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Response of a quantum disordered spin system to a local periodic drive
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We consider a one-dimensional spin chain system with quenched disorder and in the presence of a local
periodic drive. We study the time evolution of the system in the Floquet basis and evaluate the fidelity
susceptibility, which is a measure of how a given state changes under a small perturbation, of states to a weak
periodic drive. We demonstrate that the statistical properties of the fidelity susceptibility over different disorder
realizations can be used to identify two phases of the system: (1) the many-body localized phase, in which
the susceptibility exhibits long tails while its average value decreases rapidly as disorder increases, and (2)
the ergodic phase, in which the susceptibility distribution is narrow and its average value weakly depends on
disorder. This distinction in the average value of the susceptibility between the two phases develops readily for
systems with ten or more spins. Therefore, recently built networks of qubits subject to a local drive can simulate
dynamics of a system in the many-body localization regime. We also show that the spin accumulation speed is
correlated with the fidelity susceptibility and can also be used to distinguish the two phases.
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I. INTRODUCTION

Studies of electron localization in disordered systems have
over a half-century history, starting with the seminal work by
Anderson [1]. A system of noninteracting electrons in one
and two dimensions exhibits localization at zero temperature
as follows from the scaling considerations [2]. The role of
electron-electron interactions, however, is ambiguous. The
onset of localization, known as weak localization [3], is de-
stroyed by electron-electron interaction at finite temperatures
[4] as the interaction results in dephasing of electron wave
functions. At the same time, electron-electron interactions
give rise to the Coulomb gap at the Fermi energy, driving the
system to localization [5]. The theory of many-body localiza-
tion (MBL) in disordered many-body systems of interacting
electrons was put forward in the work of Basko, Aleiner,
and Altshuler [6]. Their paper proposed an infinite-order
perturbation theory in the electron-electron interaction and
determined an energy threshold for localization. Below the
threshold, the interactions between electrons cannot facilitate
electron hopping between localized single-electron states and
systems remain localized. As energy of the electron system
increases above the threshold value, a large phase space of the
system allows electrons to rearrange and form an extended
many-electron quantum state. This many-electron quantum
state corresponds to dephasing in a single-electron language.

Further focus of MBL studies was to understand interact-
ing many-body spin systems with random field. Interacting
electrons and spin-1/2 chains are closely related models. The
spinless electron system can be mapped onto an XXZ chain
via Jordan-Wigner transformation [7]. The on-site energy in
the fermionic system corresponds to a random z field in the
spin chain model.

Both fermionic systems and spin chains with disorder have
been shown to exhibit MBL transition [8–15]. This transition
between localized and ergodic regimes can be characterized

via entropy growth [16,17], localization length [17], energy
spectrum [18,19], local integrals of motion [20–24], and
entanglement [16,17,25,26]. In the ergodic phase, the level
statistics obeys a level spacing similar to the Wigner-Dyson
distribution with level repulsion. The dynamic susceptibility
is large. In the localized phase, on the other hand, the Hamil-
tonian of the system shows localized behavior, as the level
spacing is characterized by a Poisson distribution with high
probability to find two levels with a small level separation,
and the dynamic susceptibility vanishes [19,27]. If a system
is prepared in a product state, the entanglement entropy for its
subsystems gets saturated quickly for ergodic regimes, and the
saturation value is given by the Page value, which is propor-
tional to system size L [28,29]. However, in the MBL regime,
the entanglement entropy gets saturated in exponentially long
time [16,17] but the saturation value still scales linearly with
the system size.

The purpose of this paper is to evaluate an experimentally
accessible method to observe MBL phases by using a local
harmonic drive on one of the spins with period τ = 2π/ω. We
present our results for the short time scales when the system
may not have reached its saturation value yet. We consider a
one-dimensional Heisenberg spin chain system with quenched
disorder driven by a local ac field (see Fig. 1). The static
Heisenberg Hamiltonian with the periodic boundary condition
σ (L+1) = σ (1) is given by

H0 =
L∑

l=1

[
Jσ (l )σ (l+1) + hlσ

(l )
z

]
. (1)

Here, σ (l ) is the vector of Pauli matrices for spin at site l .
The on-site fields hl are independent random fields, uniformly
distributed in the range [−W,W ], where W is the disorder
strength of the system. At weak disorder, W � 3J , the sys-
tem is in the ergodic regime and has several characteristics
reminiscent of the conduction phase of a disordered metal.
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FIG. 1. Heisenberg spin-1/2 chain system with quenched disor-
der {hl} in the z direction. {hl} is defined by the uniform distribution
within the interval |hl | � W . W is the disorder strength and the
interaction strength between the nearest neighbors is given by the
unitless parameter J = 1. There is a local ac drive with strength f
on the spin labeled by i = 1 in the x-y plane rotating with drive
frequency ω in the anticlockwise direction.

According to previous numerical studies, the transition from
the ergodic regime to the localized regime takes place at
W = Wc � 3J [8,30]. We use J as a fundamental unit and set
J = 1 throughout the rest of this paper.

The system with Hamiltonian (1) conserves the total z
component of spin,

Sz = 1

2

∑
l

σ (l )
z . (2)

A transverse ac drive is applied to a single spin,

V (t ) = f
[

cos(ωt )σ (1)
x + sin(ωt )σ (1)

y

]
, (3)

which breaks the conservation of Sz. Here, f denotes the
strength of the drive, ω is the drive frequency, and τ = 2π/ω

is the period of the drive.
We investigate the time evolution of the system described

by the time-dependent full Hamiltonian

H (t ) = H0 + V (t ). (4)

We apply Floquet theory to analyze the system’s response
to the periodic drive. Periodic time-dependent Hamiltonians
were also studied in Refs. [22,31–36] using Floquet analysis.
We use exact numerical diagonalization and the time dynam-
ics of the Hamiltonian for a system size L � 18. Further
increase of the system size requires significant increase in
computing power and memory requirements. We perform
an analysis of fidelity susceptibility [37] and change in the
system dynamics of total spin as the strength of disorder
changes from weak to strong. An experimental platform to
study these quantities could be one of the available quantum
hardwares for quantum computing, such as optical lattices
[38], trapped ions [39], Rydberg atoms [40], ultracold atoms
[41], gmon system [42], and fluxonium qubits [43].

Fidelity susceptibility was previously used to study phase
transition [44–48]. In this paper, we study fidelity susceptibil-
ity as a measure of overlap between the two quantum states
|〈ψ f =0|ψ f �=0〉|2 that evolve with or without drive from the
same initial state |ψi〉, where (· · · ) stands for the average over
initial states |ψi〉. For a weak drive, the quantum displacement
is proportional to the fidelity susceptibility. Evolution of an

initial state may follow different paths in the Hilbert space
depending on the phase of many-body systems. An important
factor that defines the quantum displacement between the two
final states is disorder. When the disorder is weak, the distance
between the two final states is large. However, for strong
disorder, localization occurs and the distance vanishes.

The local drive (3) breaks the Sz-conservation law. We
show that spin accumulation in response to the drive could be
a viable experimental method to distinguish between localized
and ergodic regimes. The variance of operator Sz with respect
to an arbitrary quantum state |ψ (t )〉 of the system at time t is

δS2
z (t ) = 〈

S2
z (t )

〉 − 〈Sz(t )〉2, (5)

where 〈A(t )〉 is defined as 〈A(t )〉 ≡ 〈ψ (t )|A|ψ (t )〉. We per-
form an analysis of the statistical properties of the spin
accumulation δS2

z (t ) over disorder realizations. We study the
average of δS2

z (t ) as a function of time t = nτ , where n is
the number of periods. The statistics of spin accumulation is
significantly different for the ergodic and MBL regimes and
the difference between the spin accumulation over time can
be used to distinguish between the two regimes. The change
in δS2

z (t ) after one period can be identified as the total spin
diffusion coefficient. We compare the quantum displacement
at one period with the diffusion coefficient δS2

z (τ ) and show
that they have similar behavior. We analyze the distribution of
the diffusion coefficient for different disorder strengths. The
distributions are different for the MBL and ergodic regimes.
The diffusion coefficient is large and the distribution is narrow
for weak disorder, whereas the diffusion coefficient is small
and the distribution is wide and has a long tail for the strong
disorder.

The paper is organized as follows. In Sec. II, we first
introduce the model and derive a formalism that can be used to
analyze the ac driving scenario for the model within Floquet
theory. In Sec. III, we study the response of the quantum
system by evaluating the quantum displacement between the
evolution of the system with and without an ac drive. Then
in Sec. IV we provide the numerical results for the statistical
properties of the fidelity susceptibility and compare with our
analytical estimations. Finally, in Sec. V we study time dy-
namics and statistical properties of total spin in the z direction.
That provides an experimentally feasible way to distinguish
between ergodic and MBL phases.

II. EVOLUTION IN THE FLOQUET REPRESENTATION

For a periodic drive, the evolution operator U (t = nτ ) after
n periods can be represented as the nth power of the Floquet
operator Uf (τ ) per one period τ = 2π/ω: U (t = nτ ) = U n

f .
The Floquet operator is unitary and has a set of eigenvectors
that form a Floquet basis:

Uf |α〉 = e−i	αt |α〉, (6)

where we use Greek indices to denote the Floquet basis, α =
1, . . . , 2L, and 	α are quasienergies. After n periods of the
drive, the system evolves from its initial state |ψ0〉 to the state

|ψ (nτ )〉 = U n
f |ψ0〉, Uf = e−i	αt |α〉〈α|, (7)

with Uf written in the Floquet basis.

024204-2



RESPONSE OF A QUANTUM DISORDERED SPIN SYSTEM … PHYSICAL REVIEW B 101, 024204 (2020)

To evaluate the Floquet operator, we notice that the trans-
formation

U1(t ) = exp

(
iωt

2

L∑
l=1

σ (l )
z

)
(8)

removes explicit time dependence in the full Hamiltonian of
the system, Eq. (4):

H̃ = U1HU †
1 − iU1U̇

†
1 = H̃0 + f σ (1)

x , H̃0 = H0 − ω Sz.

(9)
After this transformation, the Floquet operator can be defined
as an exponent of the time-independent Hermitian operator,

Uf = exp(−iH̃τ )U1(τ ) = (−1)L exp(−iH̃τ ). (10)

We notice that for f = 0, the Floquet states |α〉 and eigenvec-
tors of stationary Hamiltonian H̃0 as well as quasienergies 	α

and energies Ẽi coincide:

〈i|α f =0〉 = δiα, 	α = Ẽα (mod 2π/τ ). (11)

Using Eq. (10), we find that the Floquet basis is simply
given by the eigenstates of the transformed Hamiltonian (9)
[49]. The responses of quantum disordered spin systems to
a local periodic drive [33] and global drive [22,31,32,34–36]
were also studied, where the Hamiltonian is switched between
two different operators periodically in time. Differently, we
consider the local ac drive in this paper.

The effect of a harmonic drive on the state of the system
can be defined by the displacement of this state |ψ f (τ )〉 after
one period of the drive from the free evolution over the period
τ of the same state |ψ0(τ )〉. For an arbitrary initial state |ψi〉,
the state after one period is |ψ f (τ )〉 = Uf |ψi〉 for a harmonic
drive with amplitude f , and |ψ0(τ )〉 = U0|ψi〉, where U0 =
Uf →0 = exp(−iH0τ ). The corresponding overlap between the
two states is measured by the real part of the Fubini-Study
metric and is simply determined by the overlap of these two
states:

Fψi = |〈ψ0(τ )|ψ f (τ )〉|2 = |〈ψi|U |ψi〉|2, (12)

where we introduced a unitary operator

U = U †
0 Uf (13)

representing a mismatch between the evolution of the system
with and without drive. The Fubini-Study metric is known as
quantum geometric tensor in the adiabatic limit. The imag-
inary part of the quantum geometric tensor gives the Berry
curvature. Both real and imaginary parts of the quantum
geometric tensor can be used as susceptibility to measure
phase transitions [50]. Here, to identify phases, we use fidelity
susceptibility for the weak drive, which is defined in the next
section.

We characterize a typical response of an arbitrary state to
the drive over a single period in terms of the overlap Fψi . The
quantum fidelity is given as F = Fψi , where (· · · ) stands for
the average over initial states |ψi〉. The corresponding average,
known as a quantum fidelity between two unitary operations,
is defined in terms of operator U as [51]

F = M + |tr(U )|2
M(M + 1)

, (14)

where M = 2L is the dimensionality of the Hilbert space.
We define quantum displacement between the two final states
after one period as in the following:

ε ≡ 1 − F. (15)

In the weak-drive limit, this quantity is proportional to the
fidelity susceptibility and its analysis is given in the next
section.

We calculate the matrix element of U taken between the
energy eigenstate |i〉 of the static Hamiltonian H0 and the
Floquet state |α〉, which has the form

〈i|U |α〉 = Aα
i exp ( − i(	α − Ei )τ ), Aα

i = 〈i|α〉, (16)

where Aα
i are the overlap amplitudes between energy eigen-

states of the static Hamiltonian and the Floquet states. This
relation leads to the matrix elements of U in the energy
eigenstate basis of H0:

Ui j = 〈i|U | j〉 =
∑

α

exp ( − i(	α − Ei )τ )Aα
i

(
Aα

j

)∗
. (17)

According to this equation, the evolution of the system re-
duces to a search of the components Aα

i of the Floquet states
in the basis of the static Hamiltonian, and the corresponding
eigenenergies and quasienergies. Below we present a numer-
ical evaluation of these matrix elements and argue that the
statistical properties Aα

i change across the crossover from the
ergodic to MBL regimes.

For quantitative analysis of the effect of the drive on the
system, we consider a Hermitian matrix

T = i
1 − U
1 + U (18)

instead of the unitary matrix U . A simple choice of the norm
as ∝ tr(T 2) can be interpreted as the power of the drive
applied to the system. This is especially meaningful in the
limit of weak drive when T is linear in the drive amplitude
f . In its eigenvector basis, the operator U is presented by a
diagonal matrix with elements eiδa (a = 1, . . . , M) and T is
also diagonal with diagonal elements [T ]aa = tan(δ/2). The
norm of T is

tr(T 2) =
M∑

a=1

tan2 δa

2
(19)

and tr(T 2) → ∞ when one of the scattering phases reaches
the unitary limit, δa = π , so that the corresponding eigen-
vector |α〉 of U completely flips just after a single period
of the drive, U |α〉 = −|α〉. This strong effect of the system
states does not necessarily reduce fidelity F in Eq. (14).
However, the system rearrangement over energy states |i〉 of
the stationary Hamiltonian H0 per cycle of the drive becomes
significant if 〈i|α〉 �= 0 for many states |i〉.

Utilizing Eqs. (16) and (18), we can write the system of
linear equations for the Floquet amplitudes Aα

i :∑
j

〈i| tan ((	α − Ei )τ/2) + T
1 − iT | j〉Aα

j = 0. (20)

This equation can be reduced to a hopping problem [33] of a
particle with on-site energy tan ((	α − Ei )τ/2) and hopping

024204-3



ÖZGÜLER, XU, AND VAVILOV PHYSICAL REVIEW B 101, 024204 (2020)

amplitude T between sites in the Hilbert space:[
tan

(	α − Ei )τ

2
+ T

]
|χα〉 = 0, (21)

where |χα〉 = ∑
j (1 − iT )−1| j〉Aα

j is an eigenstate at zero
energy existing for a set of quasienergies 	α of the Floquet
operator Uf . Equation (20) is particularly useful in the limit
of weak drive when it establishes a simple relation between
the Floquet amplitudes Aα

i and hopping amplitudes Ti j , which
is derived in the next section.

III. FIDELITY SUSCEPTIBILITY AT WEAK DRIVE

Two initial same states are evolved under unperturbed and
perturbed Hamiltonians for a period. We calculate the quan-
tum displacement ε given by Eq. (15) between the two final
states after a period, which is independent of the given initial
state and depends only on the mismatch between the energy
eigenstates of the unperturbed Hamiltonian and Floquet basis.
When the drive strength f is small, we can write the Maclaurin
series expansion for the fidelity in Eq. (12) around f = 0:

F = 1 − f 2

2
χF + · · · , (22)

and we neglect the higher-order terms. Here χF is defined
as the fidelity susceptibility and it is the second derivative of
the fidelity with respect to the drive amplitude f [37]. In the
small- f limit, χF can be written in terms of fidelity F :

χF = 2 (1 − F )/ f 2 = 2 ε/ f 2. (23)

Note that χF is proportional to the quantum displacement ε

given by Eq. (15).
In this section, we consider in detail the limit of weak

external drive and take into account only terms that are linear
in drive amplitude f in the hopping matrix T and the unitary
matrix U . First, we expand the operator U , defined by Eq. (13),
to the lowest order in f , and obtain the following expression
for the hopping matrix:

T = − i f τ

2

×
(

σ (1)
x + iτ

[
H̃0, σ

(1)
x

] + (iτ )2

2!

[
H̃0,

[
H̃0, σ

(1)
x

]] + · · ·
)

.

(24)

This expression indicates that the matrix elements of Ti j can
be easily written in the eigenstate basis of Hamiltonian H̃0 in
terms of 〈i|σ (1)

x | j〉. Here we present an alternative derivation
of Ti j . We consider Eq. (20) up to the first order in T and apply
Eq. (11) to find a relation between off-diagonal elements of
matrices Aj �=i

i and Ti j written in the eigenstate basis:

Ti j = iAα→ j
i sin

π (Ẽi − Ẽ j )

ω
eiπ (Ẽi−Ẽ j )/ω. (25)

To the lowest order in f , overlap between Floquet states
and eigenstates of H̃0 can be evaluated from the first-order
perturbation theory as Aα→ j

i �= j = f 〈i|σ (1)
x | j〉/(Ẽi − Ẽ j ). Note

that while the difference between eigenenergies Ei of H0 and
Ẽi of H̃0 are not important in Eq. (25), this difference is

important in the denominator of Aα→ j
i �= j , which represents the

transition between states with different values of total spin
along the z axis, due to absorption or emission of energy h̄ω.
We obtain the following expression for matrix elements of the
hopping matrix in the basis of eigenstates of H0 that coincides
with eigenstates of H̃0:

Ti j = f
〈i|σ (1)

x | j〉
Ẽi − Ẽ j

sin
π (Ẽi − Ẽ j )

ω
eiπ (Ẽi−Ẽ j )/ω. (26)

At weak drive, U = 1 + 2iT − 2T 2 + · · · and we obtain
an expression for the average fidelity:

F = M + M2 − 4M tr(T 2)

M(M + 1)
. (27)

The quantum displacement can be regarded as the average
displacement of the states per period of the drive. In the
expression above, we disregarded terms that contain (Tr{T })2

since Tr{T } vanishes.
We apply Eq. (25) to argue that the quantum displacement,

ε, is a universal, M-independent measure of the effect of
a harmonic drive on the system in either ergodic or MBL
regimes. We write

ε � 1

M

∑
i

∑
α �=i

∣∣Aα
i

∣∣2 =
∑

i P(i)
esc

M
= P(i)

esc, (28)

where P(i)
esc is the escape probability P(i)

esc = 1 − |Ai
i|2 of the

system from initial state |i〉 at long drive time, averaged over
states |i〉.

We can provide a more accurate estimate of quantum
displacement by applying Eq. (26):

ε � π2 f 2

ω2M

∑
i �= j

sin2 (π (Ẽi − Ẽ j )/ω)

[π (Ẽi − Ẽ j )/ω]2

∣∣〈i|σ (1)
x | j〉∣∣2

. (29)

First, we evaluate the average value of quantum displace-
ment over realizations of the random magnetic field for an
ergodic regime of weak disorder W � 3J . At frequencies
of the drive exceeding the mean level spacing we omit the
energy-dependent factor. Also, a typical matrix element for
i �= j can be estimated as

∑
i �= j |〈i|σ (1)

x | j〉|2 � M. So, after
these approximations, we can write the quantum displacement
as

〈〈ε〉〉 ∝ π2 f 2

ω2
, (30)

where 〈〈· · · 〉〉 represents the disorder average throughout the
paper.

In the limit of strong disorder, the distribution of quantum
displacement is more complicated. As we demonstrate below
from numerical analysis, the distribution becomes extremely
wide and its average value actually loses its meaning. More
meaningful is the distribution of the logarithm of quantum
displacement, lg(ε), and its disorder average 〈〈lg(ε)〉〉. The
exponential of 〈〈lg(ε)〉〉 gives the typical value (geometric
mean) for the quantum displacement. Note that lg denotes
log10 throughout the text. The logarithmic distribution is a
common characteristic of strongly disordered, glassy systems
that exhibit a wide hierarchy of scales [52]. In our case, the
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broad distribution is formed due to rival realizations of the
random magnetic field. For some realizations, the spin states
are strongly localized and effectively decoupled from the rest
of the system; for other realizations, the system develops a
resonance between spins in the chain and may result in the
quantum displacement exceeding the average displacement in
the ergodic regime [cf. Eq. (30)].

The contribution from configurations representing local-
ized spins dominates for average values of lg(ε) and results
in monotonically decreasing values of 〈〈lg(ε)〉〉. For localized
states in the case when the local magnetic field for a driven
spin is strong, |h1| � J , the eigenstates |i〉 are factorized and
we can reduce the evaluation of quantum displacement in
Eq. (29) as

ε � f 2

M

M

2

sin2(πh1/ω)

h2
1

|〈↓|σ (1)
x |↑〉|2. (31)

Assuming that the localized configurations give the main
contribution to 〈〈lg(ε)〉〉, we integrate lg(ε) given by Eq. (31)
over uniformly distributed hl and obtain

〈〈lg(ε)〉〉 ∝ 2 lg
J

W
. (32)

We note that our estimates for ε in the limit of weak or strong
disorder are independent of the dimensionality of the Hilbert
space M = 2L [see Eqs. (30) and (32)].

IV. STATISTICAL PROPERTIES
OF THE FIDELITY SUSCEPTIBILITY

In this section, we numerically evaluate the quantum dis-
placement ε, which determines the fidelity susceptibility in
Eq. (23). We choose the drive frequency ω = J for the simu-
lations. We do not expect the results to be very different for
ω comparable to J . As pointed out in Sec. VI, new phases of
matter can arise for large ω, and the limit of small ω can be
studied as a dc perturbation to the Heisenberg Hamiltonian
[19]. We calculate the fidelity directly from Eq. (14) by com-
puting the matrix exponents for evolution matrices U0 and Uf

and, therefore, our computation is not restricted to the weak-
drive limit considered in the previous section. For f � J , we
obtain the bilinear response of ε ∝ f 2 and recover all relations
between the Floquet amplitudes Aα

i , quasienergies, and matrix
elements of σ (1)

x between unperturbed eigenstates of H0 that
we discussed in the previous section. We also observe that the
bilinear regime is satisfied for average values of ε or lg(ε) for
f � J , and choose f = J/

√
10 for analysis of ε at different

values of disorder strength W . This choice of f allows us to
compare some conclusions from the previous section with the
numerical results, and at the same time demonstrates that the
properties of ε remain similar at moderate drive amplitudes,
f � J . At stronger drive, multiphoton processes become im-
portant and their analysis deserve a separate discussion.

First, we study the probability distribution P(ε) at the drive
strength f = J/

√
10 over ensemble realizations of the random

fields {hl} defined by a uniform distribution within the interval
|hl | � W . Because our numerical analysis required evolution
of the matrix exponent and inverting matrices, to reach a
large number of realizations, N = 104, we took the system
size to be L = 12. We present the normalized histograms in
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FIG. 2. (a) Distribution of quantum displacement ε over N = 104

realizations of the random magnetic field hl for a system with L = 12
spins. The top panel shows the distribution of the displacement itself
for W/J = 0.3 (long-dashed blue line), W/J = 3 (short-dashed green
line), and W/J = 30 (solid red line). Distributions for strong disorder
have exponentially large tails. Rare events appear for the strong
disorder. (b) Logarithm of the distribution of ε for the same three
values of disorder as in (a). The dash-dotted line represents the slope
∼10−1/2(lg(ε)) = 1

√
ε. The drive amplitude f = J/

√
10 and ω = J . lg

denotes log10 throughout the text. We scaled the distribution curves
for W/J = 3 by a factor of 2 and for W/J = 30 by a factor of 6.

Fig. 2 for weak, moderate, and strong disorder. As the strength
of disorder increases, the distribution broadens and the peak
shifts to smaller values of ε. However, while more realiza-
tions have smaller values of ε, there are some realizations at
moderate disorder that exhibit ε exceeding maximal values
of ε in a weakly disordered system [see the tail to the right
in Fig. 2(a)]. This behavior becomes even more pronounced
at strong disorder, W = 30J , when the distribution covers
extremely small values of ε, but its tail extends to larger values
of ε than the values found for weak and moderate disorder [see
Fig. 2(b)].

We characterize the distribution in the strong-disorder limit
by lg(ε). In such a logarithmic presentation, it is possible
to fit all distributions of three cases of weak, moderate, and
strong disorder on the same plot, as shown in Fig. 2(b).
At strong disorder, the distribution of lg(ε) shows that, in
most realizations, the quantum displacement is significantly

024204-5



ÖZGÜLER, XU, AND VAVILOV PHYSICAL REVIEW B 101, 024204 (2020)
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−5

−4

−3

−2

−1

0

Disorder, W/J
0.1 1 10 100

lg
(ε

)

FIG. 3. Average of the logarithm of quantum displacement,
lg(ε), as a function of disorder strength W for a spin system of
size L = 8 (circles), L = 10 (squares), and L = 12 (diamonds). The
average is evaluated over N = 103 disorder samples for L = 8, 10,
and 12. The drive amplitude f = J/

√
10 and ω = J . 〈〈 〉〉 denotes the

disorder average throughout the paper.

reduced below its values for the ergodic regime. At the same
time, we find the tail that extends to larger values of ε, which
does not happen at weaker disorder. In these rare events,
quantum displacement ε takes values closer to 1 and our
bilinear analysis is not applicable; in particular, relation (27)
is no longer valid. For realizations with large values of ε,
the system exhibits occasional resonances between spins in
the chain that lead to strong coupling of the drive to the spin
system. In this case, the spin system subject to a drive strongly
deviates from its free evolution.

We plot the distribution of the logarithm of the quantum
displacement in the limit of strong disorder in Fig. 2(b) and
observe that the right slope is consistent with 1/

√
ε. This

behavior implies that the probability distribution function for
ε decays as a power law ∝ (ε)−3/2, and we conclude that
the distribution of quantum displacement is Pareto type. Such
a slow power-law decrease makes the cumulants ill-defined,
including the expectation value, unless the power law has an
upper cutoff. According to Fig. 2(b), the power law terminates
at sufficiently large displacement, making the expectation
value of displacement over disorder sensitive to the rare large
realizations of disorder. This sensitivity to rare fluctuations
of displacement does not allow us to numerically study the
average value of displacement at strong disorder, as even for a
very large number of samples, N � 104, for smaller systems,
L = 6, the average value of displacement does not converge
well.

To characterize the effect of disorder strength on the
quantum displacement, we numerically evaluate the disorder
average of lg(ε), which is shown as 〈〈lg(ε)〉〉. The result
is presented in Fig. 3. We observe that 〈〈lg(ε)〉〉 does not
strongly depend on the system size L, as points for L =
8, 10, and 12 are aligned along the same curve. At weak
disorder, 〈〈lg(ε)〉〉 changes weakly with disorder strength, as

demonstrated by different values of 〈〈lg(ε)〉〉 at the plateaus
for disorder strength corresponding to the ergodic regime with
W � 3J . At stronger disorder, in the localization regime W �
3J , 〈〈lg(ε)〉〉 decreases linearly as ∼2 lg(J/W ), in agreement
with estimate (32).

V. TIME EVOLUTION OF THE TOTAL SPIN

In this section, we describe a technique to distinguish be-
tween ergodic and MBL phases using the total spin projection
in the z direction, Sz, given by Eq. (2). It has been shown that
magnetization can be a probe to distinguish between ergodic
and MBL phases [53]. Here, we study the variance of total
spin in the z direction that gives the measure of localization for
a given state [54]. The total spin projection in the z direction
is a conserved quantum number of H0, Eq. (1). When there
is a local periodic drive perpendicular to the z direction, Sz

is not conserved anymore. The value of Sz with respect to
time depends on the strength of the random field W . For the
variance of Sz given by Eq. (5), δS2

z (t ), we observe different
statistics for the ergodic and MBL phases.

We choose the initial state as a product state with Sz =
0. Such product states can be shown as |ψ〉 = |{σi}〉 with
σi = ±1,

∑
i σi = 0, where +1 represents spin up and −1

represents spin down for even system size L. There are
L!/((L/2)!)2 product states with Sz = 0. For systems of size
up to L = 12, it is computationally feasible to take the average
δS2

z (t ) (product state average is shown by an overbar) over
all product states along with disorder average. For the sizes
beyond L = 12, we took the average over some group of
randomly selected product states. Even a small group of
samples can be useful to identify the phase of the system. By
analyzing statistical dynamics of product states, we can study
the ergodic and MBL phases. By using time dynamics, one
can simulate larger systems compared to the spectral anal-
ysis because exact diagonalization is computationally more
intensive.

Short time growth of δS2
z (t ) can identify the phase of

the system [55]. Figure 4 shows how the average variance
〈〈δS2

z (nτ )〉〉 changes with respect to the number of periods,
n [56]. The average is taken over product states (shown by
the overbar) and disorder (shown by double angle brackets).
In the ergodic regime, the variance changes quickly for the
initial periods and reaches a saturation point for longer times.
For L = 14, the saturation point is reached in less than 100
cycles of drive. For larger systems, it takes more time to reach
the saturation point. One can estimate based on the decreasing
rate of change of the variance with time that it does not
take exponentially long time to reach saturation for systems
with L = 16 and 18 in the ergodic regime. However, in the
MBL regime, the variance increases slowly and, based on the
monotonous increase rate, one can estimate that it takes much
more time to reach a saturation point compared to the ergodic
case. In addition, the variance change in the MBL regime is
less sensitive to the system size than in the ergodic regime. In
Fig. 4(b), we demonstrated for different initial conditions and
product states (Sz = 0 vs ± 1) that one can still distinguish
between ergodic and MBL regimes regardless of the initial Sz

choices. In the MBL regime (W = 5), the spin accumulation
takes almost the same values and the curves are aligned
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FIG. 4. (a) Average δS2
z (t ) as a function of time for a spin system

of size L = 14 (diamonds), L = 16 (squares), and L = 18 (circles).
Curves for W = 1.25 have filled and for W = 5 have unfilled mark-
ers. The averages are performed over 103 realizations of disorder for
all system sizes and 103 product states for L = 14, 150 product states
for L = 16, and 60 product states for L = 18. The overbar shows the
product state average throughout the paper. (b) Average δS2

z (t ) as a
function of time for a spin system of size L = 14 and W = 1.25 or 5.
Results are compared for the initial product state with Sz = ±1 and 0
at t = 0. For all cases, 100 product states and 103 disorder averages
are considered.

with each other. In the ergodic regime (W = 1.25), the spin
accumulations for the three different initial Sz values slightly
differ. The reason for this slight difference between Sz = ±1
is the sine term in Eq. (3), which is an odd function and breaks
the symmetry with respect to the local field rotation direction.

In Fig. 5, we show how the average of logarithm of the
variance, 〈〈lg(δS2

z (τ ))〉〉, changes with respect to the disorder
strength W . Time is fixed at one period, τ . The variance curves
in Fig. 5 show similar properties as the quantum displacement
curves in Fig. 3. δS2

z (t ) changes weakly with disorder strength
at weak disorder (W � 3J), whereas it decreases linearly
with lg(W/J ) at stronger disorder (W � 3J). Similar to the
quantum displacement, δS2

z (t ) also does not strongly depend
on the system size L.

FIG. 5. Average δS2
z (τ ) as a function of lg(W/J ) for a spin

system of size L = 8 (circles), L = 10 (squares), and L = 12 (dia-
monds). Time = one period. f = J/

√
10 and ω = J . The averages

are performed over 104 disorder realizations for L = 8, and over
103 disorder realizations for L = 10 and 12. All product states are
considered for all system sizes for product state averaging.

In Fig. 6, we show the probability distribution of
lg (δS2

z (τ )). The distributions are narrow and the typical value

of δS2
z (τ ) is large at weak disorder, whereas the distributions

broaden and the typical value of δS2
z (τ ) is small at strong

disorder. For the quantum displacement, we showed in the
previous section that the distribution of lg(ε) is a Pareto
distribution. lg (δS2

z (τ )) distributions for strong disorder have

FIG. 6. Distribution of lg(δS2
z ) over N = 103 disorder realiza-

tions of the random magnetic field hl for a system with L = 12 spins
for W/J = 0.3 (long-dashed blue line), W/J = 3 (short-dashed green
line), and W/J = 30 (solid red line). We scaled the distribution curve
for W/J = 30 by a factor of 6. The averages are performed over all
product states of the system.
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FIG. 7. (a) Parameter plot of 〈〈lg(ε)〉〉 and 〈〈lg(δS2
z )〉〉 for a spin

system of size L = 8 (circles), L = 10 (diamonds), and L = 12
(squares). Data points from Figs. 3 and 5 are used. Time = one
period. The drive amplitude f = J/

√
10 and ω = J . There is almost

a linear dependence between the two quantities. (b–d) Scatter plots
of the data for three of the results for L = 12 from (a). W = 1 (red
diamond), W = 3.16 (blue square), and W = 10 (green circle). Each
scatter plot includes 103 unfilled markers, each of which corresponds
to a single disorder realization. Each average value in (b–d) is in a
big black square and is shown by a filled marker of the same type as
the scattered data.

longer tails but not as long as the distributions of quantum
displacement ε. However, it is still possible to distinguish
between localized and ergodic phases based on lg (δS2

z (τ ))
distributions for different disorder strengths even though rare
events do not appear and distribution is spread out in a smaller
range in the strong disorder.

We compare the typical values of the displacement ε

with the spin diffusion coefficient δS2
z (τ ). We demonstrate

the correlation between 〈〈lg(ε)〉〉 and 〈〈lg (δS2
z (τ ))〉〉 by the

parameter plot provided in Fig. 7(a). This behavior of 〈〈lg(ε)〉〉
and 〈〈lg (δS2

z (τ ))〉〉 supports our claim that the total spin
measurement can also be used to identify the localization
properties of the system. We also provide scatter plots in
Figs. 7(b)–7(d) for three of the disorder-unaveraged values
from Fig. 7(a) with W = 1 (ergodic regime), 3.16 (critical
regime), and 10 (MBL regime). The distributions for both
lg(ε) and lg(δS2

z ) are wide in the localized phase with large

disorder strength and the typical values of ε and δS2
z are small.

For smaller W , the distributions get narrower and the typical
values are bigger. We deduce from the shape of the clouds
in the scatter plots in Figs. 7(b)–7(d) that the correlations
between lg(ε) and lg(δS2

z ) are small [57]. However, as we
pointed out, the average values of them are correlated as
shown in the parameter plot in Fig. 7(a).

VI. DISCUSSION AND CONCLUSIONS

We discussed time dynamics of a quantum Heisenberg spin
chain that is subject to a harmonic local drive. We analyzed

the overlap between the states started from the initial states
|ψi〉 and evolved under the Heisenberg Hamiltonian with and
without drive. We observed that, when averaged over |ψi〉, the
quantum displacement after one period ε, given by Eq. (15),
shows different statistical properties with respect to random
field realizations at weak (ergodic) and strong (localized)
disorder. As shown in Figs. 2 and 3, in the ergodic regime the
distribution of the quantum displacement is narrow and nearly
independent of disorder strength, while in the localized regime
the distribution has an exponentially small average value but
a very long power-law tail. The average value of the quantum
displacement is independent of system size, suggesting that
quantum systems with L � 10 spins would be sufficient to
see the distinction between the localized and ergodic regimes
using available quantum hardware [38–43].

We also studied the variance of the operator for total spin
in the z direction δS2

z (t ), given by Eq. (5), for an initial state
prepared as a product spin state with total spin projection
equal to zero. Thus, δS2

z (t ) is a measure of spin accumulation
due to the drive and can be used to measure the speed of
the thermalization in the ergodic and MBL regimes. Both
initialization of this system as a product state of individual
spins in the z direction and measurement of their net spin
projection are basic requirements for quantum hardware, and
experimental studies of crossover from the ergodic to lo-
calized regimes through the spin polarization dynamics are
feasible in available systems similar to those described in
Refs. [38–43].

We calculated the spin accumulation in response to the
drive over time t ; the results are shown in Fig. 4. In
the ergodic regime, the spin accumulation speed is large in the
initial periods and total spin gets saturated rapidly. However,
in the MBL regime, the spin accumulation is slower in the
initial periods and the spins are still drifting in response to
the drive in the longer time limit. The spin accumulation
after one period gives the spin diffusion coefficient δS2

z (τ ).
The behavior of the diffusion coefficient is very similar to
the behavior of quantum displacement ε. As illustrated in
Fig. 5, at weak disorder, the diffusion coefficient is large and
changes weakly with the disorder strength. However, at strong
disorder, the diffusion coefficient decreases linearly with the
logarithm of the disorder strength, lg(W/J ), and eventually
diffusion is broken. The system may show subdiffusive dy-
namics as recently pointed out in Ref. [58]. Furthermore,
the diffusion coefficient does not depend on the system size,
strongly similar to quantum displacement.

Probability distributions for the diffusion coefficient show
different characteristics depending on the disorder strength,
as can be seen in Fig. 6. At weak disorder, the distribution
is narrow and the typical value of the diffusion coefficient
is large. At strong disorder, the distribution is wide and has
a long tail but, unlike the distributions for the quantum dis-
placement, the distribution for the diffusion coefficient does
not have an exponentially long tail and does not exhibit rare
events. However, it is still possible to identify the phase of
the system based on the diffusion coefficient distributions.
The broad distribution of δS2

z (τ ) at strong disorder shows that
this parameter cannot be seen as a one-size-fits-all parame-
ter. In other words, there is a different dynamics at strong
disorder.
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In Fig. 7, we demonstrated that there is a positive correla-
tion between the quantum displacement and spin accumula-
tion. However, we note that flips of a spin have different ef-
fects on the quantum displacement and the spin accumulation.
If a single spin flips, the original and new states, |ψ〉 and |ψ ′〉,
respectively, are orthogonal. That makes the displacement
1 − |〈ψ |ψ ′〉|2 between the states equal to 1. However, in the
large system size (L � 1) limit, one spin flip produces a small
effect for the total spin ∼L in the z direction and therefore
also for the spin accumulation δS2

z (t ). Even though spin flips
have smaller effects on the spin accumulation, there is a clear
difference between the speed of the thermalization for the two
phases as explained above.

Our study was focused on a local harmonic drive with
moderate drive frequency (ω � J). For this frequency, we
observed that thermalization occurs regardless of whether the
system is in the localized or ergodic regimes, which supports
the results of Refs. [32,41,59], and the speed of thermaliza-
tion is different for the two cases. On the other hand, one
could also consider the cases where ω is much smaller or
larger than J . In the limit of ω � J , the time-independent
Hamiltonian Eq. (9) will be similar (with difference of ω Sz) to
the Hamiltonian with dc perturbation considered in Ref. [19].
If the drive frequency is larger than the depth of the local
energy minima, different regimes such as prethermal states
occur [60,61]. Most closed many-body systems tend to heat
up when they are driven. The situation is different for driven
localized systems when many local deep minima appear in

the energy spectrum and prevent thermalization. The system is
prevented from heating up, which can be understood via quan-
tum mechanics of energy levels. If the drive frequency is large,
the system cannot absorb all the energy provided by the drive.
Instead, the energy absorption requires many-body excitations
and slows heating down exponentially [62,63]. Under certain
nonequilibrium conditions of prethermalization, the systems
can exhibit topological phases protected by time-translation
symmetry [64–67] and time crystals where time-translation
symmetry is spontaneously broken [60,61,68–74]. Exploring
statistics of the system responses at high-frequency periodic
drive was not addressed here and is the topic of a separate
study.
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[22] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Phys. Rev.

Lett. 114, 140401 (2015).
[23] A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, Phys. Rev.

B 91, 085425 (2015).
[24] V. Ros, M. Mueller, and A. Scardicchio, Nucl. Phys. B 891, 420

(2015).
[25] A. Nanduri, H. Kim, and D. A. Huse, Phys. Rev. B 90, 064201

(2014).
[26] M. Serbyn, A. A. Michailidis, D. A. Abanin, and Z. Papić, Phys.
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