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Effective Floquet Hamiltonian in the low-frequency regime
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We develop a theory to derive effective Floquet Hamiltonians in the weak-drive and low-frequency regime.
We construct the theory in analogy with band theory for electrons in a spatially periodic and weak potential,
such as occurs in some crystalline materials. As a prototypical example, we apply this theory to graphene
driven by circularly polarized light of low intensity. We find an analytic expression for the effective Floquet
Hamiltonian in the low-frequency regime which accurately predicts the quasienergy spectrum and the Floquet
states. Furthermore, we identify self-consistency as the crucial feature effective Hamiltonians in this regime need
to satisfy to achieve high accuracy. The method is useful in providing a realistic description of off-resonant drives
for multiband solid-state systems where light-induced topological band structure changes are sought.
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I. INTRODUCTION

Recent years have seen rapid developments in our un-
derstanding of systems out of equilibrium. Experimental ad-
vances in ultrafast spectroscopy have led to the observation
of Floquet sidebands [1,2], the discovery of light-induced
superconductivity [3,4], and the light-induced anomalous Hall
effect in graphene [5], just to name a few of the most striking
examples. On the theory side, efforts have led to the prediction
of new phases of matter without equilibrium counterparts—
and in some cases subsequent experimental observations.
Examples are Floquet time crystals [6–10] and anomalous
Anderson insulators [11]. Additionally, the potential in situ
manipulation of topological phases by tuning the properties
of the drive has led to a plethora of motivating predictions
[12–30].

In a periodically driven system, we can distinguish three
regimes as a function of the drive frequency � compared with
the bandwidth of the system, W : the high-, mid- (or resonant),
and low-frequency regimes. In the high-frequency regime,
� > W , several theoretical approaches have been developed
and are now widely applied in the field to derive effective
Floquet Hamiltonians capable of capturing the dominant ef-
fects of the periodic drives [31–36]. This is highly desirable
since it allows one to employ many equilibrium techniques to
study systems of interest. In the resonant and low-frequency
regimes, � � W , the high-frequency expansions break down
and one generally needs to resort to numerical approaches.
More recently, efforts to understand the mid- and low-
frequency regimes have led to the use of rotating frames
[37,38] and the development of adiabatic perturbation theories
[39,40], low-frequency perturbation theories in the extended
Floquet-Hilbert space [41–43], and renormalization-group-
like flow equation schemes [44,45]. Despite this progress, a

*Corresponding author: ssss133@googlemail.com
†Corresponding author: rodriguezvega@utexas.edu

systematic theory to derive effective Hamiltonians valid in the
low-frequency regime is still missing.

In this paper, we derive effective Floquet Hamiltonians
in the low-frequency regime characterized by � � W . This
regime is relevant for many experiments, since the use of
low-frequency and low-power drives can reduce unwanted
heating effects in interacting systems. Additionally, it has been
predicted that this regime hosts intriguing unique phenomena
[46–48].

Our approach is general and allows one to obtain ana-
lytic insight into periodically driven systems and provides a
quantitative description. In analogy with a system periodic in
space, we first employ an empty lattice-type approximation to
gain insight into the possible effects of weak periodic drives
in the first Floquet zone, (−�/2,�/2]. Resonances at the
Floquet zone center (ε/� = 0) and edge (ε/� = 1/2) can
be resolved by employing a continued fraction approximation
scheme [49,50]. Here ε is the quasienergy.

II. MODEL

Specifically, to demonstrate our method, we consider
graphene weakly driven with circularly polarized light,
with a time-dependent Hamiltonian of the form H(t ) =∫

BZ dk/(2π )2ĉ†
kh(k, t )ĉk, where the integration over crystal

momentum is defined over the Brillouin zone (BZ), ĉ†
k is the

creation operator, and

h(k, t ) =
(

0 f (k, t )
f ∗(k, t ) 0

)
, (1)

where f (k, t ) = e
ik̃x (t )

2 − i
2

√
3k̃y (t ) + e

ik̃x (t )
2 + i

2

√
3k̃y (t ) + e−ik̃x (t ) is

the kernel in the plane-wave basis. Circularly polarized light
with field strength A is introduced via minimal substitution
as k̃x(t ) = kx − A cos(�t ), and k̃y(t ) = ky − A sin(�t ), where
we work in natural units h̄ = c = e = 1. The exact dynamics
can be obtained by solving the Floquet-Schrödinger equation
[h(k, t ) − i∂t ]φ±(k, t ) = ±ε(k)φ±(k, t ) for the steady states
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φ±(k, t ) = φ±(k, t + 2π/�), and quasienergy ±ε(k) in the
first Floquet zone (−�/2,�/2], using the Floquet evolution
operator U (k, 2π/�) = T exp{−i

∫ 2π/�

0 h(k, s)ds}.
Alternatively, we can exploit the periodicity of the steady

states to define the Fourier series φ±(k, t ) = ∑
n ein�tφ±

n (k),
where φ±

n (k) are the steady-state Fourier modes. Replacing
this in the Floquet-Schrödinger equation, we obtain the equa-
tion

∑
m (h(n−m) + m�δn,m)φ±

m (k) = ±ε(k)φ±
n (k), defined in

the extended Floquet Hilbert space F = H ⊗ I, where H is the
Hilbert space for h(k, t ), and I is spanned by a set of bounded
periodic functions defined over the interval t ∈ [0, 2π/�).

III. TIME ANALOG OF THE EMPTY LATTICE PICTURE

To understand how weak periodic drives of arbitrary fre-
quency impact quantum systems, let us first recall the analo-
gous spatially periodic case. For a Hamiltonian that is time
independent and periodic in space, H(r) = H(r + R), it is
commonly observed [51–53] that even weak periodic poten-
tials lead to the complicated collection of band structures
common in solid-state physics. If we treat interactions with
the lattice as infinitesimally weak, the only effect of a periodic
potential is that momentum space breaks up into periodically
repeating sections called Brillouin zones.

The BZs have shapes that are determined by the lattice
geometry in real space. In each BZ one has repeated a copy
of the energy band of a free electron. These different copies
of the bands from various BZs overlap. The shape of the BZs
then determine where different copies of the electron bands
start and therefore in which way they overlap. This ultimately
leads to a complicated collection of band structures that is
determined by the spatial geometry.

Instead of overlapping different copies of the electron band
structure from different BZs, the same effect is produced if
one takes only one free electron band centered in the first
Brillouin zone—and no copies in the others—and then moves
the contents of the other BZ into the first zone similar to
what is shown in Fig. 1. While this approximation—dubbed
the empty lattice approximation because the spatially periodic
potential is set to zero and only symmetry properties are
kept—is quite crude, it is a good first-order estimate. Indeed,
aluminum is a material where the empty lattice approximation
reproduces band structures quite well (see Ref. [54] for a
band structure that can be compared to the empty lattice
approximation result).

For the time-periodic Hamiltonians, an analogous situation
occurs. One finds multiple copies of the band structure along
the quasienergy axis. These copies could overlap if the drive
frequency � is low enough (lower than the system bandwidth
W ). Similar to the spatially periodic case, reproducing the
effects of multiple intersecting Floquet zones can be done
easily. It is sufficient to apply a shifted modulo function,
defined as Mod(E ,�,−�/2), to the energies to find the
spectrum in the first Floquet zone. The effects of both cases,
spatially and time periodic, are displayed in Fig. 1. One
can clearly observe the development of more complicated
structures in both cases compared with the uniform cases. It
is also important to notice that quite generically this type of
folding leads to band crossings. Only specific properties of a
periodic perturbation can lift the band crossings.

FIG. 1. Visual schematic of zone folding scheme. In the upper
row is a schematic of how the different Brillouin zones are cut apart
vertically and all shifted to the first Brillouin zone. The lower row
shows how the band structure of graphene needs to be cut along the
horizontal direction to find the zero-approximation Floquet bands in
the first Floquet zone.

Let us now analyze how well this approximation captures
the quasienergy band structure for graphene driven by circu-
larly polarized light. In Fig. 2 we compare the empty-lattice-
type approximation to the exact quasienergy bands. One finds
that the results are accurate in many parts of the Brillouin
zone, but important band-gap openings are not reproduced.
It is the subject of the rest of this work to study how to obtain
the correct band-gap openings due time-reversal-symmetry
breaking in graphene irradiated with circularly polarized light.

IV. QUASIENERGIES

For a monochromatic drive, or for a general drive in the
weak-drive limit, characterized by A � 1, the time-dependent
Hamiltonian takes the general form

h(t ) = h0 + Pe−i�t + P†ei�t , (2)
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FIG. 2. Plot of the Floquet quasienergy band structure along a
high-symmetry path in the graphene BZ at � = 1 and A = 0.1.
Black dashed lines indicate the exact solution found by diagonalizing
i log (U (k, T ))/T numerically, where U (k, T ) is the propagator at
time T . In red is the zero driving Floquet approximation.
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where h0 is the static Hamiltonian, and P the first-
harmonic operator. In the extended Floquet-Hilbert (Sambe)
space, the Floquet-Schrödinger equation can be written as
[34,43,44,49,50,55,56]⎛

⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

· · · P† h0 − � P 0 0 · · ·
· · · 0 P† h0 P 0 · · ·
· · · 0 0 P† h0 + � P · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

...
φ−1

φ0

φ1
...

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

= ε

⎛
⎜⎜⎜⎜⎜⎜⎝

...
φ−1

φ0

φ1
...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

This equation can be decoupled [49,50] into an equation for
the first Floquet mode φ0 only. The result is the continued
fraction

heff = h0 + P
1

ε − h0 − � − P 1
ε−h0−2�−··· P

†
P†

+ P† 1

ε − h0 + � − P† 1
ε−h0+2�−··· P

P. (5)

For weak driving, the continued fraction can be truncated
to linear order in P, such that

heff ≈ h0 + P
1

ε − h0 − �
P† + P† 1

ε − h0 + �
P. (6)

For graphene driven by a weak field, defined by A � 1
(a0eA/h̄ � 1 in physical units) of circularly polarized light,
the Hamiltonian to first order in field strength A is monochro-
matic with the same structure as Eq. (2). We find that

P† =
(

0 p+
p− 0

)
,

p± = ±1

2
ie∓ikx

(
1 ± 2e± 3ikx

2 sin

(
1

6

(
3
√

3ky ∓ π
)))

. (7)

Therefore, Eq. (6) can be used to find an effective
energy-dependent Hamiltonian heff (ε) that reproduces the
quasienergy spectrum in the first Floquet zone,

heff (ε) = h0 + A2(M+ + M−), (8)

where

M± = 1

(ε ± �)2 − | f |2
(|p∓|2(ε ± �) f ∗ p∗

− p+
f p− p∗

+ |p±|2(ε ± �)

)
.

(9)

Equation (8) is the main result of this work, which cor-
responds to an analytic expression for the effective Floquet
Hamiltonian valid in the low-frequency limit.

In order to determine the quasienergy spectrum and steady-
state mode φ0, we self-consistently solve the Schrödinger
eigenvalue equation (heff (ε) − ε)φ0 = 0. We remark that by
self-consistency we mean that the Schrödinger equation above
is solved for a fixed value of ε and new eigenvalues ε are found

K M
– 3
– 2
– 1
0
1
2
3

FIG. 3. Plot of the Floquet quasienergy band structure along a
high-symmetry path in the graphene BZ at � = 1 and A = 0.1.
Quasienergies are outside the first Floquet zone and describe only
one unfolded Floquet zone.

that are then reinserted into the Hamiltonian as fixed ε. This
procedure is repeated until self-consistency for ε is reached.
The self-consistency is crucial, since a first-order iterative
approach yields divergences and is therefore unphysical. The
results from such a self-consistent solution are shown in
Fig. 3.

We first notice that the band structure has discontinuities
that correspond to the band-gap opening at the edges of the
first Floquet zone. This becomes clear when we apply the
modulo function to fold the quasienergy bands into the first
Floquet zone, as shown in Fig. 4. We stress that the folding
procedure used to arrive at this plot is important especially
for when we later calculate Chern numbers; simply solving
for φ0 with Hamiltonian (6) is not enough. At the � point,
the quasienergies are given by ε = Mod[±3,�,−�

2 ]. Then,
�-point gap closings at the Floquet zone center and edge
occur at drive frequencies � = 6/(2n) and � = 6/(2n + 1),
respectively, independent of the details of the drive. At the K
(and also K ′, by symmetry), the quasienergy band gap is given
by 	K = √

9A2 + �2 − �. This result is nonperturbative,

K M
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FIG. 4. Plot of the Floquet quasienergy band structure along a
path between high-symmetry points for graphene at � = 1 and A =
0.1. Dashed black lines plot the numerically exact result that is found
by diagonalizing i log (U (k, T ))/T , where U (k, T ) is the propagator
at time T . In red is plotted our approximate result.
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FIG. 5. Overlap between the numeric solution of φ0 for Eq. (4)
with � = 1 and A = 0.1 solved for 20 Floquet modes and our ap-
proximate result plotted along a high-symmetry point in the Brillouin
zone.

and even correctly gives the high-frequency result 	K =
9A2/(2�).

A few remarks are in order. This exercise allowed us to
identify key ingredients an effective Hamiltonian needs to ac-
curately describe the low-frequency regime. Importantly, such
a Hamiltonian necessarily needs to be quasienergy dependent
because this is what allows the occurrence of discontinuities
in the quasienergy band. These are needed because they can
lead to band-gap openings at the edges of the first Floquet
zone; otherwise, applying Mod[ε,�,−�

2 ] to ε would lead
to cusps rather than band gaps. These types of jumps are
nonanalytic in momentum and therefore cannot be captured
by finite-range tight-binding models. We therefore cannot
expect the Magnus expansion or similar expansions to capture
this type of behavior at any finite order.

V. WAVE FUNCTIONS

When studying topological properties of Floquet systems,
it is crucial to find an accurate approximation for all the
components φn of Floquet steady states φ. Now, we outline the
procedure to build the steady states from φ0. Following Refs.
[[49,50]], this can be done by making use of the recursion
relation

(ε + m� − h0)φm = P†φm−1 + Pφm+1. (10)

All components of φ can thus be obtained from φ0. Therefore,
it is sufficient to check if φ0 is well approximated over the
Brillouin zone. This is done in Fig. 5, where Eq. (4) is
numerically solved for 20 Floquet modes, necessary to reach
convergence.

The overlap is almost unity across the whole BZ. It is
useful to realize that Eq. (10) can for weak driving, i.e., small
P, be approximated as

φn = 1

ε + n� − h0
P†φn−1,

φ−n = 1

ε − n� − h0
Pφ−n+1,

(11)

which is consistent with the rest of our approximation and
which we use in the following section to find φ.
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FIG. 6. Overlap between our approximate result and the numeric
solution of φ0 for Eq. (4) with A = 0.2 solved for 16 Floquet modes
(enough for numerical convergence) and averaged over 300 points
along the high-symmetry path � → K → M → �.

In Fig. 6 we plot the overlap between φ0 [for Eq. (4)
truncated at 16 Fourier modes] and its approximate version.
The results were averaged over the high-symmetry path � →
K → M → � to be able to plot them as a function of driv-
ing frequency �. This plot allows one to estimate how low
frequencies can be discussed without losing accuracy for the
approximate wave functions.

From the figure one may see that the approximation allows
us to reach very small frequencies that are slightly smaller
than the small driving strength A before the approximation
begins to deteriorate.

VI. BERRY CURVATURE AND CHERN NUMBER

We next focus on the lower of the two Floquet bands in the
first Floquet zone. Appropriate care must be taken to ensure
that φ0 is restricted to this lower band. The proper proce-
dure to fold the spectrum (see Fig. 1) is crucial. Regardless,
one may then use the standard approach described in Ref. [57]
to calculate the Berry curvature and Chern number, seen in
Fig. 7.

In the plots we see that both our approximation and the
result obtained using the extended space method yield C = 3.
We may therefore state that the effective Floquet Hamiltonian
here derived not only approximates quasienergies well but
is accurate enough to reliably predict topological proper-
ties, such as the Chern numbers. While C is experimentally
observable as stated in Ref. [23], it is not the topological
invariant that defines the bulk-boundary correspondence in
Floquet systems. More detailed discussions of this fact from
an experimental perspective can be found in Refs. [58,59] and
theoretical discussions are found in Refs. [11,13,27]. The ap-
propriate invariants, which predict the number of edge states
in a system with open boundary conditions, can be determined
by following the procedure discussed in Ref. [13] and an
efficient algorithm for its calculation can be found in Ref. [60].
Also it is worth mentioning that the slow convergence of C is
due to the small band gap; indeed if we increase the band gap
by using larger A the quantity converges faster.
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FIG. 7. The Berry curvature F for the lower band in the first
Floquet zone with � = 3.5 and A = 0.2 and using 212 points in k
space to obtain the plot. The plot shows the result obtained via our
approximate method, which is visually indistinguishable from the
result obtained by solving Eq. (4) for three Floquet modes, i.e., for
φ3, . . . , φ−3. In the inset is the numeric result for the Chern number
plotted as a function of k points. The black dashed curve hereby is
the extended space result and the red curve the result obtained via
our approximation.

VII. RELEVANCE TO EXPERIMENTS

The theory presented here is defined in the limit of weak
drives and low frequencies. In the linear regime, the ultrafast

response of the system is usually linearly proportional to the
applied fluence. In principle, there is no lower-limit threshold
for the amplitude strength, and experiments are limited by
the detectable signal-to-noise ratio. Highly specialized high-
sensitivity techniques can allow one to work with fluence as
low as μJ/cm2. With respect to the drive frequency, current
experimental techniques allow one to use frequencies as low
as 0.5 THz. In the case of far-infrared pulses, 65 meV can be
achieved. These experimentally accessible frequencies allow
one to study many materials in the low-frequency, weak-drive
regime. For example, monolayer transition-metal dichalco-
genides (TMDs), of interest for valleytronic applications, have
typical band gaps of the order of 1–2 eV [61]. Additionally,
spin-orbit effects lead to valence- and conduction-band split-
tings on the order of 100 and 10 meV, respectively [62]. The
drive frequencies required for the low-frequency regime are
well within experimental reach.

The weak-drive regime is also within reach. For example,
the typical lattice constant for TMDs is a0 ∼ 3 Å. Then,
a laser fluence f of the order of μJ/cm2, drive frequency
∼15.8 THz (∼65 meV), and laser pulse duration τ = 0.1 ps in
a pump-probe setting gives a0eA/h̄ = a0eE/(h̄�) = 0.25 <

1, well within the reach of current experimental capabilities.
Therefore, we expect that the method introduced here to
derive effective Floquet Hamiltonians will support the pre-
diction and interpretation of experimentally relevant Floquet
systems. Furthermore, this work can form the foundation for
further theoretical studies in the physics of low-frequency
Floquet systems, particularly those involving interactions and
coupling to auxiliary degrees of freedom, such as phonons and
magnons.
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