15]. This
has an important implication: it indicates that the coordinates
within the ground-state manifold, our emergent fluxes, form
dynamically conjugate pairs. To see this, suppose that the
opposite were true. Then some eigenvectors of the Hessian
with zero eigenvalue would have canonically conjugate coor-
dinates outside the ground-state manifold. Each such Hessian
eigenvector would give rise to a pair of dynamical zero modes,
and the fraction of dynamical zero modes would be larger than
the fraction of Hessian zero modes.

Our approach to the system with weak exchange disorder
is first to develop a picture of the Hessian eigenvectors, and
then to use this to understand the dynamical modes. Using the
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result |Mα| ∼ �/J , we see that Eq. (3) takes the form

H − E = (J/2)
∑

α

(∑
r∈α

mr

)2

+ O(�). (6)

In the regime 0 < � � J , consider fixing Rr,r′ and letting �

tend to zero. We can associate each local energy minimum of
the spin-glass phase with an exact ground state of the clean
system, in which 1/4 of the λ are zero. Increasing � from
zero, and allowing the spin configuration to cant away from
the ground-state manifold, the only changes in expression (6)
are of order �. Degenerate perturbation theory then shows
that the soft fluctuations acquire stiffnesses λ ∼ �, the others
being of order J . Therefore in the limit � � J we can separate
the Hessian eigenvectors into subspaces with eigenvalues
O(�) and O(J ), the first corresponding to fluctuations of
the gauge fields, and the second to fluctuations of the cluster
magnetization.

This result for the energy cost of fluctuations of the emer-
gent gauge fields, together with the fact that as �/J → 0 these
degrees of freedom are dynamically conjugate, suggests that
the lowest modes will be lifted from zero frequency to ω ∼ �.
If these are Goldstone modes, we see immediately that we are
at odds with the conventional hydrodynamic theory of spin
waves: a smooth magnetization has an energy cost of order
J from (6), and the energy cost of a smooth rotation of the
ground-state configuration is at least of order �. Consequently
the conventional theory incorrectly predicts ω ∼ √

�J . To
proceed, we develop a continuum treatment of the low-energy
degrees of freedom of our model. These are related to smooth
rotations of the frozen gauge field configuration. We then use
this to construct a modified hydrodynamic theory of magnons,
relevant to geometrically frustrated magnets with emergent
gauge degrees of freedom and weak exchange disorder.

IV. CONTINUUM THEORY

We begin by examining how accurately a smooth spin
rotation can be represented by the gauge-field degrees of
freedom. Using a continuum treatment, let the tensor field
B

ai
(r) denote a ground state selected by disorder in the limit

�/J → 0. Note that Eq. (2) implies ∂iB
ai

(r) = 0 and that
divergenceful field configurations cost energy O(J ). Rotations
in spin space can be described by an orthogonal matrix field
Oab(r) that satisfies Oab(r)Ocb(r) = δac for all r. To ensure
that a smoothly rotated configuration avoids an O(J ) energy
penalty, we write

Bai(r) = Oab(r)B
bi

(r) + bai(r) (7)

and choose bai(r) so that ∂iBai(r) = 0. This implies

∂ib
ai(r) = −[∂iO

ab(r)]B
bi

(r) ≡ σ a(r), (8)

and we show below that bai(r) is small for smooth rotations.
Specifically, if Oai(r) varies on a scale �, then we find that
|bai(r)|2 ∼ �−3 for large �.

We would like an expression for the energy relative to
the ground state of the configuration Bai(r). Since uniform
rotations cost no energy, it is natural to use a gradient expan-
sion, and since we have imposed ∂iBai(r) = 0, the associated

stiffness is O(�) and independent of J . Hence we write

H − E ∼ �

∫
dd r{|∂iO

ab|2 + ε(b)}, (9)

where ε(b) ∼ |bai(r)|2 characterizes the energy density of
corrections to the smooth rotation. Here we ignore disorder
in the stiffness.

The energy density of the corrections scales as O(�−3). To
see how this arises we solve (8) and write∫

d3r|bai(r)|2 =
∫∫

d3r1d3r2
σ a(r1)σ a(r2)

4π |r1 − r2| . (10)

We now wish to substitute for σ a(r1) in terms of Oab(r) and
B

bi
(r) using Eq. (8), and determine the dependence on the

length scale �, which enters via the form chosen for Oab(r).

In this process the factor B
bi

(r1)B
ci

(r2) appears. We replace it
by its average [2]

〈Bbi
(0)B

ci
(r)〉 ∝ δbc 3r2

i − r2

r5
(11)

over a Gaussian ensemble of divergenceless fields, which can
be justified by the averaging arising from integration over
the center of mass coordinate r1 + r2. The �−3 scaling then
follows from power counting.1 Therefore at large � the leading
contribution to the energy density associated with a smooth
rotation of the gauge fields scales as ��−2 from Eq. (9). We
next show that these smooth rotations are intimately related to
the dynamical Goldstone modes.

The low-frequency excitations involve an interplay be-
tween smooth rotations and the conserved magnetization
density. In a continuum description these are characterized
by three-component vector fields θ(r) and m(r), which are
coarse-grained versions of their lattice counterparts, θr and
mr. Note however that although θr and mr provide equivalent
descriptions of the spin fluctuations, this is no longer true after
coarse graining. For a conventional spin glass the continuum
equations of motion proposed by Halperin and Saslow [21]
are

θ̇ = χ−1
0 m and ṁ = ρ∇2θ, (12)

giving the value c = √
ρ/χ0 for the speed.

To understand how this approach should be modified in the
weakly disordered pyrochlore antiferromagnet, we start from
the microscopic equation of motion (5), which can be recast
in the two equivalent forms [22]

θ̇a
r = [χ−1]ab

rr′ mb
r′ and ṁa

r = −τ ab
rr′ θ

b
r′ . (13)

It is useful to expand a fluctuation mr in the basis of Hessian
eigenvectors. As mentioned above, these span two subspaces,
associated, respectively, with eigenvalues O(�) and O(J ).
Separating the components of mr in each subspace, we write
mr = mr,� + mr,J . Similarly, for θr in the basis of eigen-
vectors of τ , we take θr = θr,� + θr,J . Since ground-state

1In two dimensions a similar approach gives |bai(r)|2 ∼
�−2 ln(�/a), and so in this case the constraint that Bai(r) is di-
vergenceless implies a stiffness that is logarithmically divergent at
large �.
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coordinates at � = 0 form dynamically conjugate pairs, each
θr,� has a conjugate mr,�.

Under coarse graining, only the smooth parts of mr and θr

survive. These are contained in mr,J and θr,�. To see this, note
first that the average

∑
r∈α mr,� over a tetrahedron α is zero

for �/J → 0; hence mr,� is eliminated by coarse graining.
Second, the expressions (3) and (9) for the energy, in terms
of θr and θ(r), respectively, imply that smooth rotations are
represented exclusively by θr,�. The relevant coarse-grained
degrees of freedom in a continuum theory are therefore mJ (r)
and θ�(r).

The coarse-grained equations of motion can be inferred
from (13). The first follows from the observation that a spin
fluctuation mr,J generates exchange fields of order J . This
immediately yields

θ̇�(r) ∼ JmJ (r). (14)

The second uses a comparison of the right-hand sides of (3)
and (9) to establish that the action of τ on a smooth rotation
θr,� can be represented in the continuum by τ ∼ −�a2∇2,
where a is the lattice spacing. The prefactor � sets the mag-
nitude of the microscopic exchange fields generated by θr,�,
which in turn drive spin precession at frequency ω ∼ �. As
noted above, the canonically conjugate coordinate represent-
ing this precession can be written as mr,� in the limit � → 0.
At finite �/J it is accompanied by a correction mr,J , with
|mr,J | ∼ (�/J )|mr,�|. Since these corrections alone survive
coarse graining, our second continuum equation of motion is

ṁJ (r) ∼ a2 �2

J
∇2θ�(r). (15)

In summary, a smooth magnetization density, of magnitude
O(�/J ) relative to the gauge field fluctuations, drives long-
wavelength twists of the ground-state configuration. From
(14) and (15) we predict linearly dispersing Goldstone exci-
tations with speed c ∼ a� set only by exchange disorder. We
next present numerical results that support this picture.

V. NUMERICS

We generate low-lying minimum energy states of H
[Eq. (1)] by using a Metropolis algorithm to establish equi-
librium at T = 0.1J and then reducing the energy via steepest
descents [27], iteratively rotating spins to be parallel to their
local exchange fields −∑

r′ Jr,r′ Sr′ with a maximum final
error of 10−9 radians. We study cubic samples of linear
dimension L containing N = 16L3 spins. We average over 20
disorder realizations for L = 3 and over ten realizations for
4 � L � 7. In the following we discard the trivial eigenvec-
tors of the Hessian and dynamical matrices related to global
rotations [27].

Results for Hessian eigenvalues λ are presented in
Figs. 1(a) and 1(b), and those for the dynamical mode frequen-
cies ω in Figs. 1(c) and 1(d). The main panels of Figs. 1(a)
and 1(c) show that, as �/J → 0, 1/4 of eigenvalues or
frequencies are O(�); the insets to Fig. 1(a) and 1(c) show
that the remainder are O(J ). Figure 1(b) demonstrates that
N (λ) ∝ (λ/�)3/2 for λ/� and �/J small. This form follows
from Eq. (9) and a conventional mode-counting argument
for translationally invariant systems with λ quadratic in wave

FIG. 1. Integrated densities N (λ) of Hessian eigenvalues λ

[(a) and (b)] and D(ω) of magnon frequencies ω [(c) and (d)], with
dependence on system size L and disorder strength �/J . (a) and
(c): for 2−10 � �/J � 2−6 at L = 3; (b) and (d): for 3 � L � 7 at
�/J = 2−6. Dashed line in (b) represents N (λ) ∝ (λ/�)3/2; dashed
line in (d) represents N (ω) ∝ (ω/�)3. Insets in (a) and (c) show full
range of N (λ) and D(ω).

number. Figure 1(d) shows D(ω) ∝ (ω/�)3 for ω/� and �/J
small. This form follows from Eqs. (14) and (15), which imply
linearly dispersing excitations.

Next we test our picture of low-lying Hessian eigenvec-
tors and dynamical modes as long-wavelength twists of the
ground-state spin configuration. In both cases we consider
the lowest-lying mode that is not simply a global rotation,
and start from the coordinates θr. Since θr is defined to
have no component along the equilibrium spin direction Sr,
it has spatial fluctuations even if it represents a global spin
rotation. For this reason we redefine the coordinates to be θr =
Sr × mr + crSr, where cr is determined by minimization of∑

〈r,r′〉(θr − θr′ )2. This scheme ensures that in the case mr =
θ0 × Sr we recover θr = θ0 for all r. In Figs. 2(a) and 2(b)
we present results for the connected correlator 〈θr · θr′〉 in the
lowest nontrivial Hessian and dynamical modes, respectively.
In both instances we find the scaling collapse 〈θr · θr′〉 =
〈θ2

r 〉 f (|r − r′|/L) for data from system sizes 3 � L � 7. This
demonstrates that these modes predominantly involve twists
of the minimum-energy spin configuration on the scale of the
system size.

Finally, we present evidence in Fig. 2(c) that the dynamics
of θr,� for low-lying modes is, as argued in justification of
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FIG. 2. Characterization of low-lying Hessian and dynamical
eigenvectors. (a) Scaling collapse of angular correlator for lowest
nontrivial Hessian eigenvectors, with 3 � L � 7 and �/J = 2−6.
(b) Equivalent for dynamical eigenvectors. (c) Smooth magnetization
density in dynamical modes vs. ω/� at L = 3 for 2−10 � �/J �
2−6. Inset: correlator of magnetizations of neighboring tetrahedra
in Hessian eigenvectors. See main text for discussion. Fluctuations
evident in (a) and (b) for smaller L are predominantly a finite-size
effect, rather than because of sample-to-sample fluctuations.

(15), driven by the smooth part of mr,J , which we denote
by mJ+ . Our expectation that ω ∝ |mJ+| is vindicated by
excellent scaling collapse of (J/�)〈m2

J+〉1/2 vs. ω/� for a
range of ω/� and �/J . In this computation mJ+ is isolated by
projecting mr,J for a normalized dynamical eigenvector onto
the subspace spanned by the Hessian eigenvectors associated
with the highest quarter of λ. A simple indication that this
subspace includes the smooth part of mr,J is given in the inset
to Fig. 2(c), which shows the correlator 〈mα · mα′ 〉 of mag-
netizations mα ≡ ∑

r∈α mr of neighboring tetrahedra α and
α′ in Hessian eigenvectors. The correlator is positive in the
subspace used to construct mJ+ , as required if mr is smooth.

In conclusion, the data shown in Figs. 1 and 2 pro-
vide extensive support for the theoretical results in Secs. III
and IV, and for the physical arguments used to derive them.
Most importantly, the data and physical arguments together
establish the description of Goldstone modes in these systems
as excitations of the emergent gauge fields.

VI. DISCUSSION

An experimental signature of these modes is their large
magnetic contribution to the heat capacity, scaling as (T/�)α

at T � TF with α = 3. Several examples of pyrochlore an-
tiferromagnets show spin freezing at a temperature much
lower than the main interaction scale, which is attributed to
weak exchange disorder induced by random strains. Power-
law magnetic heat capacity (but with α ≈ 2) is reported
for: NaCaNi2F7 (in which there is intrinsic disorder in the
locations of nonmagnetic cations) [26]; Y2Mo2O7 [24] (in
which local lattice distortions have been detected [28]); and
Lu2Mo2O2 [25]. It is also found in SrCr8Ga4O19 [23]; since
this is a quasi-two-dimensional material, the value α = 2
is expected here. We note that, since D(ω) [Fig. 1(d)] is
convex, there is an obvious reason for measured values of α

to decrease as T increases towards TF .
Inelastic neutron scattering would potentially provide more

detailed information, although the small energy scales in-
volved (smaller than TF ) present a challenge. Specifically,
we expect that the energy dependence of scattering from
emergent gauge degrees of freedom should evolve with tem-
perature, from a Lorentzian above TF to a triple-peaked form
(elastic as well as gain and loss inelastic peaks) below TF .
The wave-vector dependence should be the same in all cases,
with pinch points and a suppression of scattering for small
momentum transfer.

The ideas we have developed are relevant to Heisenberg
antiferromagnets that have emergent gauge fields as semi-
classical, low-energy degrees of freedom. The gauge fields
appear as zero-energy modes in a leading-order description
of a system, such as the classical nearest-neighbor pyrochlore
model we have considered. A Heisenberg spin-glass state
arises at low temperature if the dominant correction to this
leading-order description is from exchange randomness. Ad-
ditional corrections, such as further neighbor interactions,
do not impact our results provided they are subdominant;
if they are dominant, a different (ordered) low-temperature
state is expected. Other frustrated magnets may require dif-
ferent treatments of weak disorder, an example being the
jammed spin-liquid systems studied recently [29,30]. Equally,
in some contexts the dependence c ∼ √

ρ/χ0 may hold with
distinct energy scales χ−1

0 and a−2ρ, as suggested [31] for
NiGa2S4 [32].

In summary, we have developed a theory of the Goldstone
modes in a frustrated Heisenberg magnet with weak exchange
randomness, illustrating how the standard hydrodynamic the-
ory must be modified to understand their propagation. We
find gapless excitations with energies depending only on the
magnitude of the exchange randomness.
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