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Ab initio calculations of the rate of carrier trapping and release at dopant sites in NaI:
Tl beyond the harmonic approximation
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We present ab initio calculations of electron capture and release coefficients as a function of temperature for Tl
dopants in the widely used scintillator NaI, which is a soft ionic crystal. The modeled capture and release events
occur by transitions mediated by multiple phonon absorption and emission between states with significantly
different local geometries around the trapping site. We demonstrate that such transitions are not well-described
by the normal harmonic approximation to the nuclear dynamics. We go beyond the harmonic approximation
by numerically solving the vibrational Schrödinger equation for the motion along/of a single effective phonon
coordinate. The localized trapped state is not correctly described by semilocal density functionals, so we employ
a global hybrid functional tuned to reproduce the band gap and lattice constant of the host material. Our
calculations, which combine plane-wave and embedded cluster electronic structure methods are in reasonable
agreement with available experimental data for detrapping and predict an unusual temperature dependence for
trapping rates.
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I. INTRODUCTION

Thallium-doped sodium iodide (NaI:Tl) is the most used
inorganic scintillator material [1] with a long history of many
important applications [2]. The alkali halide salts exhibit large
electron-phonon interaction and correspondingly interesting
optical properties that have attracted a long history of study
by laser spectroscopy [3–13]. In the past decade, demand for
improved γ -ray detection systems has driven renewed interest
in the scintillation mechanisms in alkali halide and related
material systems [14–36]. Despite this considerable history
of research, there are still many open questions regarding the
complicated sequence of events following γ excitation, which
involves many excitations coupling defects, lattice deforma-
tions, and electronic excitations.

A scintillator emits optical light after ionizing radiation
deposits energy in the crystal, resulting in one to several
highly energetic electrons and matching holes. These pri-
mary excitations in turn create secondary electrons and holes
in an energy cascade. The timing and amount of emitted
light are determined by the radiative recombination of these
excitations—each recombination emits an optical photon. The
energy of the original ionizing radiation quantum (γ ray,
electron, α particle, etc.) is then inferred from the total
amount (time-integrated intensity) of emitted light. Hence
the response time, brightness, and ultimate energy resolution
achievable in radiation detectors based on scintillation are
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determined by the dynamics of electron-hole recombination.
Quantitative models of scintillation, therefore, need to account
for the processes that determine the likelihood and timescales
of radiative recombination. These quantities are determined
by the collective motion of the electrons and holes, includ-
ing self-trapping and trapping, and release from activators.
Progress has been made recently, driven by improved time-
resolved optical spectroscopy, in the development of micro-
scopic models of radiation transport following γ excitation.
This research has increased knowledge of the photophysics to
the point of quantitative knowledge of the types and popula-
tions of different excitation species, including electronically
excited activators (impurities) [37], charged and neutral self-
trapped electronic excitations [26], and free electron-hole
pairs [18,20,38] in a few systems.

In this work we examine the case of a Tl activator in a
NaI crystal. In the ground state, Tl exists in a +1 charge
state as an isovalent substituent of Na in the NaI rocksalt
structure. After γ excitation, the Tl+ sites can trap both
holes (Tl+ + h+ → Tl++) and electrons (Tl+ + e− → Tl0).
Tl+ can also trap neutral triplet excitons, resulting in an
excited species we label Tl∗ that decays radiatively producing
the scintillation light. Tl∗ can also be formed by sequential
trapping of carriers of opposite sign (e.g., Tl0 + h+ → Tl∗).
This knowledge comes from a long history of models posited
initially to explain the observed optical properties of self-
trapped holes [4–7]. These models were later extended in
an effort to quantitatively describe the fundamental limits
imposed on radiation detection systems by intrinsic properties
of the scintillating crystal [16,18,23,26,33]. Insights gained
from these models and other theoretical work [37,39–41]
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include the realization that carrier trapping plays a key role
in many aspects of scintillation, including limiting the achiev-
able energy resolution for high-energy γ -ray spectroscopy.
Understanding carrier trapping dynamics is also a prerequisite
for cogent material design. For example, much effort has
been expended trying to improve scintillator performance by
codoping [42–50]. To date, these efforts have been largely
empirical since a lack of detailed knowledge of the rela-
tive trapping rates at different dopant sites precludes the
development of serious working hypotheses regarding the
mechanisms by which performance might be improved by
the introduction of new traps. Holes quickly self-trap in alkali
halides [9] if they do not trap on activators. Afterward, they
move diffusively. Electrons, on the other hand, do not self-
trap in NaI. Instead, they travel ballistically away from the
ionization track until they are drawn back by electrostatic
attraction to the positively charged track core. To participate
in luminescence, these electrons must end up at an activator
site along with a hole. Competition between different types of
traps, therefore, determines the population of electrons avail-
able for radiative recombination. Hence, the electron trapping
(and release) dynamics represent a key source of uncertainty
in the current generation of scintillation models. This work is
an attempt to fill this knowledge gap using electronic struc-
ture calculations. Recent work using thermally stimulated
luminescence [51] provides some experimental data regarding
electron release from Tl in NaI:Tl. For these reasons, we have
chosen to study electron trapping and detrapping from Tl sites
in NaI:Tl theoretically. We do this by using and extending
electronic structure approaches to inelastic electron scattering
by phonons [52,53] to simulate the vibrational dynamics
around Tl in NaI:Tl and the probability that these vibrations
cause an electron to be trapped or released by multiphonon
processes.

II. THEORETICAL FRAMEWORK AND
DEFINITION OF TERMS

The history of inelastic electron scattering by multiphonon
emission has recently been nicely reviewed in the introduction
of a paper by Barmparis et al. [53]. Shi et al. have recently
compared different numerical formalisms in this area [54,55].
The field has been seeing increased activity recently, includ-
ing this work, as electronic structure methods are becoming
reliable enough to treat the delicate physics of the electron-
phonon interaction. We rely on density functional theory
(DFT) in two different implementations: the embedded cluster
approach, with orbitals expanded in local atom-centered basis
functions, and periodic models based on supercells, with
orbitals expanded in plane-wave basis sets.

The theoretical framework and numerical approximations
used in this paper largely follow Alkauskas and co-workers
[52], to which we refer the reader for a discussion of the
validity of the major approximations and the motivations for
choosing them. We will sketch their derivation here and note
the differences in our approach, which has been tailored to
the softer ionic nature of NaI compared to the semiconductor
systems studied in Ref. [52]. Our system of interest is a NaI
crystal with a single Tl atom occupying one of the sites on

the Na sublattice, and we consider the situation of an extra
electron introduced into this system. We start from Fermi’s
Second Golden Rule for the lifetime τiI of the quantum state
|iI〉 [56,57],

1

τiI
= 2π

h̄

∑
f F �=iI

|〈iI|Ĥ ep| f F 〉|2δ(EiI − E f F ). (1)

Ĥ ep is the electron-phonon interaction Hamiltonian, which
Eq. (1) treats to first order [52], EiI is the energy of the state
|iI〉, and 𝒽 = h/(2π ) is Planck’s reduced constant. There are
three aspects of this expression that need to be approximated
leading to three distinct types of approximations: the wave
functions of the quantum states of the system must be ex-
pressed in a way that matrix elements of Ĥ ep between them
can be evaluated, the energies of the states must be found so
that the δ-function can be evaluated, and Ĥ ep itself must be
approximated.

The full quantum state of the system is written as a
product state. Lower-case Roman letters refer to electronic
states, which depend explicitly on the electron coordinates
and implicitly on the nuclear coordinates, while upper-case
letters refer to vibrational states, which depend explicitly on
the nuclear coordinates and implicitly on the electronic state:
|iI〉 = |i〉|I〉. This is the Born-Oppenheimer approximation;
if the electronic states used are eigenstates for fixed atomic
coordinates, as in this work, one has the static approximation
[58]. We further approximate the electronic states as Slater
determinants of Kohn-Sham (KS) orbitals; then Ĥ ep connects
states that differ by at most one orbital. Note that at least
one of the electronic states is not the ground state, so there is
an implicit independent-particle approximation (i.e., excited-
state effects are neglected by using ground-state Kohn-Sham
orbitals and eigenvalues) at this stage. The energies EiI of
the states are similarly taken to be the sum of electronic
and vibrational energies. The former is estimated using DFT
calculations that provide the orbitals, the details of which are
given below. The latter are computed in a one-dimensional
approximation in which a single effective phonon coordinate
Q mediates the transition of interest [52] (in our case, the
capture or release of an electron from a Tl dopant). This
is a major approximation that reduces the high-dimensional
phonon problem to a soluble 1D problem and permits a key
advance of the current work: the avoidance of the harmonic
approximation. The use of an effective 1D phonon space has
been tested by Alkauskas et al. [59]. The nuclear dynamics
are then determined (separately for each electronic state) by
the 1D Schrödinger equation for a particle moving on an
adiabatic potential energy surface (PES) computed within
DFT in a given electronic configuration. Hence the (1D) vibra-
tional wave functions depend on the electronic state. Within
this framework, linearizing the electron-phonon interaction
Hamiltonian (not the effective PES) in Q around Q = Q0 gives
the total electron-phonon matrix element in the form

〈iI||Ĥ ep| f F 〉 = 〈i|∂Ĥ ep

∂Q
| f 〉〈I|Q − Q0|F 〉

= Wi f 〈I|Q − Q0|F 〉. (2)
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The electronic part is further approximated as

Wi f = (ε f − εi )〈i| ∂ f

∂Q

〉 = (ε f − εi )
∂

∂Q
〈i(Q = Q0)| f (Q)〉.

(3)

As indicated, the derivative is evaluated at Q = Q0, consis-
tent with the static approximation. The effective vibrational
coordinate is related to locations of the atoms by [52]

Q2 =
∑

l

ml ( �Rl − �R0l )
2, (4)

where ml and �Rl are, respectively, the mass and position of
the atom at site l , and �R0l is the position of the atom at site l
in a reference state corresponding to Q = Q0. The �R0l and �Rl

are found by minimizing the energy of appropriate supercells
or cluster models as described below. The sum runs over the
entire crystal, but due to the localized nature of the trapped
state, �Rl − �R0l tends to �0 as the distance between the lattice
site l and the site of the Tl atom grows. In practice, we restrict
all sums over l either to the cluster model being used for
the electronic structure (when using local basis sets) or the
first supercell (when using periodic boundary conditions). Q0

corresponds to the state at which the expression is evaluated.
The choice of Q0 is discussed in Refs. [52,53]; in this work,
we choose to evaluate Eq. (3) in the trapped state: Q0 = Qmax.
Note that Eq. (2) is symmetric with respect to exchange of
the initial and final states, but the symmetry is broken by
the approximation of Eq. (3), which arbitrarily places the
derivative on | f 〉 and not |i〉. We checked the results presented
below by computing (ε f − εi )〈i| ∂ f

∂Q 〉 and (εi − ε f )〈 f | ∂i
∂Q 〉 for

the relevant orbitals (the choice of which is discussed below),
finding agreement to better than 0.2%.

To relate estimates of trapping and detrapping time based
on Eq. (1) to macroscopic phenomena, we assume the elec-
tronic system is in a definite charge state (Tl+ for trapping,
Tl° for detrapping) and a thermal population of the vibrational
levels of the PES of the charge state. Hence, the final expres-
sion for the transition rate R is

R = gi
2π

h̄

∑
I
wi

I

∑
F

|〈iI|Ĥ ep| f F 〉|2δ(EiI − E f F ), (5)

where wi
I is the Boltzmann occupation factor for the Ith vibra-

tional level of the electronic state i, and gi is the degeneracy
of state i. Since there are eight equivalent [111] directions for
the Tl to move when it traps an electron, and our double-well
treatment of this state accounts for two of these, we set g = 4
for the trapped state. The ground state is nondegenerate, so
g = 1 for the free electron. We further assume bimolecular ki-
netics for electron trapping (free electrons explore the crystal
encountering distributed defects) and unimolecular kinetics
for detrapping (each Tl0 has the same probability to release
its electron per unit time). In particular, for a physical sample
of volume V containing a concentration of nTl+Tl+ atoms
and ne− free electrons in the conduction band resulting in Rc

electron trapping events per unit time per unit volume, we
define the capture coefficient Cc by

Rc = Ccne−nTl+ (6)

and, similarly, the release rate per Tl0 Cr by

Rr = CrnTl0 , (7)

where nTl0 is the concentration of Tl atoms that host trapped
electrons. Hence below we calculate the rates in specific
model systems containing a single Tl site in a given volume
and a single extra electron. From the resulting rates we derive
Cc and Cr . Alkauskas [52] further includes corrections that
account for the modification of the extended (free) states by a
charged defect. In the present case, we neglect these correc-
tions since the Tl+ dopant is an isovalent substituent for the
Na+, and the long-range Coulombic interaction between free
e− and Tl+ is similar to that between free e− and Na+. Hence,
we expect “free” electron states calculated in Tl-containing
models to be fair representations of electron dynamics in the
actual material.

III. METHODS AND APPROXIMATIONS

To calculate the potential energy surface (configuration-
coordinate diagram, or cc-diagram) for the effective 1D
phonon coordinate Q, the electronic transition energy, and the
electron-phonon matrix elements, we use DFT. Two different
formulations are used. The electronic transition energy and
cc-diagram are computed with the VASP code [60–63] using a
64-atom model (2 × 2 × 2 supercell of the conventional eight-
atom halite structure cell with one Na replaced by Tl). All but
the valence electrons (1 per Na, 3 per Tl, and 7 per I atom)
are pseudized using the projector-augmented-wave (PAW)
[64,65] method (and standard VASP-provided PAW datasets)
allowing us to expand the orbitals in basis sets determined by
a 500 eV energy cutoff for each of the 8 k-points composing a
regular 2 × 2 × 2 grid in the Brillouin zone. During structural
relaxations, all atomic coordinates and cell parameters were
varied until the forces were less than 10−3 eV/Å. Electronic
minimizations were converged to 10−6 eV. We refer to these
calculations as plane-wave models (PWMs). We did not in-
clude corrections for the spin-orbit coupling in the valence-
and conduction-band states, which we expect to be weak
based on the slowness of the triplet-to-singlet radiative decay
of (Tl+)* in NaI:Tl (the radiative lifetime is around 200 ns
[33,66,67]). The electron-phonon matrix elements were com-
puted using the NWCHEM package [68]. These calculations
were run for a cluster model (CM), with no periodic boundary
conditions, of 136 atoms (Na67TlI68) arranged in a roughly
spherical shape with radius ∼8 Å, centered on the Tl impurity.
The initial positions were taken from previous work we have
done on NaI [69]. As in that work, we have followed Govind
et al. [70] to mimic the Ewald potential due to the remainder
of the crystal not explicitly represented in our CM with an
array of point charges occupying lattice sites outside the
cluster boundary. During structural relaxations, 42 Na and 42 I
atoms (the atoms further than 6 Å from the cluster center)
on the exterior of the cluster were held fixed (enforcing the
experimental lattice parameter). The remaining 52 atoms were
fully relaxed. The convergence criteria were set (in atomic
units) to 10−5, 10−5, and 10−3/2 for the energy, density, and
gradients, respectively. CRENBL ECP basis sets [71–73] for
Na and I sites, and Stuttgart RLC basis sets [73] for Tl, were
used. Effective core potentials were used to pseudize all but
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FIG. 1. Left: Band gap vs the fraction of explicit exchange included in the xc functional in our CM (blue) and PWM (yellow) calculations.
Right: computed lattice constant a vs band gap for the PWM calculations. The experimental band gap is taken from Ref. [79] while the lattice
constant is from Refs. [79,80]. The functionals are otherwise standard PBE for the remainder of the exchange functional and the correlation
functional, except for the case α = 1, which is Hartree-Fock (HF) theory (i.e., no correlation).

the valence electrons (9 per Na, 3 per Tl, and 7 per I atom).
The CM calculations explicitly included the 2s and 2p Na
electrons, while the PWM calculations did not.

IV. RESULTS AND DISCUSSION

A. Parametrization of the exchange-correlation approximation

Semilocal exchange-correlation (xc) approximations will
not trap an electron on the Tl site [69], so at least some fraction
of nonlocal exchange is needed to obtain even qualitatively
correct behavior. As we will show below, the depth of the
electron trap is sensitive to the xc approximation. Hence, the
specific choice of xc approximation is a central decision for
calculations such as those presented here. We have used the
PBE0 [74–76] xc functional, but we adjusted the fraction α

of explicit exchange [77,78] using the rationale that an xc
approximation that “well”-represents the host material NaI is
a good starting point for calculating the properties of isolated
defects like the TlNa considered here. Using PWMs of pure
NaI (using the primitive cell and converged 8 × 8 × 8 k-point
grids), we calculated the relaxed lattice parameters and KS
gaps (at 	) for α = 1/n, n = 1, 2, 3, 4,∞. The results are
summarized in Fig. 1, which also displays CM calculations
of the KS gap at the fixed, experimental lattice parameter.

The left-hand panel of Fig. 1 shows that the predicted KS
gap is linear in α with a positive correlation between the gap
and α with semilocal PBE (α = 0) exhibiting the DFT gap
problem and α = 1 exhibiting unphysically large exchange
effects. The measured (at room temperature) onset of optical
transitions to the conduction band [79] (composed primarily
of Na s states) is marked with the black horizontal line. The
CM calculations yield a lower slope in the gap versus α

relation, which we attribute to the fixed geometry. We did
not attempt to construct CMs at different lattice constants,
but one could do so. The right-hand panel of Fig. 1 plots the
KS gaps against the relaxed lattice constant for NaI. Room-
temperature experimental data are also shown [80]. Based
on these considerations, we chose α = 1/3 for the capture
and release calculations presented below; we refer to the
resulting xc approximation as PBE01/3. We will describe the
combination of xc and cluster type, which we vary frequently
in this work, with the notation “xc/cluster type” so that

PBE01/3/PWM means a plane-wave model simulated using
PBE01/3 (and all the other settings for VASP described above).
The PBE01/3/PWM gives a lattice parameter of 6.429 Å
(compared to the experimental value of 6.4728 Å [80]) and
a KS gap of 5.989 eV (compared to the measured gap [79] of
5.9 eV).

B. Coordination environment of Tl+ and Tl0 in NaI and
configuration coordinate diagram

Within PBE01/3, we relaxed both CMs and PWMs con-
taining a Tl dopant. As we have found previously [69], the
Tl occupies the Na lattice site with a small expansion of its
host octahedron (the distance between Tl and near-neighbor
I is 3.39 Å compared to a/2 = 3.21 Å NaI in the host mate-
rial). Below we refer to this structure as the Tl-ground-state
structure. To simulate the Tl0 state, we introduced an extra
electron. In the PWMs, which employ periodic boundary
conditions that preclude a charged cell, the extra charge is
compensated by a uniform background charge. We made no
further corrections for the electrostatic interactions between
the periodic images. We justify this approximation by noting
that all energy differences were taken between cells with
the same charge and similar dipole moments, so the leading
corrections to the electrostatics cancel in the differences.
Further, the electrostatic interaction between image charges
is screened. With the extra electron, the lowest energy state
in PBE01/3/PWM is obtained by displacing the Tl dopant
along one of the eight equivalent [111] directions by 0.702 Å
[putting the Tl0 structure at Qmax = 13.53 amu1/2 Å with this
Tl+ state at Q = 0 according to Eq. (4)]. The Tl0 state is
0.242 eV more stable than an extra electron in the Tl-ground-
state structure. In PBE01/3/CM, there is a local minimum
corresponding to the Tl0 state, but it is 0.123 eV higher in en-
ergy than the Tl-ground-state structure (of the PBE01/3/CM).
The reason for this is that the Tl is displaced only 0.545 Å
(Qmax = 11.85 amu1/2 Å) in PBE01/3/CM; we conclude that
the CM is not large enough to accommodate the strain field
associated with the displaced Tl resulting in destabilization
due to compression against the hard wall of the fixed outer
shell of the CM. This conclusion is somewhat counterintu-
itive since the CM actually has more atoms than the PWM
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TABLE I. Distance along the effective phonon coordinate Eq. (4) between the Tl-ground-state structure and the Tl0 structure for several
xc functionals in CM and PWM calculations.

xc functional α QmaxPWM(amu1/2 Å) QmaxCM(amu1/2 Å)

PBE0(=PBE01/4) 0.25 11.47
HSE06 0.25 11.18
PBE01/3 1/3 13.53 11.85
BHH 0.5 12.07
HF 1 12.77

(136 compared to 64). However, fewer of the atoms can move
in the CM (52 compared to 64). Additionally, the periodic
boundary conditions of the PWM are more flexible than the
fixed boundary conditions of the CM. For example, in the
PWM, the displacements along the (111) column that contains
the Tl are all nonzero (with the second-neighbor Na atoms
moving perpendicular to the column). In contrast, in the CM
all (both) the Na in the (111) column containing Tl are fixed,
constraining the near-neighbor I atoms more in the CM than
in the PWM.

Our previous work on this system [69] used the same CMs
employed here to model self-trapped exciton migration in
pure NaI. That work used the Becke half-and-half [81,82]
(BHH) xc functional (α = 1/2) and found good agreement
for predicted absorption and emission energies for the self-
trapped exciton. We also computed the electron trapping using
BHH/CMs. We found Qmax = 12.07 using BHH/CMs. Some
other exchange-correlation functionals were also explored;
results are listed in Table I. We speculate that the off-center
displacement of the Tl and the resulting compressive forces
upon electron trapping are more difficult to accommodate
in CMs than the tensile forces that result when an exciton
self-traps. Simulating the self-trapped exciton using PWMs
is beyond the scope of the current work, but it is certainly a
worthy objective to investigate convergence with respect to
model size, which remains an important issue for calculations
requiring hybrid xc functionals. The local coordination envi-
ronment of the Tl in the ground-state and trapped electron
structures is depicted in Fig. 2.

We then linearly interpolated between the ground-state and
trapped electron structures to produce a sequence of structures
between Q = 0 and Q = Qmax, and we performed single-point
energy calculations starting from orbitals derived from either
the Tl0 state or the Tl-ground-state structure. In both cases,
the extra electron was included. The results of this procedure
produce the cc-diagram, plotted in Fig. 3 for a variety of
approximations. These results show that the trap depth is
sensitive to both the exchange-correlation approximation and
the type of model (CM or PWM) used. Achieving the same
trap depth in a CM as a PWM requires larger α. While
we calculated rough configuration-coordinate diagrams for
a variety of DFT approximations, we only carried out the
trapping rate calculations for PBE01/3 using the PWM.

C. Vibrational levels and wave functions

With the relevant vibrational dynamics around the Tl center
described by an effective 1D Schrödinger equation, the task of
finding the vibrational structure is equivalent to finding the

rotationless states of a single diatomic molecule (with Q
taking the place of the bond length, and the effective 1D
PES taking the place of the interatomic potential in the ra-
dial Schrödinger equation). To compute the vibrational levels
and wave functions for the motion of the effective phonon
coordinate Q, we used the LEVEL [83] program by LeRoy,
which is based on software originally written by Zare [84]
for finding the rovibrational levels of diatomic molecules. The
eigenvalues are searched for by integrating solutions from the
classically forbidden regions at high and low Q toward each
other and adjusting the eigenvalue to eliminate the disconti-
nuity in the slope where the two solutions meet. When an
eigenvalue is found that supports a smooth solution to the
1D Schrödinger equation satisfying the boundary conditions
on both sides of the classically allowed region, the solution is
tabulated, and the code starts searching for a higher eigenvalue
or stops if enough solutions have been found.

This approach requires the values of the PES’s well into
the classically forbidden region, so the computed ab initio
points were extended to high and low Q as follows. First, the
crystal symmetry implies that the 1D PES’s for the trapped

FIG. 2. Calculated local environment of a Tl dopant in NaI using
the PBE01/3 exchange-correlation approximation in plane-wave (top
row) and cluster (bottom row) models without (left column) and
with (right column) a trapped electron. The spin-density isosurfaces
(at 0.001 electrons per cubic angstrom) associated with the trapped
electron are plotted in blue. Na atoms are shown in gold, I atoms in
purple, and the Tl dopant is gray.
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origin of the energy scale is the energy of a free electron in the
ground-state Tl+ structure, and the abscissa is Q, the effective 1D
phonon coordinate. Solid lines are quadratic fits near the appropriate
minimum. See the text for details.

and free states are symmetric about Q = 0 (with motion in
the positive and negative directions moving to Tl0 states
with Tl displacements along two equivalent [111] directions).
Hence reflections through Q = 0 of the directly computed
points on each PES were added. The free state was well fit
by a parabola that was used as the final PES at all Q. For
the trapped state, a finely sampled PES in the range of the
directly calculated points was generated by interpolation via a
cubic spline. The Tl0 PES was extended beyond the computed
data by a parabolic fit determined by the last three points.
This procedure results in a double-well trapped PES that is
symmetric about Q = 0 and has continuous derivatives up to
the second one. The final PES’s are displayed in Fig. 4.

The vibrational levels (labeled by the single quantum num-
ber v � 0) belonging to the trapped and free PES’s were then
found numerically. The reflection symmetry implies that the
levels can be classified by parity with the wave function for
each state having zero in either the function value (v odd) or
the first derivative (v even) at Q = 0. We searched for solu-
tions starting with the correct behavior at Q = 0 with various
trial eigenvalues until all the symmetric and antisymmetric
levels were found. A horizontal line between the classical
turning points in the harmonic approximation is drawn at
the vertical coordinate corresponding to the eigenvalue of
every 20th level beyond v = 2 for both the trapped and free
surfaces, as shown in Fig. 4. The final calculations presented
here considered 297 vibrational levels of the trapped PES
spanning 0.84 eV. The free electron state was described with
201 vibrational levels spanning 1.15 eV. The harmonic level
spacing in the free state is 45.8 cm−1 (5.68 meV) and falls in
the upper part of the acoustic modes of the NaI host material,
consistent with the large mass of Tl compared to the Na that
it substitutes. The deep levels of the trapped PES are doubly
degenerate and have spacings around 23.48 cm−1 (2.91 meV),
while the levels above the barrier have close to the same
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FIG. 4. Final configuration-coordinate diagram used for calcula-
tion of the vibrational structure. The ×’s mark explicitly calculated
points (and agree with the green ×’s in Fig. 3), the curved solid lines
are the interpolated/extrapolated adiabatic potential energy surfaces,
and the horizontal solid lines mark every 20th vibrational level
(excluding the v = 0 levels for clarity), drawn between the classical
turning points in the harmonic approximation.

spacing corresponding to the combination of the two separate
wells to form one large well with twice the width.

With the vibrational wave functions determined for both
states, the matrix elements 〈I|Q|F 〉 appearing in Eq. (2) were
determined using numerical quadrature. Since the upper PES
is a parabola, the corresponding vibrational wave functions
are the well-known harmonic-oscillator functions, which are
expressible analytically. However, we treated them numeri-
cally using the same procedures for both the upper and lower
PES’s. As a check on the LEVEL solver, we compared the
first few wave functions to the expected harmonic-oscillator
functions and found excellent agreement. Since Q is an odd
operator, 〈I|Q|F 〉 vanishes unless |I〉 and |F 〉 are of opposite
parity. We chose to evaluate all the matrix elements, using
this parity selection rule as a post hoc numerical check. In
our calculations, the ratio of nearby allowed and forbidden
matrix elements is around 109 (or 18 orders of magnitude in
the transition rate, which is proportional to the square of the
matrix element).

D. Electron-phonon coupling

The final ingredient needed to evaluate the transition rates
is the electron-phonon coupling of Eq. (3). As stated above,
these calculations were done using CMs. Two quantities are
needed to evaluate Eq. (3): the eigenvalues of the initial and
final electron orbitals in the trapped state and the deriva-
tive 〈i| ∂ f

∂Q 〉. We modified the NWChem implementation of
the frontier molecular orbital electron transfer approach of
Farazdel et al. [85] to compute the derivative 〈i| ∂ f

∂Q 〉. In
calculations using local basis sets, the bases are generally
nonorthogonal so that the overlap between two orbitals 〈i| f 〉
is computed using 〈i| f 〉 = c†

i Sc f , where ci and c f are col-
umn vectors of coefficients describing the orbitals in the
basis, and S is the overlap matrix, which coincides with the
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identity matrix for orthonormal bases. To estimate the deriva-
tive 〈i| ∂ f

∂Q 〉 using finite differences, we constructed a combined
geometry in which every atom appears twice: once at the
position corresponding to Q = Qmax and once at the (possi-
bly identical) position corresponding to Q = Qmax + δQ. The
basis sets were similarly combined. The overlap matrix of
the combined geometry (which is now of twice the rank of
the original overlap matrices) was then generated. Overlaps
between orbitals expressed in either geometry could then
be found by using the appropriate block of the combined
overlap matrix. We used δQ = −Qmax/100. The initial and
final electronic orbitals |i〉 and | f 〉 must be determined. The
orbital occupied by the trapped electron is obvious since the
motion of the Tl from its equilibrium Tl+ position to the Tl0

minimum pulls a single occupied Tl p-orbital well into the
gap. The symmetry-breaking of the Tl displacement stabilizes
the trapping orbital with lobes along the soft [111] direction of
NaI, leading to a sensitive dependence of the trapping orbital
shape on Q and a correspondingly large 〈i| ∂ f

∂Q 〉 reflecting the
strong interaction between electrons in this orbital and the
lattice vibrations. This strong interaction explains why Tl is
an effective electron trap in NaI:Tl. This strong trapping be-
havior allows Tl to outcompete other (optically inactive) traps
present in NaI, which leads to the high light yield of NaI:Tl.
The choice of the free electron orbital is more arbitrary. We
choose the conduction-band minimum orbital to describe the
free electron. This orbital is comprised primarily by the s-
orbitals of the Na atoms in the second coordination shell of
the Tl. For the case of trapping thermalized free electrons, the
appropriate initial state to consider is a thermal ensemble of
the empty states |iI〉. The CBM orbital is the only one with
appreciable electron-phonon coupling Wi f within several kBT
of the CBM at room temperature. In the case of detrapping,
the initial state is a thermal population of the levels of trapped
double-well potential shown in Fig. 4. For transitions to occur,
therefore, there must be thermal population of a vibrational
state of the trapped PES with energy at least as large as
the ground vibrational state of the final electronic state.
Figure 5 shows the density of states (DOS) from the region
near the CBM (in both computational settings) along with
sticks to indicate the strength of the electron-phonon coupling
of each state. Most of the unoccupied electronic states have
small couplings because the orbitals do not involve the Tl
or neighboring atoms and hence have little overlap with the
trapping Tl p-orbital. In both cases (trapping and detrapping),
then, we expect the CBM orbital to be the dominant upper
electronic level. Hence, the capture and release coefficients
presented below consider only transitions between the trap-
ping Tl p-orbital and the CBM orbital. Our calculation gives
Wi f = 1.08 × 10−3 eV AMU1/2 Å for the electronic matrix
element between the trapping orbital and the CBM.

E. Electron capture and release rates

The combination
∑

I w
i
I

∑
F |〈I|Q|F 〉|2δ(EiI − E f F ) was

constructed as a function of T (which enters only through the
thermal occupation factors wi

I, which in turn were computed
by direct summation of the vibrational partition function at
each T over the available vibrational states) for trapping
and detrapping cases. The δ-function was approximated by a

−0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4

E rel. to CBM (eV)

Wif CM
DOS CM

DOS PWM

FIG. 5. Electron-phonon matrix elements and density of states
from CM calculations and density of states from PWM calculations
near the conduction-band minimum.

Gaussian of full width at half-maximum (FWHM) 2.5 meV;
the final release rates were tested to make sure they did not
depend sensitively on the width. The final release rate and
electron capture coefficient were then simply obtained from
Eq. (5). These quantities are the primary result of this work
and are plotted in Fig. 6, where they are compared to available
data from the analysis of thermally stimulated luminescence
(TSL) experiments [5,51] and of a kinetic Monte Carlo model
of scintillation [33] fitted to scintillation decay curves. To
explore the sensitivity of these calculations to errors in the
electronic structure, we have plotted results obtained by shift-
ing the trap depth up and down by 0.1 eV (an arbitrary value
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FIG. 6. Capture coefficient (solid lines) and release rate (broken
lines) as a function of temperature. The calculated values, shown in
both panels, are in black. In the left panel, the theoretical release
rate (dotted purple) is compared to Arrhenius curves from thermally
stimulated luminescence measurements by Dietrich et al. [5] and
Gridin et al. [51] as well as an Arrhenius curve resulting from
analysis of scintillation decay curves by Kerisit et al. [33]. In the right
panel, our predictions (purple) are compared to values that we would
obtain if the trapped state was shifted by δE = 0.1 eV (green) or
δE = −0.1 eV (blue) in energy. The capture rate for δE = −0.1 eV
is below the bottom of the graph.
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that we believe is larger than the actual error). This exercise
shows that the results are especially sensitive to shifts toward
a deeper trap (δE < 0), which lower both capture and release
rates by more than four orders of magnitude over the entire
temperature range considered.

1. Release

The calculated release rate exhibits approximately Arrhe-
nius behavior. A fit of the curve to Ae−E/kBT yields A =
(2.37 ± 0.01) × 1011 s−1 and E = 0.2450 ± 0.0001 eV. The
latter is close to, but does not agree with, either the trap depth
(0.242 eV) or the energy difference between the ground vi-
brational states of the trapped and free PES’s (0.241 eV). This
is a textbook thermally activated process: as the temperature
is raised, detrapping commences when there is thermal pop-
ulation in trapped states of high enough energy to transition
into the ground vibrational state of the Tl+ configuration.
We also note that the shape of the lower (Tl0) PES, which
results from the soft nature of the crystal, has a large effect
on the magnitude of the release rates, which is determined
by the tail of the vibrational wave functions that extends to
near Q = 0, where the low-lying Tl+ state wave functions are
nonvanishing. Hence, calculations done in the harmonic ap-
proximation, including Refs. [52,53] and all other theoretical
works of which we are aware, will badly underestimate the
rates in situations such as this one.

The comparison of the release rate to the thermally stim-
ulated luminescence experiments deserves comment. These
experiments are performed by subjecting the cold (T ∼ 10 K)
sample to x rays to develop an initial population of trapped ex-
citations followed by gradual heating. As the sample warms,
thermal detrapping occurs leading to luminescence, which is
measured. There is a large discrepancy in the release rates
reported in Refs. [5] and [51], with Gridin’s larger release
rates (green dash-dot trace in Fig. 6) much closer to the theo-
retical calculations of this work (yellow dots). As discussed in
detail by Gridin, the difference between these curves stems
not from differences in the measured luminescence, but in
the method of analysis. In fact, Gridin presents two analyses
in Ref. [51]. The first uses the same analysis method as
Ref. [5], which consists of fitting the initial rise of the glow
peak resulting from electron release from Tl0 to the Arrhenius
form. The second analysis of Gridin et al. is based on a more
sophisticated model that uses data from the entire glow peak.
Based on simulations of the TSL curves for NaI doped with
three different activators, Gridin et al. deem their estimates
to be some of the most reliable experimental determinations
available for thermal release of electrons from Tl0 in NaI. Our
theoretical simulations agree well with Refs. [5,51] with re-
gard to the shape of the release versus T curve (i.e., Arrhenius
behavior with a trap depth near 0.26 eV). The magnitudes
of the theoretical release rates presented here are greater
than the best available experimental estimates by a factor of
“only” around 14. Given that slight differences in the TSL
analysis change the magnitude of the release rate by a factor
of approximately 44, we consider the agreement with the
whole-peak fitting procedure of Ref. [51] to be fairly good.
It appears that the experimental and theoretical pictures are
converging.
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FIG. 7. Arrhenius fit (yellow line) to the calculated capture coef-
ficient (decorated black curve—same data as the solid purple curve
in Fig. 6).

2. Capture

In contrast to the release processes, which are very well
described by the Arrhenius equation, the capture coefficient
arising from our theoretical treatment is not. In fact, the
capture coefficient curve (solid purple line in Fig. 6) exhibits
a maximum around T = 450 K, decreasing at higher temper-
atures. Even at practically relevant temperatures for γ -ray
detection (i.e., room temperature), our predicted capture co-
efficient is around 10% lower than suggested by an Arrhenius
fit (presented in Fig. 7). We carefully checked that this effect
is not a reflection of unconverged calculations. For example,
removing the highest 100 vibrational levels of the Tl0 state
(the final states for the capture transition) results in a decrease
of the calculated capture rate at T = 1000 K of less than 1%.

The origin of the suppression of capture at high tempera-
tures turns out to be a kind of anharmonic effect arising from
resonance of the vibrational states from the double-well Tl0

PES with the thermally occupied levels of the Tl+ upper state.
Figure 8 shows color intensity plots of the transition strengths
|〈I|Q|F 〉|2. The top panel shows all the states considered; the
bottom panel is zoomed into the region of phase space in
which the transitions occur.

The double-well structure of the lower PES leads to in-
teresting patterns in Fig. 8. States of the lower (Tl0) PES
with v < 92 have eigenvalues below the barrier between
the two wells, and there is a region around Q = 0 that is
classically forbidden for these states. Higher-lying states have
no classically forbidden region between the two wells and are
separated in Fig. 8 from the lower-lying states by a dark band.
The fine checkerboard pattern evident in the bottom panel
results from the parity selection rule discussed above. The
energy-conserving δ-function of Eq. (5) is satisfied for pairs
of upper and lower states marked with green +’s in Fig. 8.
Efficient trapping occurs between pairs of states that have
large transition strengths (indicated by the color scale) and
fall on the line of green +’s. So far, our discussion of Fig. 8
applies equally to trapping and detrapping. The temperature
dependence of the capture rates in our supercell (and hence the
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FIG. 8. Heat map of the squared matrix elements |〈I|Q|F 〉|2
between different vibrational states of the upper (horizontal axis) and
lower (vertical axis) PES’s. The green +’s mark transitions that are
allowed by energy conservation. Since none of the plotted quantities
involves the thermal occupation factors, this figure describes both
trapping and detrapping probabilities.

final capture coefficient) arises from the thermal populations
of the upper states, which correspond to the horizontal axis
in Fig. 8. The strongest transitions that conserve energy have
low vibrational quantum numbers in the upper state. As the
temperature is increased, the thermal occupation of these
states is lowered as they lose occupancy to higher-lying states
that are inaccessible at low T.

Figure 8 clearly shows that fine details of the PES’s
(e.g., the height of the barrier of the lower PES relative
to the minimum of upper state) determine the temperature
dependence of the transition rates through a complicated
interplay between the matrix elements and the locus of

energy-conserving transitions. Figure 3 clearly shows that
such details of the cc-diagram are quite sensitive to the xc
approximation used, underlying the need to have a good
description of the energetics of both initial and final states for
the type of simulations presented here. The right-hand panel
of Fig. 6 can be interpreted in terms of Fig. 8. Errors in the trap
depth shift the locus of energy-conserving transitions up for
shallower traps and down for deeper traps. In particular, the
decrease in capture rate as the trapped state is raised toward
the CBM can be understood by noting that shifting the green
+’s up in Fig. 8 moves them to the less intense parts of the
color map.

V. CONCLUSIONS

We have used state-of-the-art hybrid density functional
theory electronic structure methods, capable of reliably rep-
resenting both extended and localized electronic states, to ex-
plore the adiabatic PES’s involved in transitions of the charge
state of Tl dopants in NaI:Tl. Due to the soft nature of NaI,
we have found significant departures from harmonic behavior.
Numerical methods from gas phase diatomic spectroscopy
have been adapted to the current problem, yielding a method
that can treat PES’s of arbitrary shape. We have implemented
a method to estimate the electron-phonon coupling using a
local-orbital description of the electronic states involved in
trapping and detrapping of electrons on Tl sites. From these
ingredients, we have calculated trapping and detrapping rates
in agreement with available data. Our numerical calculations
elucidate the manner in which the symmetry of the trapping
orbital interacts with the facile motion of the Tl to produce
efficient trapping centers that make NaI:Tl a bright scintillator.
We predict, surprisingly, that the capture rate for electrons
should decrease as T is raised above 450 K. The success of this
work shows that modern electronic structure methods have
the capacity, if used carefully, to treat delicate problems of
microscopic dynamics following excitation, yielding informa-
tion that is difficult to access experimentally.
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