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Quantum stabilization of microcavity excitation in a coupled microcavity–half-cavity system
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We analyze the quantum dynamics of a two-level emitter in a resonant microcavity with optical feedback
provided by a distant mirror (i.e., a half cavity) with a focus on stabilizing the emitter-microcavity subsystem. Our
treatment is fully carried out in the framework of cavity quantum electrodynamics. Specifically, we focus on the
dynamics of a perturbed subradiant state of the emitter-microcavity subsystem to ascertain its stability (existence
of time oscillatory solutions around the candidate state) or lack thereof. In particular, we find conditions under
which multiple feedback modes of the half cavity contribute to the stability, showing certain analogies with the
Lang-Kobayashi equations, which describe a laser diode subject to classical optical feedback.
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I. INTRODUCTION

With recent advances in the fabrication of nanophotonic
structures, there is an increasing ability to control and ma-
nipulate the optical properties on the single-photon level
[1–3]. One of the techniques central to such control is the
ability to access the strong-coupling regime of cavity quantum
electrodynamics (cQED). In solid-state structures, recent de-
velopments include coupling quantum emitters such as quan-
tum dots to photonic crystals [4–6] and micropillar cavities
[7,8]. These devices provide unidirectional photons that are
of interest, for example, to improve quantum communications
over long distances [9]. In addition, the ability to control and
coherently manipulate photons coupled to the internal state
of the quantum dot is of great importance due to potential
applications in quantum memory and quantum information
processing [10].

Controlling a quantum system—in the sense of provid-
ing stabilization of its quantum state—presents a nontrivial
problem. The use of feedback to provide stabilization in
classical systems is quite advanced, while less is known for
quantum systems. Two feedback-control schemes have been
explored recently in quantum optics, viz., measurement-based
and coherent feedback loops [11,12]. In a measurement-based
feedback loop, the quantum system is monitored and the
outcome of the measurement is used as classical information
to manipulate the operations. A measurement-based feedback
loop has been implemented in a cQED system with trapped
atoms [13]. In coherent feedback, the dynamics are entirely
quantum mechanical and the system interacts coherently with
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an ancillary subsystem in both the extraction and manip-
ulation processes. For coherent feedback, such as Pyragas
feedback [14], both processes utilize information stored in
the reservoir degrees of freedom residing, for example, in an
external cavity.

Canonical consideration

Before embarking on our study, it is necessary to discuss
some of the various aspects of our analysis that are likely
to be unfamiliar to many readers. Given that the measure-
ment process will unavoidably collapse the wave function,
measurement-based feedback presents limitations when the
target state is a superposition. To implement coherent quan-
tum feedback in quantum optics, one typical configuration
consists in coupling the quantum system with an external
half cavity, having a perfect mirror at the opposite end, as
illustrated in Fig. 1(a). Here, we introduce a quantum dot
coupled to a microcavity as our quantum system, similar to the
time-delayed feedback setup used in an external-cavity laser.

The presence of time-delayed feedback is known for the
external-cavity laser to generate multiple steady-state solu-
tions. The stable modes of the external cavity are called ex-
ternal cavity modes, while the unstable modes of the external
cavity are known as antimodes [15]. Depending on the various
parameters of the system (e.g., injection current, feedback
strength, and external cavity length L), various dynamics can
occur near and amongst these solutions [16,17]. In particular,
oscillatory dynamics about various external cavity modes
occur in certain parameter regimes, and are closely related to
undamped relaxation oscillations [18], while more complex
behavior exhibiting closed trajectories encircling one or more
steady-state solutions are also observed. The emergence of
multiple solutions is often seen in many nonlinear systems,
but not in a quantum system with a finite number of degrees
of freedom [19]. However, in quantum systems with a bath

2469-9950/2020/101(2)/024305(7) 024305-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0548-7391
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.024305&domain=pdf&date_stamp=2020-01-23
https://doi.org/10.1103/PhysRevB.101.024305


CHANG, LANCO, AND CITRIN PHYSICAL REVIEW B 101, 024305 (2020)

 = 2L / c0 L

(b)(a)

g

FIG. 1. (a) The quantum dot–microcavity system coupled to an
external cavity of length L in which a quasicontinuum of photon
modes exist. τ is the delay time of the coherent feedback. The black
and blue curves indicate classical electric fields forming standing
waves from the external cavity. (b) Schematic of a two-level quantum
dot in a near-resonant microcavity, where g is the coupling strength
and κ = πG2

0/(2c0) is the microcavity damping rate.

of infinite degrees of freedom (in our case, the modes of the
external cavity), once these are integrated out, the system may
exhibit what appears to be nonlinear behavior in the remaining
explicitly considered degrees of freedom.

Broadly speaking, two approaches have been used to ac-
count for the coherent feedback. In one approach, the non-
Markovian evolution of the coherent feedback effect is ana-
lyzed with a differential equation with a time propagator [20].
On the other hand, the optical feedback from a mirror has
typically been accounted for using a one-dimensional model
for the electromagnetic field with a standing-wave basis in
the Markovian limit [21–23]. Recent theoretical studies have
focused on Markovian coherent feedback [21–32]. It has been
demonstrated that the standing-wave field model in a half
cavity (Markovian) is equivalent to a time-delayed feedback
system (non-Markovian) [23,31]. The control of the delay
time can be a key factor in the stability or instability as well
as the nonlinear dynamics in many complex systems [33,34],
providing wide-range applications. These works provide a
promising route to rapid convergence of states [34], enhancing
entangled photon-pair generation from biexcitons [35], and
to drive continuous exchanges for pure states [30]. Among
these studies, stability in coherent feedback systems has been
investigated by Grimsmo [20] based on linear delayed dif-
ferential equations (non-Markovian). Since then, few other
studies have focused on stability and its relation to time-
delayed systems [36,37]. The evolution of the quantum states
in these investigations is described by means of a time-varying
Hamiltonian. These works are focused on specific features
of the quantum system and not on the stability of the target
state, which from the standpoint of experimental realization
or practical application is of key importance.

In this study, we consider a quantum system composed
of a single-photon emitter in the form of a quantum dot
within a microcavity formed by a micropillar with coherent
quantum feedback provided by a distant mirror as shown in
Fig. 1(a). Our approach presents a direct stability analysis in
the Markovian dynamics of quantum feedback from a single-
photon emitter. The quantum feedback is achieved via the
external cavity, similar to previous studies [30,31].

Since photon leakage from the external cavity is neglected,
our system conserves the excitation number. Our focus is on
the one-excitation subspace. In the one-excitation subspace,
we find the steady-state solutions, which we then investigate
for stability. By steady state, we mean states in which the
amplitude coefficients remain constant in magnitude (i.e., sta-
tionary population), and evolve in phase with constant angular
frequencies. Therefore, steady states are those that are simul-
taneously eigenstates of both the noninteracting and the in-
teracting Hamiltonians. We explore the stability of the steady
states, that is, states of the composite microcavity/quantum
dot subsystem that are effectively decoupled from the external
cavity. We find that the stable steady states are represented
by the microcavity/quantum dot and its mirrored self being
in an antisymmetric singlet state [38]. Similar observations
have been made that the singlet state corresponds to the Dicke
subradiant state [39] in a waveguide system [24], in a system
with chiral feedback from a single V -level atom [40]. To
be more specific, the singlet state would appear effectively
decoupled from the external cavity, being in a stable subra-
diant state, whereas the symmetric state is superradiant, and
thus unstable, as it decays at twice the cavity damping rate
from the microcavity [24,40]. In the case with one single-
photon emitter coupled to the external cavity, the subradiant
state would be the only steady state where the population in
quantum dot and microcavity are antisymmetric [39].

We determine the stability by studying the dynamics in the
vicinity of the steady state. This is done by constructing the
Jacobian matrix of the linearized equations of motion with
the state amplitudes perturbed from the steady state [19], a
technique widely employed for classical stability analysis. We
analyze the eigenvalues of the Jacobian matrix as a function
of coupling strength between the microcavity and external
cavity. A strictly imaginary eigenvalue indicates oscillatory
dynamics about the candidate steady state, which is thus
deemed stable while a positive (negative) real part of the
complex eigenvalues indicates unstable (stable) steady states.
The effects of time delay are also studied for various external
cavity length L. We numerically verify the Jacobian analysis
by perturbing the steady state to investigate its stability, which
agrees with the results obtained directly from the Jacobian of
the state amplitudes.

The remainder of the paper is organized as follows. In the
next section, we outline the cQED description of the system.
We next find the steady state. Following this, we assess the
steady state’s stability. In the final section, we conclude.

II. THEORETICAL DESCRIPTION OF THE
SINGLE-EMITTER, MICROCAVITY,

EXTERNAL CAVITY SYSTEM

We begin by introducing the system. We consider an intrin-
sic quantum dot coupled to a single near-resonant mode of a
high-Q micropillar microcavity [Fig. 1(b)] and coupled in turn
to the external cavity modes shown in Fig. 1(a). The quantum
dot is characterized by interband-transition frequency ω0. The
quantum dot interband transition is dipole coupled to a single
mode of the micropillar microcavity of angular frequency
ωMC (in this study, we will eventually take ωMC = ω0) with
coupling strength g, as in Ref. [41]. This approach can yield
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strong coupling between the quantum dot and the microcavity
[35] and can generate high-purity, indistinguishable single
photons [41]. We place an ideal mirror with reflection coeffi-
cient r =−1 a distance L=c0τ/2 from the micropillar to form
the external cavity (half cavity), with c0 the speed of light in
vacuum and τ the external cavity round-trip feedback time.
The conditions we choose are similar to the single quantum
dot in a microcavity subjected to an external mirror in a recent
paper [31]. For a mirror with |r|<1, the coherent feedback
can be treated considering the mirror properties [42], while
analysis can be performed using an open quantum-system
formalism, discussed in a recent publication by Whalem
[43].

We work in the rotating-wave approximation (RWA)
[44] in the Schrödinger picture as in Refs. [21,30,31]. The
derivation of the interaction Hamiltonian can be found in
Refs. [21,30–32,44–46] (see the Supplemental Material [47]).
For the external cavity, we use the free-space dispersion for
photons, ωk =c0|k|, assuming a sufficiently large value of L
so that the photon modes can be considered a quasicontinuum.
We assume that only the optical modes with angular frequen-
cies near ω0 interact strongly with the microcavity photon
(ωk ≈ωMC ≈ω0). We obtain the following interaction Hamil-
tonian describing the quantum dot coupled to the microcavity
mode and that mode in turn coupled to the external cavity
modes:

H (RWA)
int

h̄
= −ωg(σ−a† + σ+a)

−
∫ ∞

−∞
dωk[G(k, t )a†bk + H.c.], (1)

with ωg = g/h̄, a† (a) the creation (annihilation) operator
for the microcavity photon, and σ+(−) the raising (lowering)
operator of the two-level quantum dot system. The bosonic
operators bk destroy a photon of frequency ωk in the external
cavity as defined as in Ref. [32] and the coupling element,
G(k, t ) = G0 sin(kL)ei(ω0−ωk )t , where G0 = √

2c0κ/π . Note
that because H (RWA)

int is quadratic in creation and annihilation
operators, the Hamiltonian conserves the number of excita-
tions. We extend the lower limit of integration to −∞ given
the interaction bandwidth is narrow compared with ω0. A
detailed discussion is presented in the Supplemental Material
[47].

We now concentrate on the one-excitation subspace where
an arbitrary wave function can be written

�(t )=ce(t ) |e, 0, 0〉+cc(t ) |g, 1, 0〉+
∫ ∞

−∞
ck (t ) |g, 0, k〉 dk.

(2)

Here, in kets |a, b, k〉, a=e (g) denotes the quantum dot
in the excited (ground) state; b=0 (1) denotes zero (one)
microcavity photon; and k denotes the external cavity photon
wave vector. �(t ) is thus described by the time-dependent
amplitudes ce(t ), cc(t ), and ck (t ).

III. STEADY STATE

Substituting �(t ) into the time-dependent Schrödinger’s
equation, we obtain the following coupled equations of

motion (EOMs) for the time-dependent amplitudes:

∂ce

∂t
= iωg cc, (3)

∂cc

∂t
= iωg ce + i

∫ ∞

−∞
ck G(k, t ) dk, (4)

∂ck

∂t
= iG∗(k, t ) cc. (5)

To find the steady states (steady in the more narrow sense
defined above), we write ci(t ) = |ci(t )| exp[iθi(t )], to obtain a
new set of EOMs,

∂ci

∂t
= ∂|ci|

∂t
eiθi (t ) + i

∂θi(t )

∂t
|ci|eiθi (t ), (6)

with i=e, c, and k. We apply the constraint for a steady state
(|ci| and θ̇i all constants) and find the solution as discussed in
the Supplemental Material [47].

We denote the steady state (with respect to the interaction
Hamiltonian) in the single-excitation subspace as �̄(t ) (where
the bar indicates a steady-state solution). In the frame rotating
at ω0, �̄RWA(t ) = �̄(t )e−iω0t ,

�̄RWA(t ) = c̄e(t ) |e, 0, 0〉 + c̄c(t ) |g, 1, 0〉

+
∫ ∞

−∞
c̄k (t ) |g, 0, k〉 dk.

We thus obtain the noninteracting amplitudes for the steady
state,

c̄e(t ) = −αe−iωgt , (7)

c̄c(t ) = αe−iωgt , (8)

c̄k (k, t ) = αG0 sin(kL)

ωk − ωg − ω0
ei(ωk−ωg−ω0 )t . (9)

Note that the strict commensurability condition, i.e.,
2L/c0 = n2π/(ω0 + ωg) with n ∈ N, is required for the
steady state. Detailed reasons will be explained later in this
work and can also be found in Refs. [25,31]. The parameter
α is defined in the next paragraph. Note that the minus sign
results from the microcavity/quantum dot being in a singlet
state (antisymmetric) of the quantum system and its mirrored
self [23,24,38,40]. In this state, the quantum dot–microcavity
subsystem is effectively decoupled from the external cavity,
thus being in a subradiant state, as discussed for similar
systems in Refs. [24,38,40].

The noninteracting amplitudes associated with this steady
state can be characterized by a single parameter,

α=|cc(t )|=|ce(t )|=
(

2 + πG2
0L

c2
0

)−1/2

= (2 + τκ )−1/2,

where recall G0 = √
2c0κ/π and κ is the microcavity photon

damping rate. Since we consider 100% reflection from the
distant mirror (r = −1 in this study), the damping rate char-
acterizes both the rate into the external cavity and the feedback
rate from the reflected photon.

The steady state is indicated in the frame rotating at
ω0 in Fig. 2. The blue arrow shows the state of the
quantum dot at a snapshot in time, with the time evolu-
tion in the RWA shown by the orange arrows, where we
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FIG. 2. Representation of the one-excitation steady state in the
frame rotating at the frequency ω0 (a) c̄e(t ), (b) c̄c(t ), and (c) c̄k (k, t ).
The blue arrows indicate the initial condition and the orange arrows
indicates the time evolution.

choose initial conditions c̄e(0)=α, c̄c(0)=−α, and c̄k (k, 0)=
αG0 sin(kL)/(ωk − ω0 − ωg). In this case, the external cavity
photon is in a standing wave and its population is described
by a sinc function in the k channel (of frequency ωk), centered
on ωk = ω0 + ωg, i.e., kL = nπ , with n an integer number
such that the commensurability condition is fulfilled: (ω0 +
ωg)τ = 2nπ . Note that each external cavity state ck revolves
around the k axis at different rate, as illustrated in Fig. 2(c).

The evolution of the microcavity photon population |cc(t )|2
is plotted in Fig. 3. The theoretical and numerical results
for the steady state just found are plotted in the black and
yellow dotted curves, respectively. In this case, the micro-
cavity photon population remains constant in time. The green
curve (case II) plots the microcavity photon population |cc|2,
however, for the initial state ce(0)=1, cc(0)=0, ck (0)=0 for
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Time (t /  g)

P
ro
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bi

lit
y

Theoretical
Numerical
Case II

FIG. 3. Time evolution of the probabilities of |cc(t )|2 for various
initial conditions. The quantum dot is initialized in the excited state
for the green curve (case II); however, choosing initial conditions
corresponding to a steady state results in |cc(t )|2 being independent
of time (black and dotted yellow curves).

all k. In this case, the microcavity photon population varies
significantly at first and eventually mainly leaks out into the
external cavity. Note that there is only one steady state in our
sense within the one-excitation subspace.

To lend insight into the nature of the steady state, the
initial state amplitudes of the external cavity photons of
wave number c̄k (k, 0) are an even function, centered on ωk =
ωg + ω0, i.e., kL = nπ while the coupling G(k, t ) is an odd
function centered on ωk = ωg + ω0. Thus, while L satisfies
the commensurability condition, the external cavity is in effect
decoupled from the microcavity photon and the quantum dot
for the steady state. As this occurs, the quantum dot and the
microcavity photon experience a cavity-assisted interaction
at the rate of ωg, and both quantum dot and microcavity
photon state are stable state, when their complex amplitudes
are π out of phase. The only steady state corresponding to the
interaction Hamiltonian is antisymmetric in the amplitudes ce

and cc, and similar to the bound state in Refs. [25,28,29] or
the subradiant state in the recent studies of Refs. [40,48].

IV. STABILITY ANALYSIS

In the previous section we identified a steady state in
the one-excitation subspace. In this section, we ascertain
the steady state’s stability, which depends on two important
parameters. The first parameter is n, related to ωg and to
the external cavity round-trip time τ . The second one is
the ratio R = κ/4g, between the cavity damping rate κ and the
coupling strength g. The reflected photon is assumed to un-
dergo a π phase change from an ideal mirror (r = −1 in
this study). To begin, we constructed a Markovian model to
numerically simulate the evolution based on Eqs. (3)–(5), and
the stationarity of �̄ is demonstrated in Fig. 3. For example,
for ce(0)=1, cc(0)=0, and ck (0)=0 for all k, the micro-
cavity photon population exhibits nonperiodic oscillations on
the time scale of vacuum-field Rabi oscillations, shown in
Ref. [35].

Next, we study the dynamics in the vicinity of the steady
state to ascertain its stability. We expect that for a stable state,
the probabilities will remain near the initial values. Here,
we perturb the steady state and track the dynamics. (This
numerical approach is infeasible rigorously to determine the
stability of the candidate steady state due to the existence of
numerous degrees of freedom that would have to be perturbed
individually; indeed, this is, in effect, what the method below
of computing the eigenvalues of the Jacobian does for us.)
We add small values δc,i to the initial conditions for ce and
cc with respect to the steady state �̄(t ) in Eqs. (6)–(8),
viz., δcc = [± 0.01,± 0.02]α while the amplitude of the quan-
tum dot state ce(0) is perturbed such that |c̄e + δce|2 +
|c̄c + δcc|2 = |c̄e|2 + |c̄c|2. We shall see that the nature of the
stable state depends crucially on the ratio R=κ/(4g) between
the microcavity damping rate κ and the coupling strength g,
the inversion of the conventional coupling strength parameter
between a two-level system and a cavity, where R < 1 (R > 1)
indicates the strong- (weak-)coupling regime [49]. Small R
thus means the vacuum-field Rabi frequency is much larger
than the microcavity photon leakage rate; large R indicates
a relatively high microcavity photon leakage rate compared
with the vacuum-field Rabi frequency. The effect on the
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FIG. 4. The evolution |ce(t )|2 and |cc(t )|2 of perturbed steady
states with various values of R. Note that the various probabilities
remain near the initial values, indicating likely stability.

stability is illustrated by plotting the probability for R = 0.5
and R = 8. The probabilities of the excited quantum dot state,
|ce(t )|2, are plotted in Figs. 4(a1) and 4(b1) and microcavity
photon state |cc(t )|2 in Figs. 4(a2) and 4(b2) for R = 0.5 and
8, respectively. We note that n = 1 in Fig. 3 and all cases in
Fig. 4

In Figs. 4(a1) and 4(a2), for small R (strong coupling),
the variation of the probability from its mean value exhibits
oscillations at roughly the vacuum-field Rabi frequency 2ωg

with some initial damping from t = 0 to τ at rate 2κ . For t �τ ,
the damping is arrested and oscillations at the vacuum-field
Rabi frequency persist. By comparison, for R = 8 [Figs. 4(b1)
and 4(b2)] when vacuum-field Rabi oscillations do not have a
chance to occur before photon leakage from the microcavity,
the dynamics of both probabilities are not evidently periodic,
indicating the participation of multiple frequencies. We shall
see this is due to the participation of many coupled external-
cavity-like modes.

In order to explore the stability of the steady state in a
rigorous fashion, we consider an analysis of the eigenvalues of
the Jacobian matrix [50] to confirm the foregoing numerical
simulations. The Jacobian is defined as the matrix of all
first-order partial derivatives with respect to the each variable
(in this case, the perturbed state amplitudes) evaluated for
the steady state [19]. In other words, the Jacobian probes the
change in the steady state with respect to an arbitrary infinites-
imal perturbation. Its eigenvalues, therefore, indicate whether
or not the state is stable, with a tendency to oscillate around
the steady state for eigenvalues being strictly imaginary, to be
stable and evolve toward a steady state for real parts of all
eigenvalues being negative, or to be unstable and to evolve
away from the steady state (all real parts of any complex
eigenvalues being positive). In addition, saddle points are also
possible where the steady state is stable against perturbations
in certain directions in state space, but not in others.

More specifically, the Jacobian matrix Jδ (see the Supple-
mental Material for definition [47]) satisfies the equation

∂

∂t
δci(t ) = Jδδci(t ). (10)

We begin by studying the Jacobian matrix constructed with
linearized EOMs of the perturbed state. The perturbed states
along the i direction in state space from the steady state will
evolve according to δci(t ) = δci(0)eλit where λi is the eigen-
value along the i direction and δci(t ) is the small perturbation
along the i vector from the steady state c̄α at t = 0. Given the
eigenvalues, possible cases for the steady state are attractors,
repellers, or saddle points corresponding to all negative, all
positive, or some positive and some negative eigenvalues,
respectively. The dynamics can be analyzed by the nature of
the equilibrium state, in this case, the steady state, �̄(t ) in
Eqs. (7)–(9).

The interaction of the perturbed state amplitudes can be
derived using linearized EOMs near the steady state, and
the Jacobian matrix of rank (2 + N ) is derived following the
small-signal model, where N is the number of external cavity
photon states ck used in the simulation. Note that Jacobian,
Jδ, is derived from linearization at the steady state and is
found to be a rank-N + 2 skew Hermitian matrix, while the
interaction Hamiltonian is a rank-2 Hermitian matrix in the
one-excitation subspace.

We proceed to analyze the stability of the steady state
by considering the eigenvalues, λis, of Jδ. We focus on the
dependence of the eigenvalues on the ratio R = 4κ/g between
the microcavity photon damping rate and the quantum dot–
microcavity coupling strength. By solving the characteris-
tic equation of Jδ, we find all the eigenvalues are purely
imaginary (iλi ∈ R). These imaginary eigenvalues indicate
oscillatory dynamics upon perturbation about the steady state,
i.e., this indicates stability. Notably, since the perturbation of
the steady state evolves following δcc(t ) = δcc(0) exp(λct ),
we expect to observe oscillation in the probabilities both
for the quantum dot excited state and for the microcavity
photon |cc(t )|2 = α2 + 2αδcc(0) cos ωosct + |δcc(0)|2, where
ωosc(λ) = ω0 + ωg − iλc. The eigenvalues of the Jacobian are
solutions of the determinental equation |Jδ − λI(2+Nk )| = 0.
One finds

(ωosc − ωg)2 − κ (ωosc − ωg) sin(ωoscτ ) − ω2
g = 0. (11)

Here, we focus on finding the frequency ωosc(λc) as a func-
tion of the parameter R = κ/(4g) of different time delay τ .
Given the wide range of R investigated, the following results
are plotted using a horizontal scale in log2 R. The detailed
derivation is presented in the Supplemental Material [47]. In
addition, we carry out this analysis focusing on adjusting the
parameters, external cavity round-trip time τ . We consider the
effect of varying τ , restricting its value to integer multiples
of τg =2π/ωg. We explore the stability dependence on R for
various time delay. Particularly, in Fig. 5, we explore the cases
where the time delay, τ = n τg, is an integer multiple of τg

where τg = 2π/ωg, and n ∈ N.
In the case of coherent quantum feedback from a single

photon, one can show that the product of the time delay
τ and the dimensionless ratio R̄(n) is constant 1/(2π ) for
n ∈ N from Eq. (11). We find the critical value R̄ of R,
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FIG. 5. Frequencies of oscillation ωosc about the steady state of
the probability |cc(t )|2 as a function of log2 R for various τg. The
frequency is obtained from ωosc = ωg + ω0 − iλ.

beyond which more than two (imaginary) eigenvalues of the
Jacobian matrix appear decreases as L increases shown by
various vertical dotted red lines in the panels of Fig. 5. That is,
R̄(1) = 0.16 [log2 R̄(1) = −2.74], R̄(2) = 0.08 [log2 R̄(2) =
−3.64], R̄(3) = 0.053 [log2 R̄(3) = −4.24], and R̄(4) =
0.039 [log2 R̄(4) = −4.68].

The dynamics of external-cavity lasers have been inten-
sively studied based on the semiclassical Lang-Kobayashi
equations [51,52]. The Lang-Kobayashi equations describe
the nonlinear dynamics of the electric-field amplitude |E |,
carrier density n in the active region, and optical phase φ

by a set of equations of motions in the form of coupled
delayed-differential equations. In the Lang-Kobayashi model
for an external-cavity laser, this product is also proportional
to the dimensionless parameter C = γ τ characterizing feed-
back strength defined in Ref. [53], where γ is the feedback
parameter. Specifically, in the theoretical study of weak op-
tical feedback (classical external-cavity laser), C < 1 there is
always one stable solution; for C > 1 there may exist more
stable solutions corresponding to single-frequency operation
[53]. The frequency difference between the multiple solution
of ωosc scales linearly with n as one would expect from the
Lang-Kobayashi model. As we pointed out in the previous
paragraph, the critical value R̄ in the single-photon limit cor-
responds up to a constant multiplicative factor to the feedback
parameter, γ in the classical regime. That is, R̄ satisfies the
relationship nR̄ = 1/(2π ) [τ R̄ = τg/(2π )], representing the
feedback parameter in the single-photon regime.

V. DISCUSSION AND CONCLUSION

The implementation of coherence feedback with few-
excitation states incorporating cQED systems can be realized

in various ways. Albert et al. have realized coherent opti-
cal feedback with a microlaser, where chaotic behavior is
observed with self-feedback for a few photons, ∼100, and
studied the second-order autocorrelation function g(2)(τ ) [54].
Note that, to describe the dynamics in these experiments,
many realistic parameters have to be taken into account,
including the quantum dot dephasing rate, the quantum dot
decay rate, the transmission and reflection coefficients of the
external cavity mirror, and the microcavity–external-cavity
coupling. However, these parameters describe the loss chan-
nels and contribute to the decay of the probabilities. Compar-
ing to the ideal scenario described in this paper, we expect
that these parameters will weakly influence the oscillation
frequencies provided the large R limit can be reached.

A stability analysis of the type implemented here can also
be applied to the subradiant state existing in a quantum dimer
system with a coupled cavity [40,48] or in certain spin systems
[55,56]. In the case with a spin system, the coupling element
between two interacting spins placed at a distance L apart is
replaced by Gsd (k′, t ) = G0 cos(k′L)ei(ω0−ωk )t [55]. By mak-
ing the transformation k′ = k − π/2, we obtain the relation-
ship between the eigenvalues in two cases, i.e., the eigenvalues
of λsd = λ − π/2. Following the derivation of this work, we
can solve the emergent behavior of the additional solutions
of ωosc,sd (R, n) = ωosc(R, n) near the steady state. Thus, the
dynamical behaviors of the interacting quantum dimer cou-
pled through a (single) photon bath should behave similarly
to coherent quantum feedback. In this case, the frequencies
appearing in Figs. 5(a) and 5(b) must be interchanged as well
as those appearing in Figs. 5(c) and 5(d).

In conclusion, we consider a system composed of a quan-
tum dot in a microcavity coupled to an external cavity and find
a steady state where the state initialized in the microcavity and
quantum dot degrees of freedom is stable against decay into
external cavity photons. Specifically, we give the analytical
expression for the steady solution for such a system in the
one-excitation subspace. We find that this state is stable by
performing stability analysis on the Jacobian of state ampli-
tudes. The periodic solutions perturbed about the steady state,
obtained from the eigenvalues of the Jacobian, indicate that
additional solutions arise above a critical value R̄ or R as
experimental parameters such as the cavity damping rate, the
cavity coupling strength, and the external cavity length are
varied. We found a strong similarity to the Lang-Kobayashi
model in this behavior in terms of its dependence on τ . In
addition, numerical simulation verifies these results, showing
that interesting dynamics appear in the vicinity of the steady
states. Our stability analysis may serve as a bridge between
classical and quantum models for nanophotonic structures
subject to optical feedback.
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