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We investigate the impact of electron-lattice coupling on the stability of various magnetic orders in rare-earth
nickelates. We use the Hartree-Fock approximation, at zero temperature, to study an effective two-band model
with correlations characterized by a Hubbard U and a Hund’s J. This is coupled to breathing-mode distortions of
the octahedral oxygen cages, described semiclassically with a Holstein term. We analyze the effect of the various
parameters on the resulting phase diagram, in particular, on the degree of charge disproportionation and on the
magnetic order. We confirm that the coupling to the lattice cooperates with Hund’s coupling and thus encourages
charge disproportionation. We also find that it favors the four-site periodic magnetic order of type f} 0 { 0. Other
convergent magnetic phases, such as the collinear 11 | and noncollinear 1— | < states, do not couple to the
lattice because of their lack of charge disproportionation. Novel phases, e.g., with charge disproportionation but
no magnetic order, are found to be stabilized in specific conditions.
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I. INTRODUCTION

The rare-earth nickelates RNiOs, R being any rare-earth
element from La to Lu, have generated considerable interest
because of their complex phase diagram, where both a metal-
insulator transition (MIT) and a magnetic ordering transition
can be tuned via pressure, strain, and/or variations in the
size of the R ion (except for R = La, which is a metal at
all temperatures) [1,2]. Understanding the features of this
phase diagram is of significant interest for the advancement
of our basic knowledge of strongly correlated systems, but
also because of their potential for applications, especially in
heterostructures [3] and memory storage [4—6].

The perovskite RNiO3 consists of Ni ions arranged on a
simple cubic lattice with lattice constant a and connected
through the ligand O such that each Ni ion is inside an oc-
tahedral cage of oxygen atoms [7]. Standard valence counting
suggests the starting configuration to be Ni:3d”. Crystal fields
split the 3d levels into well-separated e, and ?,, manifolds,
suggesting a doubly degenerate t26ge é configuration that should
be unstable to Jahn-Teller distortions [8]. Such distortions are
not observed experimentally [9], so the e, degeneracy must be
resolved in some other way. Many scenarios have been pro-
posed, including, most notably, (i) charge disproportionation
(CD), originally proposed as an alternative to the Jahn-Teller
distortion [1,10,11], and (ii) a negative charge-transfer (NCT)
energy [12-17].

The CD scenario posits that below the MIT there are
two inequivalent Ni sites with different charge, 3d73d” —
3d=%3d"*; this is then thought to drive the experimentally
observed distortion [18] of the O octahedra into small/large
ones around the two inequivalent Ni sites. As typical for
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strongly correlated insulators, magnetic order also develops
at or below the MIT phase line.

In contrast, the NCT scenario has all the Ni in the 3d3 S =
1) configuration, with each releasing a ligand hole into the O
band. The resulting 1/6 filled (with holes) O band is metallic
at high temperatures. In this view, the MIT is primarily due
to electron-phonon coupling, which distorts the O octahedra
into small and large ones (pp and pd hopping are enhanced on
the shorter bonds), resulting in pairs of ligand holes localized
on the small octahedra and locked into a singlet with their
central Ni. The spins of the Ni ions located in the large cages,
on the other hand, order magnetically at or below the MIT
temperature.

The electron-phonon coupling is obviously important for
the MIT transition in both scenarios (even if in rather different
ways), but its impact on the magnetic order is not well un-
derstood. Neutron-scattering experiments on powders [19,20]
indicate a magnetic ordering wave vector Q,,, = 2”—0(1, 1,1)in
pseudocubic notation [equivalently, ;’—a(l, 0, 1) in orthorhom-
bic notation], which is half of the value associated with
the lattice distortion ordering (and charge modulation, in
the CD scenario) of Q. = %(1, 1, 1). The orientations and
magnitudes of the local magnetic moments in the four-site
(counting Ni only) magnetic unit cell are still under debate.
Three leading contenders are the fully disproportionated an-
tiferromagnetic state f§ 0 | O [21] and two partially dispro-
portionated orders: the collinear order 11| [22] and the
noncollinear order ft— |} < [9,23]. (Throughout this work we
use fat arrows to indicate larger spin magnitudes.)

While the preferred magnetic order is likely to be primarily
decided by the electron-electron interactions, as is generally
the case in strongly correlated systems, it is possible that
the strong coupling to the lattice also plays an important
role by favoring or hindering some of these possible can-
didates. We study this possibility here using an effective
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two-orbital Hamiltonian that, within the appropriate frame-
work (discussed below), can be used to model both the CD and
the NCT scenarios. Our work builds on that of Lee et al. [22],
who studied magnetic orders possible in similar multiorbital
models. The main novelty is that our model also includes
coupling to the lattice at the semiclassical level.

We verify that the electron-lattice coupling favors insulat-
ing charge order, consistent with earlier work. While a number
of four-site magnetic orders, including + 0 § 0, 11| ], and
+— | <, are self-consistent within our model, we find that
7 0 § O is the only one that has nonzero charge modulation
6 # 0: as such it is strongly favored by the electron-lattice
coupling. The other magnetic orders 11| | and 1— | < are
only self-consistent when § = 0 and as a result do not couple
to the lattice in our model. As the strength of the electron-
lattice coupling increases, we also find a novel stable phase
where charge modulation occurs without any magnetic order.

The paper is organized as follows: In Sec. II, we de-
scribe our effective model Hamiltonian. Section III reviews
the Hartree-Fock calculation used to study it, as well as its
numerical implementation. In Sec. IV we present and discuss
our results. Finally, Sec. V contains our conclusions.

II. THE MODEL

We consider a simple cubic lattice, with lattice constant

a = 1. At each site i, two e, “effective” orbitals |z) = 1322 —
r?) and |7) = |x? — y?) are active, and dl‘w, dfm are the elec-

tronic creation operators associated with them. The physical
connection to the actual material of these and the other “effec-
tive” degrees of freedom that we introduce below is discussed
after the Hamiltonian is fully defined. The Hamiltonian we
study is defined as

I—? = T + Hefe + Hyy +I_?eflat- (1)

The kinetic energy T = T} + T + T} includes up to fourth-
nearest-neighbor hopping. The hopping term 7} includes hop-
ping between nearest-neighbor |z) orbitals along the z axis and
between |x) = |3x?> — r?) and |y) = |3y*> — r?) orbitals along
the x and y axes, respectively. There is no nearest-neighbor
hopping in the z direction between |z) orbitals, etc., because
these orbitals are orthogonal to their corresponding ligand O.
As a result,

Ti=-tn)_ > ,diiy.+ He). 2

ioc n=x,y.2

This can be easily expressed in terms of the d;.
using the identities

2o dlza operators

d = ——d + >4l |

xXo 2 1zZo + 2 1zZo

T ¥ ﬁ il
dtya - _Educf - TdiZa' (3)

Similarly, we define second-nearest-neighbor and fourth-
nearest-neighbor hopping terms T2 and T4, respectively, keep-
ing all such terms that have finite hopping amplitudes. Col-
lecting all terms and after a Fourier transform to the k-space

basis, defined as

ikR; T
&y = fZe (4)

where a = z,Z, N — 00 is the number of sites in the system
with periodic boundary conditions, and k is defined inside
the full Brillouin zone —7 < k, < 7, n = x, y, z, the hopping
Hamiltonian is brought to the standard form

T =Y ta(K)ly, dito (5)
kabo

The coefficients #,,(k) are listed in the Appendix.
The on-site electron-electron interactions are described by
the Kanamori Hamiltonian [24-26]:

H_,=U Zﬁmﬁm +U’ Zﬁimﬁii&
+ (U -J) Z iz fizg —J Z d,mdtzodl‘;(, izo

+JZ iat WTdiaLdil_N’ (6)

with the spherlcally symmetric choice U' =U —2J [27].
Here, 7., = dmdm counts the electrons with spin o in the
a = z,Z orbital at site i, and #4; = ), fli,s. We use this full
form of H,_, as opposed to the simpler one used in Lee
et al. [22] because it leads only to minor complications in
the mean-field treatment and has a formal derivation based on
allowed Coulomb intraionic interactions [23-25]. This change
explains the quantitative differences between our results—in
the absence of coupling to the lattice—and those of Lee et al.

Next, H;, describes, at the semiclassical level, the
breathing-mode distortion resulting in contracted and ex-
panded octahedra:

k , A 4
Hiy = Z (2(8u> + 76U )

where 8U; is the (isotropic) change in the Ni-O bond length
of the octahedral cage surrounding site i, and we include
quartic anharmonicity to ensure reasonable values for these
distortions.

The octahedral distortions affect the on-site electron ener-
gies and hence the electron-lattice interaction term:

Heta = —g ) 8Ui(A — 1),

It is convenient to use dimensionless variables u; =
in terms of which we rewrite

Hi + Heoto = ZGbZ (—u + —u ) —ZGqu (n;— 1),

(N

where €, = g?/2k is the energy gain from of the breathing-
mode distortion for u; =1, =0, and o A is the di-
mensionless parameter characterizing the anharmonicity. To
summarize, there are seven parameters characterizing this
Hamiltonian: the three hoppings 71, ,, t4, the on-site Coulomb
repulsion U and Hund’s exchange J, the electron-lattice

(8U)k /8,
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coupling strength ¢;,, and the dimensionless anharmonicity
parameter o.

Before concluding this section, we comment on how this
Hamiltonian describes the two scenarios discussed above.
Within the CD scenario, only the Ni e, orbitals are relevant as
valence orbitals, so they should be directly identified with the
e, orbitals of this model. In this view, the O are electronically
inert and serve only to modulate the on-site energy at the Ni
sites when the cages are distorted. Even though the octahedra
are known to tilt and rotate, the Ni-O distances stay equal
inside each cage, so it is reasonable to use a single distortion
u; to characterize each octahedron. Note that while our model
does not explicitly impose constraints between distortions on
neighboring cages, the mean-field solution will turn out to
satisfy them, as discussed below.

The relevance to the NCT scenario is less obvious. Here, a
full description of the electronic degrees of freedom include
not only the Ni e, orbitals but also the ligand O 2p ones, as
discussed in Ref. [17]. Of course, in principle one could do a
mean-field treatment on the Hamiltonian used there to discuss
the MIT in order to find what magnetic order it favors and
how (or if) it is affected by the fact that the O displacements
modulate the hopping amplitudes. The difficulty is that the
magnetic unit cell contains 4 Ni together with their 12 O, i.e.,
20 distinct orbitals. Needless to say, when combined with the
multitude of possible mean-field parameters in such a large
basis, the problem becomes rather unwieldy.

On the other hand, when considering a single Ni plus its
O octahedron, one finds that the relevant eigenstates on the
O sites are linear combinations with the same e, symmetries
as the atomic Ni orbitals. This is because in order for an
electron from the O band to move in the e, Ni manifold (and
thus leave behind a ligand hole), it has to come from an O
state that will hybridize (via #,; hopping) with the Ni orbital,
and that occurs only if they have the same point symmetry.
This is what allows us to identify the two e, “effective”
orbitals as being these O-based linear combinations with
the correct e, symmetry, surrounding various Ni sites and
into which the ligand hole can go [28]. The complication
here is that such orbitals centered about nearest-neighbor Ni
ions are not orthogonal, so the true “effective” orbitals must
correct for that and are therefore somewhat more extended
and more complicated than simple linear combinations of O
orbitals on each octahedral cage. As a result, all hoppings and
electronic parameters are strongly renormalized from their
atomic values. We do not attempt to estimate their realistic
values; instead, we will treat them as free parameters. This
allows us to investigate what kind of magnetic orders arise in
different regions of this large parameter space and thus cover
simultaneously both the CD and the NCT scenarios (their
parameters are likely to be quite different).

In a broader view, the CD and NCT scenarios are limiting
cases in a continuum of possibilities. The #,; hopping always
leads to some hybridization between the Ni e, states and O-
based states of the same symmetry. If the O bands are well be-
low the Ni levels (for a large, positive charge-transfer energy
compared to |¢,4]), then these hybridized states are predomi-
nantly located on the Ni; this is the CD scenario. On the other
hand, if the charge-transfer energy is very negative, then the
hybridized states will live primarily on the O; this corresponds

to the NCT scenario. The reality is likely to be somewhere in
between, where the probability to be on the Ni is neither 1
nor 0. Our effective model describes this entire continuum of
possibilities for appropriate choices of the parameters.

III. HARTREE-FOCK CALCULATION

We study the Hamiltonian of Eq. (1) within the Hartree-
Fock approximation. As usual, this implies finding the global
minimum of the average energy

E({u}) = (W |H{u})|¥,), ®)

where the Slater determinant |W,) describes the electronic
part, and the set {u#} = (uy, up, ... ) characterizes the semiclas-
sical distortions of the lattice.

A. Lattice contributions

First, we minimize the energy with respect to the lattice
distortions u;. This can be done easily using the Hellmann-
Feynman theorem [29,30]:

d OH ({u})
TE({M}) = (%ITI%). ©))
Uj Uj
Note that Eq. (9) holds despite the fact that |\¥,) is not an
eigenstate of ﬁ({u}) (as assumed in the usual proof [31]).
This is because a stronger proof is available, one that shows
the theorem to hold for any sufficiently optimized variational
state, not just for exact eigenstates [32] (in our case, we
also confirmed this numerically). An optimal variational state
|W,) satisfies the stationarity condition: M‘fiu) =0 (this is a
shorthand notation replacing all the derivatives with respect
to all the one-particle orbitals defining |\W,)). This condi-
tion justifies why the second term vanishes in the identity
diqu({u}) = alf;i‘;” + ;i{(”:) 3‘5;5”), which then leads to Eq. (9).
Thus, for our Hamiltonian we obtain the minimization
condition at each site j

uj + o) = () — 1, (10)
where from now on we use the shorthand notation (O) =
(W, |0|W,) for any electronic operator.

To make further progress, we use the experimentally well-
established fact [18] that the octahedra alternate between
expanded and collapsed ones, so that u; = ue'®Ri, where
Q. =7x(1, 1, 1) (here and throughout the rest of the text the
lattice constant has been set to 1). This immediately implies
the appearance of a charge modulation (7;) = 1 + 8e'QRi,
where the amplitude of the lattice distortion u is directly
linked to the amplitude of the charge modulation § by

u+ou® =6 (11)
This equation shows that in our model, the existence of a
charge modulation § # 0 forces the appearance of a lattice
distortion u # 0, and vice versa. This depressed [33] cubic
equation admits the exact solution using Cardano’s formula
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(see Appendix B for details):

with g = ZLas?.

It is useful to consider this expression in some limiting
cases: in the case of vanishing anharmonicity, « — 0, already
from Eq. (11) we see that u = . For a fixed value of 4§,
increased anharmonicity o will lead to a decrease of u. In-
deed, in the case of infinite anharmonicity, 8 — oo and we
find

3

B3

23] = 0. (13)

Uu~S§

The exact solution listed in Eq. (12) is very convenient
because it allows us to substitute for any u dependence in
the Hartree-Fock equations (discussed next) and have them
depend only on the electronic mean fields.

J

B. Electronic contributions

We follow the usual steps, briefly summarized here for
completeness, to derive the Hartree-Fock (HF) equations. Any
Slater determinant has the general form

(W) = [ [ apl0).
V4

where the appropriate number of electrons (here equal to the
number of sites) is created. The new and the old states are
related by a unitary transformation

di = Z ¢ (iao)aj.

The goal is to determine the optimal ¢, (iao ) which minimize
the total energy E({u}) = (H({u})). The evaluation of this
expectation value, and its minimization with respect to all
properly normalized ¢,(iac) proceeds in the usual way. As
always, the resulting HF equations depend on various mean-
field expectation values (d; _di,) (because all interactions
are local, terms with i # j do not appear).

We constrain these mean fields to have the most general
forms consistent with the four-site unit cell found experimen-

tally in the magnetically ordered state. Specifically, we set

+ 1 QRq, O iQ.R; -
(diyydiac) = 4_1[1 + 8] + E[SFM + Sapme™ ™ + 812,¢08(Qp - Ry) + 82, 5in(Q,, - Ry)], (14)
. 1
(di’ao‘dia6'> = E[Slx COS(Qm . Rt) + S2x Sin(Qm . Ri)]’ (15)
(] dias) = 01 + 026 ¥R + 0[Z) + 226" % R 4 Z5 c0s(Q,, - R;) + Zy sin(Q,, - R, (16)
(dfydias) = X1 c05(Qyy - R)) + X2 5in(Qy - Ry). an

Equation (14) is consistent with the condition that (7;) =
Za’ﬂ(d;adiag) =1+ 8¢'%Ri The other terms in Eq. (14) al-
low for various possible magnetic orders with a nonvanishing

z-axis spin expectation value:

A 1 .
<Si~z> 25 Z O'<d;gdim7> = Spm + SAFMEIQ"'R"

a,o

+812c08(Qu - Ri) + 82, 5In(Qur - Ry). (18)

If only Spm # O, the order is ferromagnetic (FM), or M 11
(for simplicity, we show the order inside only one four-
site unit cell); if only Sapm # 0, the order is antiferro-
magnetic (AFM) 1] 1J; finally, having S;, #0 or S, #
O further breaks translational symmetry, resulting in states
with order like 1040 and 010, respectively. Combinations
of two or more finite expectation values lead to yet more
possibilities, for example, having both Sgy #£ 0, Sapm # 0
implies a ferrimagnetic order f}|f}} or 111, depending
on the relative magnitude of the parameters, etc. Note that
this choice of mean-field parametrization assumes a priori
equal orbital occupancy (n;;) = (n;z), ruling out the possibility
of Jahn-Teller distortions. This is justified by the lack of
experimental observation of Jahn-Teller distortions in these
materials.

(

Equation (15) allows for noncollinear magnetic orders
because a finite Six and/or S, imply nonvanishing (S‘l-,x).
In particular, a solution with finite Sj, = S»x and all other
values set to zero is the order 1— | <, which is one
of the possible candidates. To conclude, Egs. (14) and
(15) allow the realization of any magnetic order with
a four-site unit cell consistent with the ordering vector
Qn =Q./2.

Similarly, Eqgs. (16) and (17) allow for various orbital
and magnetic 4 orbital orders, respectively. To the best of
our knowledge, there is no experimental signature of any
orbital ordering in the rare-earth nickelates [9], and numerical
calculations suggest that orbital order states are expected
to be relatively high energy [34]. Previous work found or-
bitally ordered ground states for U'/W ~ (U —2J)/6 > 2
[35]. Here, W ~ 6 is the bandwidth of the noninteracting
system for t; = 1 and #,, 4 < 0.3. For a realistic J/t; ~ 1-2,
this implies U/t; > 14-16, which is enough to stabilize a
conventional spin and orbital ordered Mott phase with no
charge disproportionation. Our model is consistent with this,
in the sense that the lowest energy self-consistent states for
experimentally reasonable values of the charge modulation &
always have vanishing O, X, Z values. However, we have also
found regions of parameter space where orbital ordered states
appear to have the lowest energy, as discussed below. For
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convenience, in the following we will still set (dmd,,m N =
0 so as to keep the equations shorter, with the full form
available in the Appendix. We emphasize that in the regions
of parameter space relevant to us, i.e., the neighborhood of
the region where § ~ 0.3-0.4, we have tested explicitly that
the ground states do not exhibit orbital order (in agreement
with experimental observations) by running self-consistency

loops where these mean fields O, X, Z had finite initial values.

J

The resulting self-consistent solutions either converged to
vanishing values for these orbital mean fields or had much
higher total energy than self-consistent states without orbital
order, in accord with earlier findings [34].

The corresponding HF equations are identical to those
arising from a noninteracting Hamiltonian H.g (which can be
thought of as being the properly factorized counterpart of the
original H):

3U -5] o
Hegp = Z tar(K)Cy o Ccbo + Z [T - E(U + J)SFM:|C|T(MCkaa

kabo kao

kao

3U —-5J o .
+) [Ta —2epu— 2 (U + ])SAFMi|C:(+Q“WCkM

o .
- Z(U + J) Z [(Slz - iS2Z)C1;+Q”“Lkaaz7 + (Slz + iSZZ)Clt_Qm’aacka(r]

kao
Uu+J
——— ) [ —

4

kao

This Hamiltonian has four more similar lines of terms involv-
ing various O, Z, X mean fields which we do not write here
explicitly, as discussed above. We remind the reader that the
lattice parameter u appearing in the second line is given by

Eq. (12).

After  Fourier transforming, Her =) ) Eh(k)wks
where I/fk (I//sz’ wkz?’ l/szw ‘/’ku) and Yy, =
(Cka(,, ClLrQ ar? CLQ w ckf w)- The 16 x 16 matrix

h(k) can be directly read from Eq. (19) and is trivial to
diagonalize numerically.

The self-consistent HF ground state is then straightforward
to find, at least in principle. We start with an initial guess for
the mean-field parameters w(® = (§©, ng\}l, sg’gM, ...). These
can be chosen either so as to test if a certain state, e.g.
+— | <, is self-consistent or by choosing random values for
all these fields. We have always checked all the “simple”
magnetic orders to see if they are self-consistent and if yes,
what is their corresponding energy. However, in all cases we
have also run a multitude of searches starting with random
initial conditions to make sure we are not missing a better
candidate.

Once the mean-field parameters are chosen, the Hamilto-
nian (19) is diagonalized at all allowed k points in the Bril-
louin zone, and its ground state at quarter filling is identified.
Using it, we compute the new mean-field parameters v\© =
(8, S;?\)A, SO, - .) based on Egs. (14)=(17). For example,

li\,zkm (clt +¢C,mckw), etc. We

8(0) =N Ztao QR ‘<n1‘1‘7> =
2 .
then compute the residual €© = |v(® — w®|” If this is below

the desired accuracy, then convergence has been reached.
If not, we set new values for the mean-field parameters:
w) = v (a simplification, in reality we use a better choice,
discussed below), and iterate until either the desired accuracy
is reached or the maximum iteration count is surpassed and
this search is abandoned.

Once self-consistency is reached, i.e., w & v, the total
energy associated with the set w of mean-field parameters is

i$2)C0 4, a0 Ckas + Six + i52)€4 ), 4 Chas ]- (19)

(
given by

NNZ”_

Here E, are the eigenenergies of the occupied states, and

2 l/lz au4 20
—e) + E[,(E + T) (20)

n 3U —-5J Uu+J
H_,)="—""(1+8)—- —=
(He—e) 2 (1+467) 5
S? + 82 +82 + 82
X<S]23M+S‘/2\FM+ 1X+ 12_;_ 2X+ 22) (21)

(again, terms proportional to the O, Z, X fields are omitted
here and are instead given in the Appendix).

After multiple searches for various initial conditions, the
set w &~ v, corresponding to the lowest total energy E, is
declared as the HF ground state, and its magnetic (and
charge, orbital, lattice...) order is read off from its mean-field
parameters.

While all this seems straightforward, in reality the problem
is complicated by the large number of mean-field parameters
whose convergence is sought: 15 when the O, Z, X fields are
included explicitly, and 7 otherwise. Searching for a local
minimum in this many-dimensional space is nontrivial, and
for too simplistic update rules such as w"+D = v®_ it can
take extremely many iteration steps before self-consistency is
reached, if it is reached at all.

Because of this, we briefly mention here a few strategies
that we found very useful:

(a) A much better update is an interpolation of the type

wi D = v + (1 — a)w™. (22)

The literature on nonlinear iterative equation solution tech-
niques suggests that the choice of the mixing parameter « is
typically problem specific [36]. We find the smoothest and
most reliable convergence over most of the parameter space
of interest occurs for & = 0.3. This type of update can avoid
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the iteration of being stuck in a loop or helplessly hopping on
either side of a “flat minimum.”

(b) However, we found that this approach works best in
conjunction with Pulay mixing, or direct inversion in the
iterative subspace (DIIS). The idea behind DIIS, originally
developed for high-parameter Hartree-Fock quantum chem-
istry calculations by Pulay [37], is as follows: Suppose that
a sequence of solutions v+, y+2) v+ to the non-
linear system has been generated from some initial solu-
tion step n. Together, they span a linear subspace Wy, =
span{v"*D v+ y+N} within the higher-dimensional
(possibly nonlinear) parameter manifold W. It is then possible
to pick the “best possible” vector w¥) within this linear
subspace by minimizing the error € = || Y_F v — w®|]?,
which amounts to solving an N + 1 x N + 1 system of linear
equations (hence the “inversion of the iterative subspace”—
for more details, see Ref. [37]).

The DIIS can quickly maximize the potential of the vectors
within the subspace Wy ,, but if the true solution is outside
the subspace by more than the allowed residual €j, then no
matter how many times the Pulay mixing is carried out, it will
not result in improved convergence. The solution [36] is to
intersperse Pulay mixing with regular updates of the form (22)
with a given periodicity k (typically k = 3). The algorithm
thus alternates between expanding its iterative subspace and
finding the lowest residual vector within it, resulting in opti-
mal convergence for most parameter values. Our experience
is that it can even arrest divergences from round-off error
accumulation. Often even small errors (say, in mean fields
that should be zero for a particular type of converged state)
can lead to rapid divergence of the HF iterative trajectory
away from a self-consistent point. Yet DIIS appears to nullify
that tendency, restoring the mean-field magnitudes back to
zero and guiding the trajectory towards the self-consistent
point.

(c) Parallelization: While the iterative loop is not easy
to parallelize efficiently, there are higher-level parallelization
opportunities: (i) multiple initial guesses can be iterated in
parallel for a given set of parameter values U, J, €p, ¢, ...,
and (i) ground states can be found at multiple parameter
values, in parallel. We opted for option (ii) due to ease of
implementation and data management, together with linear
speed-up of the calculation (because ground states corre-
sponding to different parameter values are independent from
each other, there is no overhead to the parallelization).

(d) Boot-strapping: While calculations at neighboring
points in the parameter space are independent from each
other, we expect small changes in the values of the various
parameters U, J, €, t;, ... to normally lead to small changes
in the nature of the ground state w. As such, an already
converged solution from a neighboring point can result in fast
convergence to a similar kind of converged solution at the
current point. Where available, we included this option in the
set of initial mean-field guesses.

Finally, we found that there are two key parameters that
need to be tested for convergence: the cutoff iteration count
Nmax-iter and the number of points sampled in the Brillouin
Zone Rpymk-pts = IV 3. The sampling of the momentum space
slows down the calculation time ~O(N?), so choosing too
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FIG. 1. Charge modulation § (see color scale) in the HF ground
state in the U-J plane. Other parameters are t; = 1,7, = 0.15,14 =
0, €, = 0. Resolution is 40 x 40. The white diamonds indicate the
locations at which the densities of states are plotted in Fig. 2.

large an N is costly while too low a value introduced finite-
size effects. Similarly, the cutoff iteration count needs to be
large enough to allow convergence for the interesting solu-
tions but not so large as to waste computation time on “dead-
end” iterative trajectories that never converge. We found N =
25 and npax.ier = 500 to be optimal for our purposes, taming
the error in mean fields to below €, = 10~* and in ground-
state energies to less than 1073,

In total, to obtain a typical phase diagram, we carry out
anywhere from 400 to 1600 calculations (depending on the
desired resolution), each of which starts from a pool of 20—
30 initial guesses and proceeds through anywhere from 5
to 500 iterative steps (where each iterative step involves the
diagonalization of roughly 15000 16 x 16 sub-blocks of the
Hartree-Fock matrix, as well as the calculation of the density
matrix and the order parameters w).

IV. RESULTS

The results shown here focus on areas of the phase diagram
with essentially no orbital order. As mentioned, our searches
for converged self-consistent states with nontrivial orbital
order never produced a viable candidate for an HF ground
state in the region of the parameter space with finite charge
modulation § ~ 0.3-0.4. However, we did find that sometimes
orbitally ordered states were indeed the ground-state configu-
ration in other regions of the phase diagram, namely, towards
the large-U Mott limit. Most notably, the antiferromagnetic
ferro-orbital order, 1]1J +XxXx (marked “afm-ferroorb”
in the phase diagrams below), and other orbitally ordered
possibilities (marked miscellaneous, or “misc”). Given that
such orders are found outside the experimentally relevant
parameter regime, from now on we focus only on the HF pa-
rameters &, Sem, SArM, Sizx, S2zx and leave the investigation
of the regions with stable orbital order to future work. The
lattice distortion u is related to § through Eq. (12).

To get a basic idea of the dependence of the charge modula-
tion § on the electronic interaction strengths U and J, we start
by showing in Fig. 1 a contour plot of the charge modulation
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FIG. 2. Representative density of states for the various phases at U and J values marked with diamonds in Fig. 1: (a) nonmagnetic metallic
phase, U = 1.077,J = 0.538; (b) itinerant magnetic phase of type 11| J, U = 3.231,J = 0.385; (c) charge disproportionated, insulating
phase (8 # 0), of magnetic type f} 0 | 0, with a clear gap at the Fermi level, U = 2.0, J = 1.538; (d) antiferromagnetic ferro-orbital (“afm-
ferroorb”) Mott insulating phase, U = 5.846, J = 0.231. Other parameters as in Fig. 1. Notice the van Hove singularity at the lower band edge
in all the diagrams; its presence is due to the nonzero #, parameter, which introduces a strong asymmetry to the DOS.

in the U-J plane for#; = 1,1, = 0.15,# = 0, €, = 0. We set
t; = 1 throughout this paper, so all energy scales are reported
in units of #;. Our results are in qualitative agreement with ear-
lier findings at similar parameter values [22]. Unsurprisingly,
for small values of U and J, we find § = 0 and the system is
metallic and nonmagnetic, with no gaps in its band structure,
as can be seen from the typical density of states (DOS) shown
in Fig. 2(a). Note that the vertical scale in the DOS plots
is normed to the total volume of the crystal, i.e., 1/N>. For
large J and small-to-intermediate U, because of Hund’s rule
the electrons find it preferable to occupy both orbitals at
the same site, leading to ever-increasing charge modulation
between neighboring sites and strong insulating behavior (and
magnetic order of type f} 0 | 0), as can be seen from the DOS
in Fig. 2(c) (this corresponds to the picture discussed in Ref.
[10]). In the other extreme, for large Hubbard U and small J,
no charge modulation arises because of the prohibitive cost of
double occupancy. As a result, the system remains itinerant
[see the DOS in Fig. 2(b)] up to fairly large values of U while
acquiring magnetic character 11 |, where it switches to a
spin-and-orbitally ordered Mott insulator [as can be seen from
the large gap in the DOS in Fig. 2(d)]. An interesting feature
in all the DOS in Fig. 2 is the van Hove singularity at the lower
band edge; this is a direct consequence of the second-nearest-
neighbor hopping term #, # 0 and will be discussed in detail
towards the end of this section.

Of course, the interesting question is how charge modu-
lation is modified by the coupling to the lattice. To probe

this, we fix various ratios of J/U = 0.2,0.3,0.4, 0.5 (they
can be thought of as line slices of the phase diagram in
Fig. | emanating from the origin) and tune the lattice coupling
constant €, while keeping fixed the values of the other pa-
rameters t; = 1,5, = 0.15,¢4 = 0.25,« = 1. (We added the
fourth-nearest-neighbor hopping to watch the lattice interact
with all the ingredients of the model—explicit results on its
influence on the phase diagram will be discussed below.)
These results are shown in Fig. 3, while in Fig. 4 we indicate
whether the HF ground state is metallic (blue) or insulating
(yellow).

Clearly, for small values of U the system is metallic
and homogeneous, with § = u = 0. Even in the absence of
coupling to the lattice, i.e., when €, = 0, with increasing J
there is a transition to a state with a finite charge modulation
8, which eventually becomes insulating if J is large enough.
This MIT occurs faster for larger J/U ratios, as the tendency
for two-orbital occupancy encouraged by J grows faster than
the drive toward single-site occupancy coming from increased
U. If the coupling to the lattice is turned on, we find that §
increases with €, everywhere, and the system is more likely to
become insulating; thus there is positive cooperation between
J and the lattice coupling €.

These results confirm the existence of the MIT, where
the insulating state has a charge modulation § % 0 and a
lattice distortion u # 0. Coupling to the lattice increases the
likelihood of this insulating ground state with finite u, as
expected.
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FIG. 3. Charge modulation § (see color scale) in the HF ground
state, as a function of U and ¢, for J/U = 0.2, 0.3 [(a) and (b), re-
spectively] and 0.4, 0.5 [(c) and (d), respectively]. Other parameters
aret; = 1,4, = 0.15, 1, = 0.25, o = 1. Resolution is 20 x 20.

We now discuss the magnetic order found in the HF ground
state, and how it is influenced by the coupling to the lattice.
Once again, it is useful to start with the U-J plane picture. In
Fig. 5 we show the magnetic order found in the HF ground
state for various values of U and J both in the absence and in
the presence of coupling to the lattice (¢, = 0 and ¢, = 0.8,
respectively). The other parameters are kept fixed. The red
contours indicate the corresponding value of §. If we fix &
at experimentally relevant values 6 &~ 0.3-0.4, we see that

15
1

2
Uity Uity

FIG. 4. The HF ground state is metallic (deep blue) or insulat-
ing (yellow). The results are shown in the U-¢, space for J/U =
0.2, 0.3, 0.4, and 0.5, respectively (panels arranged as in Fig. 3). All
other parameters are as in Fig. 3. Resolution is 20 x 20.
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FIG. 5. (a) U-J phase diagram of magnetic order, in the absence
of coupling to the lattice (¢, = 0). (b) Same when coupling to the
lattice is turned on (€, = 0.8). Other parameters are t; = 1,7, =
0.15, 1, = 0, o = 1 for both. The red-line contours indicate the value
of §. Resolution is 40 x 40. The black diamonds mark the locations
at which the densities of states are plotted in Fig. 2.

as a function of increasing U (and J adjusting accordingly)
the system evolves through a variety of states. While charge
modulation of the experimentally appropriate magnitude ap-
pears to originate just past the boundary of the metallic and
insulating regimes at low U and intermediate J, as we follow
the contour line it quickly enters the bulk of the 1} 0 | O
magnetic phase already at U = 1 before again falling on a
phase line (this time between the ferromagnetic and aligned-
ferrimagnetic phases) around U =~ 4 for what seems like the
rest of the contour. The fact that the state 1} 0 { O is favored
by larger J and lies, for the most part, above these § values
speaks in its favor as the preferred magnetic ground state. In
addition, for a decently sized range of U and J values (U from
1 to 3 and J from 1 to 1.5—a range potentially consistent with
experimental values for these parameters) the contour remains
squarely in the ) O |} O phase, thus suggesting that this might
be the most energetically favorable four-site spin alignment.
Our phase diagram agrees qualitatively with that of Ref.
[22], although there are sizable quantitative differences, which
we attribute to the different form of the on-site electronic
Hamiltonian used.

We note that in between the magnetic phases there are
often small regions where the energies of several different
magnetic orders are indistinguishable within our computa-
tional accuracy; such regions are designated “degenerate.” We
emphasize that these regions do not correspond to partially
disproportionated states of type {1 J (in fact, such states
are never convergent within our model, see below). Instead,
the states from neighboring phases (e.g., 1+ 0 § 0, 114, and
+— | < in the lower middle of the phase diagram) all have
the same energy per site to within AE ~ 1073,
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FIG. 6. Magnetic order in the HF ground state, as a function of U and €, for J/U = 0.2, 0.3 [(a) and (b), respectively] and 0.4, 0.5 [(c) and
(d), respectively]. Other parameters are t; = 1, t, = 0.15, #, = 0.25, @ = 1.

When the coupling to the lattice is turned on, it acts to
strongly reduce the energy of the charge-modulated states, as
one would expect. Not only does it lead to a significant shift
of the f} 0 | 0 magnetic order boundary, further increasing its
likelihood to be the magnetic ground state, but it also shifts
the charge modulation contours, leading to an enhancement
of the aligned ferrimagnetic phase for large U and J, as well
as the decoupling of the charge and magnetic order phase
lines below U =1, revealing a sizable metallic phase with
partial charge modulation. A similar phase was noted before
and interpreted as a bipolaron insulating phase in studies
of the two-dimensional (2D) single-orbital Hubbard-Holstein
model [38]. In that work, this phase arose only at quarter
filling and for intermediate-to-large electron-lattice coupling,
while at small coupling their ground state is that of free
electrons, consistent with our findings. An intermediate phase
also emerged in their study, where rocksaltlike charge order
coincided with a G-type antiferromagnetic phase. We cannot
find the analog of this 2D phase in our three-dimensional
model, because it cannot be generated by any choice of a
linearly coordinated unit cell that we are using.

Given this large-scale picture of the magnetic order, we
once again fix ratios J/U and consider, in more detail, the
impact of the lattice. The data, shown in Fig. 6, demonstrates
clearly that an increase in coupling to the lattice leads to
an expansion of the {} 0 |} 0 phase boundary—the stronger
the coupling to the lattice, the smaller the values of U and
J that are required to stabilize the fully charged modulated
magnetic order. An interesting feature of this data, already
noted above, emerges in the upper-left corner of the diagrams.
While typically the contours signaling the onset of charge
modulation strongly follow the magnetic ordering phase lines,
we see that with increased coupling to the lattice there is

a decoupling of the onset of charge and magnetic order. In
other words, we obtain a charge-modulated phase without any
magnetism. The lattice distortion acts to strongly gap out and
flatten the band structure; however, the Fermi level is still well
within the occupied band (a feature of the two-band Hubbard
model), so the system stays metallic and magnetic order does
not arise. Thus the coupling to the lattice acts to stabilize the
charge order in the absence of magnetism and localization.
This is strongly reminiscent of the decoupling of the MIT and
the magnetic order transition for the Sm to Y members of the
nickelate series, a well-known feature of the nickelates phase
diagram, and suggests that the strength of the lattice coupling
may be responsible for determining whether the charge order
and the magnetic transition are concurrent or not.

We emphasize that we usually find that many of the
possible four-site unit-cell magnetic orders turn out to be
self-consistent within HF at the same values of parameters and
that their HF energies can lie fairly close together. An example
is shown in Fig. 7, where the energy corresponding to various
self-consistent HF states is plotted vs €, at fixed values of the
other parameters. This is, in essence, a slice along the U ~ 4
line of the top left panel in Fig. 6.

At ¢, = 0, we find that the states 1— | <, 1111, 11,
and 1} 0 | O are all converged, with their HF energies per site
being within ~0.001¢; of each other. The 11| order has
the lowest energy and thus is identified as the HF ground
state. The close spacing between these energies suggests
that changing any of the parameters and/or adding new
ingredients—in particular, coupling to the lattice—may favor
another magnetic order as the ground state. Indeed, we see
that as €, increases, the energy of the 1} 0 | O state decreases
and it eventually becomes the new HF ground state. Note also
that the energies of the other magnetic states are independent
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FIG. 7. Total energies of several converged self-consistent HF
states as a function of €,. The different colors correspond to different

magnetic orders. The parameters are U =4.105,J =0.2U, t, =
1,6,=0.15, 1, =025, a = 1.

of €, (this pattern holds in the entire parameter space). There
is a straightforward explanation to this: any state without
charge modulation also has no lattice distortion, as § ~ u
through the lattice self-consistency equation [Eq. (12)]. The
real question is, Why are the states with partial charge mod-
ulation, e.g., 1}, not convergent within this mean-field
model? Such states could potentially compete with 1} 0 {} O
order for ground-state status, as the coupling to the lattice is
adjusted. We find that such states fail to converge no matter
the starting point, and in fact they are among the least stable,
as can be seen most clearly from cuts in the 15-dimensional
parameter space that show iterative trajectories of the Hartree-
Fock calculation (such diagrams are called ‘“Poincare sec-
tions” in the dynamical systems literature). In Fig. 8 we plot
the evolution of the difference §;, — S», versus the charge
disproportionation §. Note that the states 11 | (central point)
and 1} 0 | O (diagonal end points) are well defined in this
plane. Any solution not precisely on the S;, — S, = 0 line
converges to { 0 | O instead.

Next we discuss the role of the hopping amplitudes 7, and
t4. Given the spatial extent of the orbitals in the nickelates,
it is unrealistic to expect them to be larger than #;. Values
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FIG. 8. A phase portrait of the iterative sequences for various
starting configurations in the §, Sy, S>, parameter subspace. On the x
axis we show Sy, — S,,, and on the y axis we show §. The parameters
areU =5,J=3,t, =1,t, =0.15,t, = 0.55,¢, = 0.

bounded at t,, t4 < 0.3 renormalize the overall bandwidth in
the noninteracting regime by at most only 10%, which should
not be enough to shift phase boundaries in the U-J to any
appreciable degree. And yet even small adjustments to #, and
t4 can significantly alter the magnetic phase diagram, as can
be seen, for instance, in Fig. 9 for changing #, and in Fig. 10
for changing t4. We believe these changes to be a consequence
of the shape of the DOS, which can change dramatically even
for small perturbations of the hopping parameters [39]. The
way a new hopping path affects the DOS can be predicted
semianalytically and depends, in a hypercubic bipartite lattice,
on whether the new hopping connects A-A and B-B sublattice
sites, or the A-B sublattices [40].

In our case, t; and #4 hopping produces a symmetrical
(about band center) DOS, while #, leads to a strong asymmetry
and the appearance of a van Hove singularity at the lower band
edge. In the spirit of the Stoner criterion, an enhancement
of the density of states near the Fermi level—an effective
consequence of the introduction of a nonzero r,—lowers the
value of U required for ferromagnetism to arise, thus causing
the metallic region near the origin to shrink significantly
(Fig. 9). Meanwhile, introducing a nonzero #, in the presence
of t, counteracts this tendency by boosting the density of states
above the Fermi level, thus increasing the interaction strength
U required to exhibit magnetic order in the ground state (see
Fig. 10).

On the other hand, the effect of #, and #4 on the magnetic
order competition between the various four-site contenders
appears to be negligible. Figure 11 shows a typical form of
the energy modulation with #, and #,; for the chief contenders
ML, 11— 1<, and f} 0 | 0. The energies of the four-site
states are affected in a very similar way, with none of them
being the clear favorite for the ground state. In the case of #4,
the explanation for this is that the frustration costs introduced
by the fourth-neighbor hopping, which connects sites that
are two lattice constants apart, are identical for all of these
magnetic states, so they are all equally disfavored. The effect
for 1, is slightly different, as increasing it actually reduces the
energy of all of the magnetic states, initially showing a slight
preference for the noncollinear 1— | <, then the collinear
M, and finally the FM state. This can be understood in the
spirit of the Stoner effect, which is somewhat more general
in this two-band Hubbard model: as the density of states at
the Fermi level grows, most kinds of magnetic order benefit,
but the FM state benefits the most. The strong response of the
FM state to the hopping amplitude modulations can be readily
seen in both Figs. 11(a) and 11(b). The state suffers most
strongly due to the added frustrations from #, and benefits
the most from the Stoner effect with #,. Notice that all of
these effects occur with minimal bandwidth renormalization,
as discussed; instead, they are consequences of the shape of
the DOS.

Finally, we comment on the role played by the « an-
harmonicity parameter. Given the form of the lattice energy
Eae = eb(uiz + omj‘ /2) and a typical value for lattice distor-
tion u; ~ 0.5, we see that the two terms compare numerically
as €,(0.25 + 0.03«). Thus for « = 1 the quartic correction
is merely 10% of the quadratic contribution and serves only
to modulate the bare magnitude of the lattice distortion u, as
determined by Eq. (12), away from u = §, without affecting
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FIG. 9. Magnetic order in the HF ground state, as a function of U and J, for t, = 0, 0.15,0.25 [(a), (b), and (c), respectively]. Other
parameters are f; = 1,24 = 0, ¢, = 0. In (d), (e), and (f) we depict the noninteracting (U = J = 0) DOS that correspond to the systems (a),
(b), and (c), respectively. Notice that increasing the bandwidth (even if just modestly by at most 15%), paradoxically, leads to more robust
ferromagnetism at lower U—a consequence of the van Hove singularity at the lower band edge. Also notice how when the next-nearest-
neighbor frustration is maximally reduced (#, = 0), the noncollinear four-site magnetic order dominates the collinear one. Currently it is not
clear to us why this would be the case, given how introducing #,, #4 seems to affect them equally based on pure lattice frustration arguments.

the basic physics of the problem. The results shown in Fig. 12 to § = 1 and thus with the largest u that are affected the most,
confirm as much. Insofar as the charge modulation contours while the rest of the phase diagram remains the same. In the
are displaced from their position at @ = 0, it is the ones closest interest of controlling the size of the lattice distortion, all the
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FIG. 10. Magnetic order in the HF ground state as a function of U and J for #, = 0, 0.1 [(a) and (b), respectively] and #; = 0.25,0.35

[(c) and (d), respectively]. The bandwidth is W = 6.4 in all cases. Other parameters are t; = 1,1, = 0.15, ¢, = 0. The growth of the metallic
region is clearly not the effect of a renormalized bandwidth but rather is due to the changes of the shape of the DOS.
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FIG. 11. Energies of several converged self-consistent HF states
as a function of £, (a) and #4 (b), respectively, relative to the
energy of the metallic state. The different colors correspond to
different magnetic orders (see the legend). The parameters are
U=4,J=0316,t1 =1,t4,=0,¢, =0 for (a) and U =5,J =
0.316,41 = 1,1, = 0.15, ¢, = 0 for (b). Notice how in (b) the relative
energies of the chief magnetic ground-state contenders are not af-
fected much by the change—except for ferromagnetism, which gets
strongly frustrated with the additional z, hopping and, paradoxically,
“unfrustrated” with the introduction of #, hopping due to DOS effects
(see the text for details). Meanwhile, in (a) with tuning the 7, rate
away from 0 the noncollinear +— | < gets briefly favored, but then
quickly loses out to the collinear 11 |, before ferromagnetism sets
in.

calculations in this paper were carried out at o = 1, unless
indicated otherwise.

V. CONCLUSIONS

The magnetic order of the rare-earth nickelate series, much
like the metal-insulator behavior and charge order, can be
expected to couple to the lattice degrees of freedom. Even
the simplest semiclassical version of the Holstein coupling
is sufficient to aid charge disproportionation and to turn the
material into an insulator in much of the parameter space.
While several magnetic orders converge to self-consistency in
our effective two-band Hubbard model for the nickelates, the
1 0 § O antiferromagnetic order dominates, usually present-
ing together with charge disproportionation é # 0. In contrast,
the nondisproportionated collinear 11| and noncollinear
+— | < orders only arise at intermediate/large U and small
J and do not fare well when the coupling to the lattice
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FIG. 12. Magnetic order in the HF ground state as a function of
U and ¢, for J/U = 0.2 and two different values of the anharmonic-
ity @: (a) « = 0 and (b) o = 1. Other parameters are ¢, = 1,1, =
0.15,¢ = 0.25.

is increased, instead quickly disappearing from the phase
diagram entirely. This can be easily understood, as the nondis-
proportionated modes cannot couple to the lattice distortion,
given that for them § = 0 and hence, via the self-consistency
condition, also # = 0. Thus the main impact of the lattice on
the magnetic order, in our model and at the HF level, is to
make the 1} 0 |} O order even more dominant by decreasing
its energy relative to that of the other states. Surprisingly,
we find that self-consistency is never achieved for a state
such as 1—{ <« or 14}, that is, for § # 0 [9,23]. Such
states are unstable in the iterative sequences, with the slightest
deviations from their expected mean-field parameter structure
leading to fast flow towards the stable solution 1} 0 {} 0.

While usually the charge-modulated phase § # 0 always
occurs with f 0 |} O for small U, we found that introducing a
finite electron-lattice coupling €; also stabilizes a new phase,
where the charge modulation persisted on its own, without
any associated magnetic order. The magnetic order would
then arise only at higher J, leading to the effective decou-
pling of the charge modulation and magnetic transitions—a
feature strongly reminiscent of the canonical nickelates phase
diagram.

We therefore conclude that all else being equal, coupling
to the lattice favors the 1) O | O order. However, one must
keep in mind that our simplified Hamiltonian may fail to
capture properly some aspects of the actual physics of these
materials, especially in the NCT scenario where the O sites
should be included explicitly. Moreover, it is known that
the accuracy of the Hartree-Fock approximation can become
questionable as the strongly correlated limit is approached.
One caveat to note is that because of the negative charge
transfer, significant overlap between the (wide) O 2p bands
and the Ni 3d bands should reduce the effective U value (thus
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reducing the strength of correlations), explaining why many in
the literature have had success using a Hartree-Fock approach
on the nickelate problem [17,19,21,27]. In addition to the
question of the validity of the mean-field approach, other
open questions remain. Specifically, the nature of the orbitally
and magnetically ordered state we found at intermediate to
large U (i.e., close to the Mott regime), and other orbital
orders possible within the model, are not entirely clear and
their investigation is left to future studies. Overall, strong
1,4 covalency places nickelates in the intermediate coupling
regime of U/W (for instance, see Ref. [41]), wherein charge
fluctuations coupled to lattice become an increasingly impor-
tant factor in the magnetic phase behavior of these materials.
While the present study treating the lattice semiclassically is
a reasonable starting point, the pronounced polaron effects
observed in nickelates [42] suggest that a quantum-dynamical
treatment of the electron-lattice coupling problem should be
the next essential step towards understanding the physics of
these materials.
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APPENDIX A: HOPPING OPERATOR

The hopping operator is a sum of three terms

T =T +1+T, (A1)
where

Ti=-n) > W, die+ He)  (A2)
ic N=x,y,2

B=—t Y 0l +He), (A3
inuo,
n#E

nuH=xy2z

To=—t2 ) > (], dijogne + He). (A4

ioc N=x,y,2

After a Fourier transform and factorization, the hopping
operator has the form

(A5)

t..(K) = =21 (cos(kz) + i[cos(kx) + cos(ky)]) — 214 (cos(Zkz) + %[cos(ka) + cos(2ky)])

— 2t {cos(ky) cos(ky,) — 2 cos(k;)[cos(ky) + cos(k)]},

tz(k) = —%[cos(kx) + cos(ky)] — %[cos(ka) + cos(2ky)] + 6t cos(k,) cos(ky),

*/gt‘ [cos(ky) — cos(ky)] + ;t“

tz(k) =

APPENDIX B: MINIMIZING LATTICE CONTRIBUTIONS

In the text we were faced with the need to solve the cubic
equation

1 )
w4 —u——=0,
o o

(B

which arose during lattice energy minimization in the
Hartree-Fock process. As we mentioned, it admits a closed-
form solution using Cardano’s formula. More explicitly,
write

1 )
u3=(s—t)3, — =351, — =5 —¢,.
o

[cos(2k,) — cos(2k,)] — 24/31 cos(k;)[cos(ky) — cos(ky)].

(

Combining the latter two equations into one for 7, we find

3
rofd)- () =
o R

which is easily solved as a quadratic,
S8 (8Y L4
2| o« o 2703 |’

sop S s (8 2+ 4
ST = —_ = = —_ —_ .
a 2\lo o 2703

from which we can recover the expression for u in Eq. (12).
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APPENDIX C: FULL MEAN-FIELD HAMILTONIAN

The full effective Hamiltonian is

N . 3U —5J
Hyr = Z tap(K)dy ., kb + Z (T -

kabo kao

<3U—5J
==

o .
) U+ J)SFM> o Arac

o
6 — 2€pu — E(U + J)SAFM>dlZ+Qr,aadkﬂfT

o
= 70+ DS = i82)dy 1, aoias + Stz + 82)_g, 4 a)

U+J

—— (1 = iS2)d} 1, o ias + (S1x + iS2)d o hac)

4
Uu-—-1J

= =5 (0 = Xa)dy g, 4o i + (Six + 120dy_q, o his)

+ [(5] = U)01 — o (U = N)Z1dy  dyas + [(5T = U)Oy — 0 (U — NNZo1dy) . i

o . E . 3
= S WU = D[ = iZ)d q, ao i + (73 + iZa)dy_q, 4okic ]

APPENDIX D: HARTREE-FOCK ENERGY

The full expression for the electron-electron interactions part of the Hamiltonian in a Hartree-Fock state |\, ) is given by

1 .~ 3U-5] Uu+J St + ST, + S5 + S5
U = T 8 = S (SEy o Sk + T2 o — 5702 + 0
Zi+7;
—-2(U — J)(le +7; + %) — (U - DH(X] +X3). (D1)
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