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We study out-of-time-ordered correlators (OTOC) in a free fermionic model with a quasiperiodic potential.
This model is equivalent to the Aubry-André model and features a phase transition from an extended phase to
a localized phase at a nonzero value of the strength of the quasiperiodic potential. We investigate five different
time regimes of interest for out-of-time-ordered correlators: early, wave front, x = vBt , late time equilibration,
and infinite time. For the early time regime we observe a power law for all potential strengths. For the precursor
time regime preceding the wave front we confirm a recently proposed universal form and use it to extract the
characteristic velocity of the wave front for the present model. A Gaussian waveform is observed to work well in
the time regime surrounding x = vBt , the wave front arrival time. Our main result is for the late time equilibration
regime where we derive a finite time equilibration bound for the OTOC, bounding the correlator’s distance from
its late time value. The bound impose strict limits on equilibration of the OTOC in the extended regime and is
valid not only for the Aubry-André model but for any quadratic model. Finally, momentum out-of-time-ordered
correlators for the Aubry-André model are studied where large values of the OTOC are observed at late times at
the critical point.
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I. INTRODUCTION

Recently out-of-time-ordered correlators (OTOCs) have
experienced a resurgence of interest from different fields of
physics ranging from the black hole information problem
[1] to information propagation in condensed matter systems
[2–9]. The OTOC is of particular interest due to its role in
witnessing the spreading or “scrambling” of locally stored
quantum information across all degrees of freedom of the
system, something traditional dynamical correlation functions
of the form 〈A(t )B〉 cannot. Thus, thermalization must have
information scrambling as a precursor since the thermal state
necessarily will have lost information about any initial state,
although thermalization typically occurs at a significantly
longer timescale [10]. An upper bound for the initial exponen-
tial growth eλLt of the OTOC, with λL � 2πkBT/h̄, has been
conjectured [1]. Models approaching or saturating this bound
are known as fast scramblers, in contrast to many condensed
matter systems which exhibit a much slower growth and
are therefore known as slow scramblers. The introduction
of disorder significantly alters the information spreading, re-
stricting it within a localization length in Anderson insulators
[11] and partially halting the growth of the OTOC in many-
body localized states [3]. The OTOC is directly related to
the Loschmidt echo [5] and is has been established that the
second Renyi entropy can be expressed in terms of a sum
over appropriately defined OTOCs [12]. Any bound that can
be established on the growth of the OTOC therefore implies
a related bound on the entanglement. A further understanding
of the dynamics of quantum information in models with both
extended and localized states is therefore of considerable
interest and our focus here is on understanding how this arises
in the quasiperiodic Aubry-André (AA) model where a critical
potential strength separates an extended and localized phase.

An OTOC is generally written in the form

C(x, t ) = 〈[Â(t ), B̂]†[Â(t ), B̂]〉, (1)

where Â, B̂ are local observables which commute at t = 0
and x is the distance between the observables Â and B̂. If the
observables are both Hermitian and unitary the OTOC can be
re-expressed as

C(x, t ) = 2 − 2Re[F (x, t )], (2)

where

F (x, t ) = 〈Â(t )B̂Â(t )B̂〉. (3)

Often one refers to both F and C as the OTOC. From a
condensed matter perspective the OTOC is a measure of an
operator spreading its influence over a lattice, and quantifies
the degree of noncommutativity between two operators at
different times. If the initially zero C(x, t ) remains nonzero for
an extended period of time we say the system has scrambled.
A closely analogous diagnostic tool, capable of detecting
information scrambling, can be defined in terms of the mutual
information between two distant intervals [13].

From a measurement perspective F (x, t ) can be understood
as a series of measurements. First acting on the state with
operator B̂ at t = 0 and evolving in time to t > 0, then acting
on the state with operator Â, then evolving for time −t <

0. The OTOC is then obtained by calculating the overlap
between the resulting state and the state that is first evolved by
t , then acted upon by A, then evolved by −t , and finally acted
upon by B. Typically in the context of the OTOC one uses
〈· · · 〉 as the thermal average, often at infinite temperature, but
studies in a nonequilibrium setting starting from product states
have also been done [11,14,15]. Out-of-time correlators have
also sparked experimental interest and significant progress
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has been made to reliably measure these quantities [16–20].
The correlators have even been reliably simulated on a small
quantum computer [21] and recently on an ion trap quantum
computer [22].

The dynamics of the OTOC has five important regimes:
early time, the wave front, x = vBt , late time dynamics, and
the infinite time limit. The early time growth of OTOCs
has been of interest as an initial growth of the OTOC that
precedes classical information. If the Hamiltonian is local in
interactions then use of the Hadamard formula (see Ref. [23]
Lemma 5.3) allows one to conclude that in the early time
regime the OTOC grows with a power law in time,

C(x, t ) ∼ t l (x), (4)

where t is small and l (x) is a linearly increasing function
of the distance. The early power-law growth in time occurs
before the wave front hits and is known to be independent of
the integrability of the model [11,14,24–28]. This polynomial
form is also known to be independent of disorder strength and
has been observed to hold in localized regimes [11,14].

More interestingly, the wave front tracks the passage of
classical information in the system. A universal wave front
form has been proposed [29,30], valid for t � x/vB,

C(x, t ) ∼ exp

(
−λL

(x − vBt )1+p

t p

)
, (5)

where λL is the Lyapunov exponent and vB is the butterfly
velocity. Several other forms have been proposed, for a review
see Ref. [29]. The above wave front form, Eq. (5), has been
confirmed in several cases, and even used to show a chaotic
to many-body localization transition [29–33,33–40]. For free
models one can show with a saddle point approximation that
the form from Eq. (5) takes p = 1

2 and vB is the maximal
group velocity of the model [29,30,35]. A particular appealing
feature of Eq. (5) is the appearance of a well-defined butterfly
velocity vB for a large range of models. A recent numerical
study focusing on the random field XX model suggested that
for this disordered model a different form could be made to fit
better over an extended region [11] surrounding x = vBt . This
result suggests further studies are important for understanding
how quantum information is spreading through the system.

The late time dynamics of OTOCs are a similarly rich
regime of interest. Understanding how the function g(t ) =
|C(x, t ) − C(x, t → ∞)|2 decays in time has received atten-
tion in many models. In the case of the anisotropic XY model
the decay of the OTOC to its equilibrium value is an inverse
power law [27,28],

C(x, t ) ∼ 1

tα
+ γ , (6)

where α � 0 depending on the choices of spin operators and
the anisotropy, and γ is the equilibrium value. Other work
has been done on interacting systems where both inverse
power laws were observed for chaotic and many-body lo-
calized phases, and even an exponential decay in time for
Floquet systems [3,15]. However, these results are mostly
numerical, and do not give rigorous bounds or arguments
as to whether or not the OTOC reaches equilibrium and if
it does, to what resolution. Another aspect of the late time
regime, the quantity C(x, t → ∞) in it self, is naturally of

considerable interest. In this setting F (x, t → ∞) is often
chosen as the quantity to study. In the presence of chaos we
expect F to equilibrate to zero, and in other cases settle at
a finite value between zero and one [3,11,12,14,15,27,28,41–
46]. A particularly important case for our purposes are the
noninteracting models where the observables defining the
OTOC are both local in fermionic and spin representations on
the lattice. Here F (x, t ) is expected to initially decay towards
zero, but eventually return to F (x, t ) = 1 and in the presence
of disorder need not decay back to its initial value or even
equilibrate [11,27,28,42,46]. Of course C is then predicted to
follow the opposite behavior, starting at zero then reaching
a maximum. It is also noteworthy that, in the proximity of a
quantum critical point, the OTOC has been shown to follow
dynamical scaling laws [47].

The introduction of disorder, with the potential of lead-
ing to localization, significantly changes the behavior of the
OTOC and propagation of quantum information as a whole.
Naturally, quantum information dynamics is expected to be
dramatically different between localized and extended phases.
We therefore focus on the one-dimensional quasiperiodic
Aubry-André (AA) model [48,49]:

H = −J

2

∑
j

(| j〉〈 j + 1| + H.c.) + λ
∑

j

cos(2πσ j)| j〉〈 j|.

(7)
Here J is the hopping strength and λ is the strength of
the quasiperiodic potential. This model has been extensively
studied [50–59] and since it is quadratic large-scale exact
numerical results can be obtained from the exact solution. In
particular, quench dynamics has recently been studied [60].
Crucially, it is well established that a critical potential strength
λc = J separates an extended and localized regime if σ is
chosen to be the golden mean σ = (

√
5 − 1)/2. For finite

lattices this strictly only holds if the system size is chosen
as L = Fi, with Fi a Fibonacci number, and σ = Fi−1/Fi

approaching the golden mean as i → ∞. A dual model can
then be formulated [48,50] by introducing the dual basis |k̄〉 =
L−1/2 ∑

j exp(i2π k̄σ j)| j〉. λc = J is then the self-dual point.
The extended phase is characterized by ballistic transport as
opposed to diffusive [48]. The nature of the quasiperiodic
potential is also special since no rare regions exists and it
has recently been argued that localization in the AA model is
fundamentally more classical than disorder-induced Anderson
localization [53]. It is possible to realize this model quite
closely in optical lattices and studies of both bosonic and
fermionic experimental realizations have been pursued using
39K bosons [61–63], 87Rb bosons [64], and 40K fermions
[65–67].

The AA model has also recently been studied in the pres-
ence of an interaction term [68,69]. While no longer exactly
solvable, a many-body localized phase can be identified in
studies of small chains [68,69] and by analyzing the OTOC
it has been suggested that an intermediate S phase occurs
between the extended and many-body localized phases with
a power-law-like causal light cone [69].

The structure of this paper is as follows, in Sec. II we dis-
cuss our formulation of the Aubry-André model and describe
the quench protocol we use. In Sec. III we investigate the
dynamics of an out-of-time-ordered correlator in real space
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and break the section into three subsections dedicated to three
dynamical regions of interest. In Sec. III A we show that when
quenching into either the extended, localized, or critical phase
a power-law growth is observed in the early time regime. In
Sec. III B we investigate the discrepancies between [11,29,30]
for times closer to the wave front. Section III C contains a
proof that, in the extended phase of a free model, we expect
the out-of-time-ordered correlator to equilibrate even in the
presence of the quasiperiodic potential. The infinite time value
is also shown to be zero regardless of the strength of the
quasiperiodic potential indicating a lack of scrambling regard-
less of disorder in the extended phase. Finally, in Sec. IV we
investigate OTOCs constructed from momentum occupation
operators and find that they obey a simple functional form.

II. THE MODEL AND OTOCs

As outlined, we focus on the quasiperiodic AA model. We
chose a fermionic representation and write the Hamiltonian as
follows:

Ĥ =
∑
i, j

Mi, j f̂ †
i f̂ j, (8)

where the effective elements of the Hamiltonian matrix M is
filled by Mi, j = − J

2 if |i − j| = 1 and Mj, j = λ cos(2πσ j).
The operators are fermionic so we have { f̂k, f̂l} = { f̂ †

k , f̂ †
l } =

0 and { f̂ †
l , f̂k} = δl,k . All other entries of the effective Hamil-

tonian are zero. Note that this corresponds to open boundary
conditions with nearest neighbor hopping which is the most
convenient for the calculations. The constant σ is the inverse
golden ratio σ = (

√
5 − 1)/2. For the very large system sizes

we use we have not been able to observe any numerical dif-
ference between using L = Fi, σ = Fi−1/L, and using a large
L with σ = (

√
5 − 1)/2 even though the model is strictly no

longer self-dual. For convenience we therefore use the latter
approach. Since the inverse golden ratio is irrational, this cre-
ates a quasiperiodic potential controlled by the value of λ. For
the rest of our discussion we set J = 1 and h̄ = 1. This model
is identical to the Aubry-André model as can be seen through
a series of transformations [48,70]. One can easily diagonalize
and time evolve states in this model, the details of which are
presented in Appendix A. As described above, this model is
known to have a localization transition at a critical point λc =
J . For λ < λc all states are extended, and for λ > λc all states
are localized with localization length ξ = 1

ln λ
[48]. Relaxation

and thermalization following a quench into both extended and
localized phases has recently been investigated in this model
[60]. While most one-body observables thermalize to a gener-
alized Gibbs ensemble in the extended state, and some in the
localized, special dynamics was observed for a quench to the
critical points where the observables investigated did not reach
a clear stationary value in the time intervals investigated. Sim-
ilar quadratic fermionic models have been used to investigate
OTOCs at large system sizes, showing nontrivial behavior of
both nondisordered and disordered OTOC investigations in
integrable models [11,27,71].

The OTOCs we will be interested in are written in the form
Eq. (1) where we choose Â and B̂ such that they commute
at t = 0 and are unitary. The operators being Hermitian and

unitary then obey Eqs. (2) and (3). Because we are talking
about fermionic operators, it makes sense to only consider
operators which are quadratic, and furthermore, we choose to
restrict ourselves to operators that can be expressed as number
operators in real or momentum space. In momentum space the
operators we consider are

ηk := 1√
L

∑
j

eik j f̂ j, (9)

η
†
k := 1√

L

∑
j

e−ik j f̂ †
j . (10)

Where k ∈ 2πm/L with m = 1, 2, . . . , L. These operators
are extremely nonlocal in the real space operators, and for
the case of λ = 0 and periodic boundary conditions, are the
operators which diagonalize M (strictly speaking only when
periodic boundary conditions are used). It has been observed
previously that operators not local in the fermionic represen-
tation show fundamentally different behavior than the local
ones [27]. These however were spin operators, which were
nonlocal in the Jordan-Wigner transform, so investigating
OTOCs with momentum number operators is not entirely an
exact analog.

III. REAL SPACE OTOCs

We start by considering OTOCs based on operators defined
in real space. To be specific we study the following operators:

Â(t ) = 2 f̂ †
L
2
(t ) f̂ L

2
(t ) − 1, B̂ = 2 f̂ †

j f̂ j − 1. (11)

Where we have fixed the location of Â in space at the middle
point of the lattice, and we will vary the location of B̂, so we
can observe the effect of Â spreading over the lattice. The
operators are written with a factor of 2 and a subtraction of
1 to make them unitary. The dynamics and calculations of the
OTOC in this setting is presented in Appendixes A, B, and C.

A. Early time

In this section we explore the early time behavior of the
real space OTOCs. This time regime is characterized by its
first contributing dynamical term, a power law. As seen in
Eq. (C31) the dynamics of the OTOC are dominated by the
squared anticommutator relation of the fermionic operators in
time am,n(t ) [defined in Eq. (A8)]. Here x = m − n. If one sets
λ = 0 and assumes periodic boundary conditions, one finds
that in the thermodynamic limit that the squared anticommuter
behaves as the square of a Bessel function in time (see for
example Appendix C of [29]),

C(x, t ) ∼ |am,n(t )|2 ∼ J2
x (t ), (12)

then in the limit of small t one finds that

C(x, t ) ∼ t2|x|. (13)

For our purposes the derivation sketched above is too
restrictive as we are also interested in nontranslationally
invariant models and our OTOC features more dynamical
terms than just the squared anticommuter. However, the result
Eq. (13) still remains correct even in the presence of nonzero
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FIG. 1. Early time behavior of C(x, t ) at different distances. The
solid curve is the power law and the dotted curved is the data
collected for the OTOC. The system size is L = 1200. Results are
shown for quenches to four different values of λ starting from the
ground state of the model at λ = 0.

quasiperiodic potential. This can be seen through the use of
the Hadamard formula as shown in [11].

We study this prediction by quenching from the half-filled
ground state at λ = 0 to λ = 0.5, 1, 1.5, 2. Our results are
shown in Fig. 1. For a detailed discussion of the starting state
see Appendix B. The results here do not significantly change
if the quench is to the localized phase (λ = 1.5, 2), critical
(λ = 1), or extended phase (λ = 0.5). For all strengths of
the quasiperiodic potential is a power-law behavior observed
following Eq. (13). This results agree with [11] which found
that in an Anderson localized model regardless of the strength
of the localization, if the OTOC significantly grows, then the
polynomial early time growth Eq. (13) is observed to hold.
This follows naturally from the fact that Eq. (13) is indepen-
dent of the potential strength, the first contributing dynamics
to the OTOC are unaffected by the potential term and come
solely from the hopping terms. The early time behavior can
therefore be obtained by studying the λ = 0 case.

B. Classical wave front arrival and precursor time

The arrival time of the classical wave front is defined by
t = x/vB. The time regime where t is larger than the early time
yet significantly smaller than t = x/vB is here called the pre-
cursor time regime. In this section we study the wave front at
different potential strengths in both of these time regimes and
address discrepancies from the results shown in [11,29,30].
Recently the universal form was claimed to be confirmed in
the XX spin chain, contradictory to earlier claims [28]. Here
we discuss these seemingly contradictory claims and observe
that the universal form is most relevant in the precursor time
regime. The universal wave form predicted for the out-of-
time-ordered correlator in free theories by means of a standard
saddle point approximation scheme is given by Eq. (5) in
terms of the Lyapunov exponent λL and the butterfly velocity
vB. Often this form is applied at surprisingly early times
[69] where −50 < log(C) < −10. For the AA model with
λ = 0, corresponding to free fermions, we expect the vB = J
as the maximal group velocity, and p = 1

2 . The universal

FIG. 2. |am,n(t )|2 for λ = 0 (a) and λ = 0.1 (b) plotted with
the fitting functions of the early time form, Eq. (13), the proposed
universal wave form, Eq. (5), and the Gaussian form, Eq. (15).
Results are for a fixed x = 6 with L = 1600 and λ = 0. The vertical
solid line in both panels corresponds to the arrival of the classical
wave front at t = x/vB using the fitted vB.

form Eq. (5) cannot be reexpressed in a form equivalent to
the “Gaussian” form characterized by two spatial and disorder
dependent functions a(x, λ), b(x, λ) proposed in Ref. [11], for
times surrounding x = vBt , for a fixed x = x0:

C(x = x0, t ) ∼ e−a(x,λ)( t2

2 − xt
vB

)+b(x,λ)t
. (14)

We can rewrite Eq. (14) as

C(x = x0, t ) ∼ e−m(x,λ)(t− x
vB

)2+b(x,λ)t
, (15)

where m(x, λ) = a(x, λ)/2.
We expect that the discrepancy is most likely due to the

existence of two unique time regimes that are close together.
To eliminate noise in our OTOC we drop all of the dynamical
terms except the squared anticommutator. which is equivalent
to instead studying the OTOC,

C(x, t ) = tr({ f̂ †
m(t ), f̂n}{ f̂m(t ), f̂ †

n }) ≡ |am,n(t )|2. (16)

To further facilitate the analysis we include a phase φ

in the potential λ cos(2πσ j + φ) and smooth our data by
averaging over φ. Our results are shown in Fig. 2 where
we follow an analysis similar to [36]. By varying both time
and space we fit the OTOC for λ = 0 in the region such
that log (|am,n|2) ∈ [−10,−6]. With this fit we find vB =
0.9950 ± 0.0002, p = 0.50 ± 0.08, and λL = 1.78 ± 0.03 for
the universal form Eq. (5). Where the errors reported are one
standard deviation of the parameter estimate. These values
are in close agreement with the expected values of vB = 1
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FIG. 3. Density plot of t p log(C̃), with C̃ an appropriately nor-
malized OTOC from Eq. (16) and p = 0.6470. Results are shown for
λ = 0.1 and L = 1600. Contour lines are plotted as solid blue lines.
The dashed green line indicates x = vBt with vb = 0.9783 which
appear closely parallel to the contour lines.

and p = 1
2 . Similarly we investigated the λ = 0.1 case for

log (|am,n|2) ∈ [−12,−8] and found vB = 0.9783 ± 0.0003,
p = 0.647 ± 0.03, and λL = 2.153 ± 0.09 for the universal
form Eq. (5). However, these fits correspond to times that sig-
nificantly precede the classical wave front. For larger values
of the potential strength λ, we have found it more difficult to
obtain good fits to the universal form Eq. (5).

At later times the OTOC enters a dynamical regime where
the Gaussian form of Eq. (15) is valid. Fixing x = 6 and
using the vB found for the universal form we find that for
λ = 0 m(x, λ) = 0.3027 ± 0.0001 and b(x, λ) = 0.9470 ±
0.0001. For λ = 0.1 we find m(x, λ) = 0.3052 ± 0.0001 and
b(x, λ) = 0.8597 ± 0.0002.

To further illustrate the universal form Eq. (5), we show in
Fig. 3 results for the entire C(x, t ) over a large range of x and
t for λ = 0.1. As above we have smoothened the data over
the phase φ. We first appropriately normalize C to obtain C̃
and then plot t p log(C̃) using the fitted p = 0.6470. We then
expect that contour lines should be straight lines defined by
x = vbt . This is clearly observed in Fig. 3 although we note
that it is only contour lines for extremely small values of
t p log(C̃) (of the order of −40 to −50) that are completely
parallel to the determined vBt . Although the universal form
of Eq. (5) seems to work well, it is only applicable at times
t � x

vB
.

Let us return to the Gaussian form of Eq. (15), expected
to be valid close to x = vBt . We consider the behavior of the
functions m(x, λ) and b(x, λ) by varying x and fixing vB as
the velocities found fitting the universal wave form. These
functions appear to asymptotically approach a fixed value in
the large x limit. For large x and λ = 0 m(x, λ) ≈ 0.01 and
b(x, λ) ≈ 0.2. For λ = 0.1 we see the values m(x, λ) ≈ 0.008
and b(x, λ) ≈ 0.1. This result is shown in Fig. 4. Errors on
these parameters are on the order of 10−4 or smaller. This
means that taking large values of distance between the two
observables Â and B̂, we may write

C(x, t ) ∼ e−m(t− x
vB

)2

ebt , (17)

FIG. 4. Functions m(x, λ) (a) and b(x, λ) (b) behavior for fixed λ

at different x. Results are shown for no φ averaging and L = 1600.
The dashed green horizontal line corresponds to the observed value
of the function at x = 650 for λ = 0 and the dashed black line to the
value for λ = 0.1.

where m and b are positive constants. Intuitively this corre-
sponds to a Gaussian wave traveling at velocity vB, augmented
by ebt . This form is expected to be valid on the interval
surrounding the passage of classical information around x =
vBt . Hence, this form works rather close to x = vBt . It seems
likely that in interacting systems this might be apparent for
much smaller values of x.

If instead of using the OTOC defined from the anticom-
mutator, Eq. (16), use the full C(x, t ) with a thermal average
where we fixed the inverse temperature β = 1, we find typical
results as shown in Fig. 5 for λ = 0.5. In this case, as is this
case for the remainder of our results, we do not smoothen

FIG. 5. Wave front spreading in both x and t for λ = 0.5, the
center being taken as L

2 . System size L = 1200.
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the data using the phase φ. From Fig. 5 we see that the
velocity predicted from the universal fit, Eq. (5), of vB =
0.838 seems to be a good fit for predicting the spread of
classical information. For larger values of λ we have not found
it possible to use the universal form Eq. (16) in contrast to
recent results by Xu et al. [69]. A possible explanation for
this is that Xu et al. [69] study the behavior of the OTOC in a
thermal state at infinite temperature in an interacting model, a
somewhat different setting.

This section has shed light on the open problem of char-
acterizing the timescales associated with universal wave form
found in Eq. (5). We found that the wave form proposed is
valid after the power law but its propagation precedes the
classical wave front and is quantum in nature. The precise
definition of where one should expect this form to be valid
is still an open question. The Gaussian wave form was further
confirmed to propagate at the butterfly velocity. We would like
to note that the Gaussian wave form has been confirmed in
the Anderson insulator and a random unitary circuit model
[11,72] and wave front results suggest it could be similarly
found in the critical Ising model [27]. The Gaussian wave
form has the advantage of having a well defined dynamical
regime centered around the classical wave front x = vBt .

C. Late and infinite time

It is also interesting to investigate the late time dynamics of
the OTOC. In prior studies it was pointed out that a C(x, t ) ∼
1
t behavior was expected in late time [27,28]. These results
however are for disorder-free models and do not in general
hold for our discussion. So instead we look to analytically
show that these OTOCs indeed go to an equilibrium value
in the late time regime in the extended phase, regardless of
strength of the quasiperiodic potential. To bound this behavior
and prove equilibration we again focus on studying the OTOC
defined in terms of the squared anticommutator, Eq. (16).
From Eq. (A8) this can be written as

C(x, t ) = tr({ f̂ †
m(t ), f̂n}{ f̂m(t ), f̂ †

n }) ≡ |am,n(t )|2

=
∑
k,l

Am,kAn,kAm,l An,l e
i(εk−εl )t , (18)

where x = m − n. The infinite time average is defined as

|ωm,n|2 = lim
T →∞

1

T

∫ T

0
|am,n|2dt, (19)

using the fact that εk = εl ⇔ k = l (this can be seen as a sim-
ple property of M being a tridiagonal matrix having constant
nonzero entries below and above the diagonal, making this
property valid independent of the phase),

|ωm,n|2 =
∑

k

A2
m,kA2

n,k . (20)

From Eq. (20) we can come to the intuitive conclusion that
when the system is extended, in the thermodynamic limit
L → ∞, we expect the infinite time average to go to zero.
The argument for this is as follows. In the extended phase, the
values of Am,k will go like Am,k ∼ 1√

L
. Which leads to

|ωm,n|2 ∼ 1

L
, (21)

approaching zero in the thermodynamic limit. This is opposed
to the localized phase where we expect Am,l ∼ e−|l−m|/ξ , with
ξ the localization length and l = 1, . . . , L [73] (see Lemma
8.1). This makes the infinite time average go like

|wm,n|2 ∼ max
l

e−(|l−m|+|l−n|)/ξ . (22)

Hence the infinite time average of the OTOC is in this case
nonzero within a distance of the order of the localization
length.

Next we focus on bounding the relaxation process in time,
following [74–76]. To study the relaxation we define the
positive function,

gm,n(t ) = ||am,n(t )|2 − |ωm,n|2|2. (23)

Equation (23) can be interpreted as the distance the OTOC is
from its late time value, assuming such a value exists. To be
precise we will work with the time average of the function,

〈gm,n(t )〉T = 1

T

∫ T

0

∣∣∣∣∣∣
∑
k =l

Am,kAn,kAm,l An,l e
i(εk−εl )t

∣∣∣∣∣∣
2

dt, (24)

to make notation easier let α = (k, l ) and

vα = Am,kAn,kAm,l An,l , Gα = εk − εl . (25)

This allows us to instead write the expression as

〈gm,n(t )〉T = 1

T

∫ T

0

∑
α,β

vαvβei(Gα−Gβ )t dt . (26)

We make use of the triangle inequality to make all ele-
ments of the sum positive, and then normalize, defining Q =∑

α |vα| and pα = |vα |
Q ,

〈gm,n(t )〉T � Q2 1

T

∫ T

0

∑
α,β

pα pβei(Gα−Gβ )t dt . (27)

It is important to consider how big Q might be. Trivially, Q �∑
α maxα |vα|. Since this sum over α is quadratic in L and

restricting ourselves to the extended regime, Eq. (25) gives,
maxα |vα| ∼ 1

L2 , it then follows that Q = O(1).
We now introduce the function

ξp(ε) = max
β

∑
α:Gα∈[Gβ ,Gβ+ε]

pα. (28)

In Appendix D we show that the time average can be bounded
using a Gaussian profile, giving

〈gm,n(t )〉T � κπQ2ξp

(
1

T

)
, (29)

where κ ≈ 2.8637. This is the central result of this section.
To better understand the timescales involved it is useful to
further develop this bound in order to obtain a bound on the
timescale for equilibration. To this end we need to bound
the function ξp( 1

T ). Importantly, this function is an increasing
function of its argument and as discussed in [75] it increases
in a no more than linear manner ξp(ε) ∼ ε/σ with σ the
width of the distribution. A function f (x) with such properties
can always be maximized by writing f (x) � ax + f (y) with
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FIG. 6. Numerical example of δ(ε) (a) and a(ε) (b) at different
potential strengths for m = L

2 , n = L
2 + 6, for L = 800.

a = f (y)/(σy) for any y. Then, in order to use this approach
here, we introduce the two functions

a(ε) = ξp(ε)

ε
σG, δ(ε) = ξp(ε), (30)

where σG =
√∑

α pαG2
α − (

∑
α pαGα )2 is the standard de-

viation of our distribution of frequencies. From here on we
assume a(ε) and δ(ε) are implicitly dependent on m, n. Fol-
lowing the above reasoning we can then chose any ε > 0 and
bound ξp( 1

T ) by the linear equation (proposition 5 of [75]):

ξp

(
1

T

)
� a(ε)

σGT
+ δ(ε). (31)

For the purposes of our bound, we wish to choose ε such
that a(ε) ∼ O(1) and δ(ε) ≈ 0. Using Eq. (31) we can rewrite
Eq. (29) as

〈gm,n(t )〉T � κπQ2

(
a(ε)

σGT
+ δ(ε)

)
. (32)

Equation (32) allows us to place an upper bound on the
timescale at which the OTOC equilibrates as

Teq = κπa(ε)Q2

σG
, (33)

assuming δ(ε) is small. While this derivation is valid for both
the extended and localized phases, we expect the bound will
perform poorly in the localized phase due to the observed
large amount of degeneracy in Gα . Now all that is left is to
numerically show that δ(ε) is quite small. In Fig. 6 we show
our results for a(ε) and δ(ε) at different potential strengths.
From these results we can conclude that the bound performs
poorly in the localized regime, and at the critical point of

FIG. 7. Bound from Eq. (29) for potential strengths λ = 0 (a) and
λ = 0.5 (b). Both results were computed with L = 1600 and used
m = L

2 , n = L
2 + 6, L = 1600.

the model, while in the extended regime the bound appears
to perform quite well. For the extended regime it appears we
may pick an a(ε) ∼ O(1) while picking δ(ε) ≈ 0, meaning in
these cases we expect the OTOC to equilibrate to its infinite
time average.

Next we illustrate the bound, Eq. (29), by numerically
evaluating 〈gm,n(t )〉T and ξ ( 1

T ). Our results are shown in Fig. 7
where we see that, as predicted, the time average defined in
Eq. (24) is not only upper bounded by Eq. (29), but as the
time interval T is increase this upper bound decays to zero in
the extended region. Thus, this constitutes equilibration of an
OTOC in both a translationally invariant case (λ = 0), and a
case with a nonzero quasiperiodic potential (λ = 0.5). This
result is expected to hold for λ ∈ [0, λcritical ) where for the
present numerics we have λcritical = 1. Furthermore, we stress
that this result should be applicable to all quadratic models in
their extended phases.

Next we consider relaxation in the infinite time limit
T → ∞. Here the quantity to bound (assuming for simplicity
nondegenerate mode gaps, and excluding the localized and
critical regimes) is

lim
T →∞

〈gm,n(t )〉T =
∑
k =l

A2
m,kA2

n,kA2
m,l A

2
n,l . (34)

From Eq. (34), using A2
m,k ∼ 1

L , we see that with four such
terms and only a quadratic summation over these terms
limT →∞〈gm,n(t )〉T must go to zero in the extended region. To
put this into more rigorous terms we may define the constant
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c = L maxk{A2
m,k, A2

n,k} such that

lim
T →∞

〈gm,n(t )〉T � c4
∑
k =l

1

L4
� c4

L2
, (35)

where c is independent of system size due to the terms√
LAm,k = O(1).

IV. MOMENTUM OTOCs

It has been pointed out that using nonlocal operators in the
real space fermionic picture can lead to the OTOC exhibiting
nonzero late time values in an integrable model [27]. This
was done by investigating the OTOC in the context of the
Ising model, using operators which were local in the spin
representation but nonlocal in the fermionic representation. In
this section we study the out-of-time-order correlators with
momentum number and set

Â(t ) = 2η̂†
π (t )η̂π (t ) − 1, B̂ = 2η̂†

π η̂π − 1. (36)

The OTOC then corresponds to the k = π momentum op-
erator commuting with itself in time. We make this choice
since, although two momenta k and l could be neighbors in
momentum space, this distance is not physical and no wave
front can be defined. The choice of k = π is arbitrary but
sits in the “middle” of momentum space. To distinguish our
results from the previous sections, where real space OTOCs
were discussed, we denote the OTOC Cp(t ) in this section,
suppressing the x dependence of C. The system size through-
out this section is set to L = 400, no significant differences
were observed for systems sizes up to L = 1200.

The momentum OTOCs are studied by quenching from
the ground state of the initial Hamiltonian. This is done in
a manner identically to Sec. III. First we consider quenching
from an initial potential strength λi = 0.

Figure 8 shows Cp(t ) quenched from the ground state of
the Hamiltonian with λi = 0, then quenched and time evolved
with new values of λ f = 0.5, 1, 1.5, 2. Interestingly, the
OTOCs all attain a maximum, at quite early times t < 4,

�0 0.5
�0 1
�0 1.5
�0 2

0 10 20 30 40 50
0

1

2

3

4

t

C p
� t
�

FIG. 8. Cp(t ) plotted from the dynamics of a ground state of a
Hamiltonian characterized by λi = 0 to various final Hamiltonians.
This corresponds to quenching from the extended region into the
critical point at λ = 1, extended phase λ = 0.5, and two examples
of the localized phase λ = 1.5, 2. Results are for L = 400.

�0 0.5
�0 1
�0 1.5
�0 2

0.0 0.5 1.0 1.5

0.05
0.10

0.50
1

lo
g
C p
�t
�

FIG. 9. logCp(t ) plotted from the dynamics of a ground state of
a Hamiltonian characterized by λi = 0 to various final Hamiltonians
characterized by different λ f . These data are then fitted to the func-
tion f (t ) = C exp(at + b/t + c/t2 + d/t3), which is then graphed.
Results are for L = 400.

and then display a slow decay from the largest value. The
localized phase dynamics for potential strengths of λ f = 1.5,
2 clearly show that the momentum OTOC eventually decay
to zero, and oscillate near it. The extended phase oscillates
away from zero, but does not appear to reach it. At the critical
point, λc = 1 pronounced oscillations is observed exceeding
all other λ f . The extended state is characterized by oscillations
around a fixed nonzero with this value rising with λ f as it
approaches λ f = λc.

As can be clearly seen from Fig. 8, the dynamics are
quite complex and it is desirable to understand the asymp-
totic behavior at the wave front, which we can tentatively
define as the first occurrence where C(t ) decreases. Since
the momentum OTOCs are highly nonlocal in real space the
proposed universal form, Eq. (5), is not directly applicable and
we therefore consider an ad-hoc form

f (t ) = C exp(at + b/t + c/t2 + d/t3). (37)

�4 0.5
�4 1
�4 1.5
�4 2

0 10 20 30 40 50
0

1

2

3

4

C p
�t
�

FIG. 10. Cp(t ) plotted from the dynamics of a ground state of a
Hamiltonian characterized by λ = 4 to various final Hamiltonians.
This corresponds to quenching from the extended region into the
critical point at λ = 1, extended phase λ = 0.5, and two examples
of the localized phase λ = 1.5, 2. Results are for L = 400.

024202-8



OUT-OF-TIME-ORDER CORRELATIONS IN THE … PHYSICAL REVIEW B 101, 024202 (2020)

TABLE I. Results of fitting the function f (t ) = C exp(at + b/t + c/t2 + d/t3) seen in Fig. 10. Errors reported are given by the standard
error on the parameter.

λi = 0 a b c d

λ f = 0.5 1.56 ± 0.04 −0.03 ± 0.02 −1.43 ± 0.02 0.150 ± 0.005
λ f = 1 2.81 ± 0.05 −0.49 ± 0.03 −1.28 ± 0.02 0.122 ± 0.003
λ f = 1.5 3.56 ± 0.06 −1.20 ± 0.05 −1.15 ± 0.02 0.099 ± 0.003
λ f = 2 4.20 ± 0.08 −2.17 ± 0.08 −1.09 ± 0.02 0.086 ± 0.003

Results by fitting to the form Eq. (37) are shown in Fig. 9
for several different values of λ f . Extremely good fits are
obtained and we have verified that adding more terms does
not significantly improve the fits. Next we consider a different
quench where we instead start from the localized phase with
λi = 4 and evolve with the four different λ f = 0.5, 1, 1.5, 2.
Our results for this case are shown in Fig. 10. The oscillations
in this case are comparable to quenching from λi = 0 shown
in Fig. 8. However, their quasiperiodicity is much smaller and
less chaotic. Both examples, λi = 0, 4, are characterized by
the same oscillations that appear to never dissipate. However,
the wave front for λi = 4 is nearly identical to the one shown
in Fig. 9 for λi = 0. The same function, Eq. (37), used to fit
the results for λi = 0 can be used to characterize the wave
front for λi = 4 producing extremely high quality fits almost
indistinguishable from the fits shown in Fig. 9. Thus we
conclude that the initial rise of the OTOC goes like Eq. (37) in
both quench scenarios. The form given in Eq. (A9) was also
observed to hold for momentum OTOCs defined in a thermal
state, as well as for initial states in the form of a product state:

|ψ〉 =
∏
l∈S

f̂ †
l |0〉, (38)

where S = {l ∈ N : l mod 2 = 0}. This then allows us to
conclude that this form of the wave front for momentum
OTOCs is rather generic, and does not depend on initial
conditions. The parameters a, b, c, d while being similar are
not generic. To show this in more detail we include a table
of the fitted values of a, b, c, d . We now compare this to the
values found for the thermal OTOC with β = 1. As we can
see from Tables I and II a, b, c, d have similar but different
values. These trends in the parameters remain in the case of
the product state as well. With these results, we find that the
OTOC grows initially according to Eq. (37) but fails to relax
to a fixed value in all cases considered unlike other nonlocal
operators in the fermionic representation.

TABLE II. Results of fitting the function f (t ) = C exp(at +
b/t + c/t2 + d/t3) for a thermal average of the OTOC, β = 1. Errors
reported are given by the standard error on the parameter.

λ a b c d

0.5 1.08 ± 0.05 −0.02 ± 0.02 −1.44 ± 0.03 0.154 ± 0.005
1 2.40 ± 0.04 −0.47 ± 0.02 −1.32 ± 0.02 0.128 ± 0.003
1.5 3.13 ± 0.06 −1.09 ± 0.04 −1.16 ± 0.02 0.100 ± 0.003
2 3.84 ± 0.07 −2.03 ± 0.08 −1.10 ± 0.03 0.087 ± 0.004

V. CONCLUSION

The AA model with a quasiperiodic potential represents
a unique opportunity to investigate quantum information dy-
namics in the presence of a phase transition between an
extended localized phase using exact numerics. Here we
have explicitly demonstrated equilibration of the real-space
OTOCs to zero in the extended phase of the model, a result
that generalizes to any model with quadratic interactions in
an extended regime. The early time behavior of the real-
space OTOCs are largely independent of the strength of the
quasiperiodic potential and follow a simple power law with
a position dependent exponent even in the localized phase.
The regime close to the classical wave front x = vBt has been
shown to propagate as a Gaussian [Eq. (15)] with distance
dependent parameters which converge to constants in the large
distance limit, signifying a fifth time regime of interest for
the OTOC. At earlier times t � x

vB
it is possible to apply the

universal wave form Eq. (5) which is often applied to thermal
OTOCs at infinite temperature. The spreading of information
in momentum space as obtained from analyzing momentum
space OTOCs is significantly more complex and a complete
understanding is currently lacking. Here we propose an ad-hoc
form for the early time behavior of the momentum OTOCs
that seem to work exceedingly well.
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APPENDIX A: TIME EVOLUTION

In this Appendix we review time evolution of free fermions
and present the numerical method required to carry out-of-
quench protocol. For more detailed treatments of the time
evolution of free fermions see [11,79]. We are given in general
a Hamiltonian written in the form

Ĥ =
∑
i, j

Mi, j f̂ †
i f̂ j . (A1)

Where we assume M is real symmetric and thus can be
diagonalized with a real orthogonal matrix A such that M =
ADA†. This solves the model, and we recover new fermionic
operators and a diagonal Hamiltonian,

Ĥ =
∑

k

εkd̂†
k d̂k, (A2)
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where we refer to εk as energy eigenmodes which are the
entries of the diagonal matrix and the corresponding space,
eigenmode space (normal modes is also regularly used). Since
the states we are interested in are Gaussian (product states,
thermal states, ground states), we can completely deduce all
statistics of the model with the occupation matrix. Defining
arbitrary fermionic operators as b̂†

k , b̂l we define the matrix in
b space as

�
(b)
k,l = 〈b̂†

kb̂l〉. (A3)

Where the superscript denotes the space we are describing. In
this paper we refer to real space with f , eigenmode space with
d , and momentum space with p superscripts. Time evolving
individual eigenmodes is easily deduced from Eq. (A2),

d̂k (t ) = e−iεkt d̂k . (A4)

For the creation operators simply take the Hermitian adjoint.
As seen in Eq. (C31), we are interested in time evolving one
or two operators in the expectation value. Thus we see that
evolving the whole matrix in real space we get

�( f )(t, t ) = AeiDt�(d )e−iDt AT . (A5)

Where the double time arguments signify we are time
evolving both the creation and annihilation part. Similarly the
out-of-time correlations in real space can be calculated from

�( f )(t, 0) = AeiDt�(d )AT , �( f )(0, t ) = A�(d )e−iDt AT .

(A6)
From here we can calculate the correlation functions of the
momentum operators given by

ηk := 1√
L

∑
j

eik j f̂ j,

η
†
k := 1√

L

∑
j

e−ik j f̂ †
j .

Then the correlations in momentum space are given by

�
(p)
k,l =

∑
m,n

e−i(mk−nl )�( f )
m,n. (A7)

The time evolution is then found by time evolving �
( f )
m,n in the

desired way. Now all we need to describe is the out-of-time
anticommutation relations. For the real space operators,

{ f̂ †
m(t ), f̂n} =

∑
k

Am,kAn,keiεkt = am,n(t ), (A8)

simply taking the conjugate recovers the relationship where f̂n

is time evolved. We also have { f̂m(t ), f̂n} = { f̂ †
m(t ), f̂ †

n } = 0.
For the momentum operators,

{η†
k (t ), ηp} = 1

L

∑
m,n

e−i(km−pn)( f̂ †
m(t ) f̂n + f̂n f̂ †

m(t ))

= 1

L

∑
m,n

e−i(km−pn)am,n(t ) = uk,p(t ). (A9)

Equation (A9) is simply a discrete Fourier transform of
Eq. (A8). With these pieces we can now calculate the nec-
essary correlators and out-of-time anticommutators for the
OTOC.

APPENDIX B: QUENCH PROTOCOL

We now turn to a discussion of the quench protocol. We
define two Hamiltonians written identically to the one written
in Eq. (A1), with Ĥ (1) and Ĥ (2). We first prepare the ground
state of Ĥ (1) by diagonalizing M (1), let ε

(1)
k be its eigenvalues,

and preparing the eigenmode state with

�
(d,1)
k,l = 〈d̂†

k d̂l〉 =
{

1, k = l ∧ ε
(1)
k < 0,

0, otherwise.
(B1)

Note that in some cases we might have ε
(1)
k = 0 for some

value of k, making the ground state degenerate. We then
choose to construct the ground state which only has negative
eigenmodes occupied and neglect the zero. We then transform
the occupation matrix to real space,

�( f )(0, 0) = A(1)T �(d,1)A(1). (B2)

This gives us the initial correlation functions. Next we imag-
ine suddenly changing the Hamiltonian to Ĥ (2). We can
now find this states representation in the eigenmode of the
new Hamiltonian by using its orthogonal transform �(d,2) =
A(2)T �( f )A(2) Thus the time evolution we are interested in is
written as

�( f )(t, t ) = A(2)eiD(2)t�(d,2)e−iD(2)t A(2)T , (B3)

�( f )(t, 0) = A(2)eiD(2)t�(d,2)A(2)T , (B4)

�( f )(0, t ) = A(2)�(d,2)e−iD(2)t A(2)T . (B5)

This representation allows us to compute statistic we could
be interested in for a Gaussian state.

APPENDIX C: CALCULATING THE OTOCS

Here we present the calculation of the OTOCs in terms of second moments. In all three cases we are interested in: product
states, thermal states, and ground states, are Gaussian. Thus we can use Wick’s theorem to calculate the OTOC. This is done
similarly to [11]. Here we present the derivation for Fb(x, t ) for arbitrary lattice points and fermionic operators. Consider
arbitrary fermionic operators b̂i such that {b̂k, b̂l} = {b̂†

k, b̂†
l } = 0, {b̂†

l , b̂k} = δl,k , and am,n(t ) = {b̂†
m(t ), b̂n}, where we assume

{b̂m(t ), b̂n} = {b̂†
m(t ), b̂†

n} = 0. Then we are interested in the real part of the function,

Fb(x, t ) = 〈(
b̂†

i (t )b̂i(t ) − 1
2

)(
b̂†

j b̂ j − 1
2

)(
b̂†

i (t )b̂i(t ) − 1
2

)(
b̂†

j b̂ j − 1
2

)〉
. (C1)

Adopting the notation n̂i = b̂†
i b̂i and using n̂i(t )2 = ni(t ) we can write

F (t ) = 16
〈
n̂i(t )n̂ j n̂i(t )n̂ j − 1

2 [n̂i(t )n̂ j n̂i(t ) + n̂ j n̂i(t )n̂ j] + 1
4 [n̂ j n̂i(t ) − n̂i(t )n̂ j] + 1

16

〉
. (C2)
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Here we present the derivation for the thermal state, but since all states considered are Gaussian the end result will be

equivalent. Throughout the derivation we abuse the fact that b̂2
i = (b̂†

i )
2 = 0, the out-of-time anticommutation rules, and

assuming that each b̂k is a linear combination of d̂l terms only. Now we can focus on treating each term based on our initial
conditions as before. Let us deal with each term of F (t ) individually. First consider the fourth order correlations,

〈n̂ j n̂i(t ) − n̂i(t )n̂ j〉β. (C3)

Let us derive a rule to contract these fourth moments. Consider

〈n̂i(t )n̂ j〉β = 〈b̂†
i (t )b̂i(t )b̂†

j b̂ j〉β =
∑

m,n,k,l

Ai,kAi,l A j,mAj,nei(εk−εl t )〈d̂†
k d̂l d̂

†
md̂n〉β. (C4)

Using the fact that

�
d,β

k,l = 〈d̂†
k d̂l〉β =

{
1

1+eβεk
, k = l,

0, otherwise,
(C5)

tr(d̂†
k d̂l d̂

†
md̂nρβ ) = δk,l tr(d̂†

md̂nρβ ) + δk,ntr(d̂l d̂
†
mρβ ) − tr(d̂l d̂

†
md̂nd̂†

k ρβ ). (C6)

Using e−βεk n̂k d̂†
k = e−βεk d̂†

k e−βεk n̂k we get

(1 + eβεk )tr
(
d̂†

k d̂l d̂
†
md̂nρβ

) = δk,l tr(d̂†
md̂nρβ ) + δk,ntr(d̂l d̂

†
mρβ ) (C7)

⇒ tr(d̂†
k d̂l d̂

†
md̂nρβ ) = 〈d̂†

k d̂l〉tr(d̂†
md̂nρβ ) + 〈d̂†

k d̂n〉tr(d̂l d̂
†
mρβ ). (C8)

This then gives

〈n̂i(t )n̂ j〉β = 〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β + 〈b̂†
i (t )b̂ j〉β〈b̂i(t )b̂†

j〉β. (C9)

Similarly,

〈n̂ j n̂i(t )〉β = 〈b̂†
j b̂ j〉β〈b̂†

i (t )b̂i(t )〉β + 〈b̂†
j b̂i(t )〉β〈b̂ j b̂

†
i (t )〉β. (C10)

From here we see that

〈n̂ j n̂i(t )〉β − 〈n̂i(t )n̂ j〉β = 〈b̂†
j b̂i(t )〉β〈b̂ j b̂

†
i (t )〉β − 〈b̂†

i (t )b̂ j〉〈b̂i(t )b̂†
j〉β (C11)

= 〈b̂†
j b̂i(t )〉β (ai, j (t ) − 〈b̂†

i (t )b̂ j〉β ) − 〈b̂†
i (t )b̂ j〉β (āi, j (t ) − 〈b̂†

j b̂i(t )〉β ) = ai, j (t )〈b̂†
j b̂i(t )〉β − āi, j (t )〈b̂†

i (t )b̂ j〉β, (C12)

this is however a purely imaginary number and therefore does not contribute to the OTOC. Now the sixth order term,

n̂ j n̂i(t )n̂ j = b̂†
j b̂ j b̂

†
i (t )b̂i(t )b̂†

j b̂ j (C13)

= b̂†
j (ai, j (t ) − b̂†

i (t )b̂ j )b̂i(t )b̂†
j b̂ j (C14)

= ai, j (t )b̂†
j b̂i(t )b̂†

j b̂ j − b̂†
j b̂

†
i (t )b̂ j b̂i(t )b̂†

j b̂ j (C15)

= ai, j b̂
†
j (āi, j (t ) − b̂†

j b̂i(t ))b̂ j + b̂†
j b̂

†
i (t )b̂i(t )b̂ j b̂

†
j b̂ j, (C16)

= |ai, j |2b̂†
j b̂ j + b̂†

j b̂
†
i (t )b̂i(t )(1 − b̂†

j b̂ j )b̂ j,

= |ai, j |2b̂†
j b̂ j + b̂†

j b̂
†
i (t )b̂i(t )b̂ j . (C17)

Then applying the expectation value,

|ai, j |2〈b̂†
i (t )b̂i(t )〉β + 〈b̂†

i (t )b̂†
j b̂ j b̂i(t )〉β = |ai, j |2〈b̂†

i (t )b̂i(t )〉β +
∑

m,n,k,l

Ai,kA j,l A j,mAi,nei(εk−εnt )〈d̂†
k d̂†

l d̂md̂n〉β (C18)

= |ai, j |2〈b̂†
i (t )b̂i(t )〉β +

∑
m,n,k,l

Ai,kA j,l A j,mAi,nei(εk−εnt )(−〈d̂†
k d̂m〉β〈d̂†

l d̂n〉β + 〈d̂†
k d̂n〉β〈d̂†

l d̂m〉β ) (C19)

= |ai, j |2〈b̂†
i (t )b̂i(t )〉β + 〈b̂†

j b̂ j〉β〈b̂i(t )†b̂i(t )〉β − 〈b̂†
j b̂i(t )〉β〈b̂†

i (t )b̂ j〉β. (C20)

Next we look at the other sixth moment,

n̂i(t )n̂ j n̂i(t ) = b̂†
i (t )b̂i(t )b̂†

j b̂ j b̂
†
i (t )b̂i(t ). (C21)

The strategy here is identical, and we arrive at

n̂i(t )n̂ j n̂i(t ) = |ai, j |2b̂†
i (t )b̂i(t ) + b̂†

i (t )b̂†
j b̂ j b̂i(t ). (C22)
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Applying the thermal expectation value,

〈n̂i(t )n̂ j n̂i(t )〉β = |ai, j |2〈b̂†
i (t )b̂i(t )〉β + 〈b̂†

i (t )b̂†
j b̂ j b̂i(t )〉β (C23)

= |ai, j |2〈b̂†
i (t )b̂i(t )〉β + 〈b̂†

j b̂ j〉β〈b̂i(t )†b̂i(t )〉β − 〈b̂†
j b̂i(t )〉β〈b̂†

i (t )b̂ j〉β. (C24)

So we finally need the eighth order term which is made easier by knowing the results from the sixth order terms,

n̂i(t )n̂ j n̂i(t )n̂ j = b̂†
i (t )b̂i(t )(b̂†

j b̂ j b̂
†
i (t )b̂i(t )b̂†

j b̂ j ) (C25)

= b̂†
i (t )b̂i(t )(|ai, j (t )|2b̂†

j b̂ j + b̂†
j b̂

†
i (t )b̂i(t )b̂ j ) (C26)

= |ai, j (t )|2b̂†
i (t )b̂i(t )b̂†

j b̂ j + b̂†
i (t )b̂i(t )b̂†

j b̂
†
i (t )b̂i(t )b̂ j (C27)

= |ai, j (t )|2b̂†
i (t )b̂i(t )b̂†

j b̂ j + b̂†
j b̂

†
i (t )b̂i(t )b̂ j . (C28)

Now, taking the thermal expectation value we can use previous results (the first term is from the fourth moments, and second
from the sixth),

= |ai, j (t )|2(〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β + 〈b̂†
i (t )b̂ j〉β〈b̂i(t )b̂†

j〉β ) + 〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β − 〈b̂†
i (t )b̂ j〉β〈b̂†

j b̂i(t )〉β (C29)

= |ai, j (t )|2(〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β + 〈b̂†
i (t )b̂ j〉β〈āi, j (t ) − b̂†

j b̂i(t )〉β ) + 〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β − 〈b̂†
i (t )b̂ j〉β〈b̂†

j b̂i(t )〉β. (C30)

Grouping everything together finally gives us

Fb(x, t ) = 16|ai, j (t )|2(〈b̂†
i (t )b̂i(t )〉β〈b̂†

j b̂ j〉β − 1
2 (〈b̂†

i (t )b̂i(t )〉β + 〈b̂†
j b̂ j〉β ) + āi, j (t )〈b̂†

i (t )b̂ j〉β − 〈b̂†
i (t )b̂ j〉β〈b̂†

j b̂i(t )〉β
) + 1.

(C31)

Note in the case of product states this form is significantly
reduced and in the case of the ground state, one can simply
drop the thermal expectation values. This form is general and
recovers both cases used in [11].

APPENDIX D: BOUNDING UNIFORM AVERAGE

Here we provide the proof to bound the uniform average
found in Eq. (24). This proof is similar to [74–76] and
is provided here for completeness. Consider the Gaussian
probability density function with average μ = T

2 and standard
deviation σ = αT ,

pG(t ) = 1√
2πα2T 2

e− (t−T/2)2

2α2T 2 , t ∈ R. (D1)

Similarly we define the uniform probability density func-
tion as

pT (t ) =
{

1
T , t ∈ [0, T ],

0, otherwise.
(D2)

Let f (t ) be some positive function of time, then the Gaus-
sian and uniform averages are written

〈 f (t )〉GT =
∫ ∞

−∞
f (t )pG(t )dt and

〈 f (t )〉T =
∫ ∞

−∞
f (t )pT (t )dt . (D3)

We wish to find some constant γ such that for all t ∈ [0, T ],

〈 f (t )〉T � γ 〈 f (t )〉GT . (D4)

This can be made tight by setting the two probability densities
identical to each other at t = T and ensuring the Gaussian is

larger than the uniform distribution on this interval. For the
Gaussian this gives

pG(t = T ) = 1√
2παT

e− 1
8α2 . (D5)

Meaning we can write

〈 f (t )〉T � γ 〈 f (t )〉GT , (D6)

where γ = γ (α) = √
2παe

1
8α2 and α > 0 is a free parameter

we can choose to minimize the constant. Next we introduce
our unitary dynamics to proceed bounding the function,

f (t ) =
∑
α,β

pα pβei(Gα−Gβ )t , (D7)

where pα is a discrete probability distribution such that pα �
0 and

∑
α pα = 1. Then we may write

〈 f (t )〉T = 1

T

∫ T

0

∑
α,β

pα pβei(Gα−Gβ )t dt

� γ√
2πα2T 2

∫ ∞

−∞

∑
α,β

pα pβei(Gα−Gβ )t e− (t−T/2)2

2α2T 2 dt .

(D8)

Let �G = Gα − Gβ . Then each term in the sum is simply the
characteristic function of the Gaussian. Using the well known
identity,

1√
2πα2T 2

∫ ∞

−∞
ei�Gt e− (t−T/2)2

2α2T 2 dt = eiμ�G− σ2�G2

2 . (D9)
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Taking the magnitude of Eq. (D9) we can put everything
together and write

〈 f (t )〉T � γ
∑
αβ

pα pβe− σ2�G2

2 . (D10)

Next we introduce the function

g(x) =
{

1, if x ∈ [0, 1),

0, otherwise.
(D11)

We also need the bound

e−x2 �
∞∑

n=0

e−n2
g(|x| − n) (D12)

we reexpress this as

e−x2 = e( α
2 )−�G2T 2

�
∞∑

n=0

rn2
g(�G2T 2 − n), (D13)

where we must restrict ourselves to the case that e
α
2 > 1 and

where r = e− α
2 . Then

〈 f (t )〉T � γ

∞∑
n=0

rn2
∑
α,β

pα pβg
(
�G2T 2 − n

)
. (D14)

To further break this sum up we may restrict the values of β

based on the definition the values of α. Consider �G2T 2 −

n ∈ [0, 1),

�G2T 2 − n ∈ [0, 1) ⇒ Gβ ∈ I+

=
[

Gα +
√

n

T
, Gα +

√
n + 1

T

)
and

I− =
(

Gα −
√

n + 1

T
, Gα +

√
n

T

]
. (D15)

The length of this interval is upper bounded by
√

n + 1 −√
n � 1, n ∈ N ∪ {0}. Thus we can introduce the function

ξp(x) = max
β

∑
α:Gβ∈[Gβ ,Gβ+x]

pα, (D16)

which allows us to finally write

〈 f (t )〉T � γ

∞∑
n=0

rn2
∑

α

pα

⎛
⎝ ∑

Gβ∈I+

pβ +
∑

Gβ∈I−

pβ

⎞
⎠

� 2γ ξp

(
1

T

) ∞∑
n=0

rn2
, (D17)

then it remains to minimize the constant term. The sum
is related to the elliptic theta function by

∑∞
n=0 rn2 =

1
2 [�3(0, r) + 1], which is convergent for all r < 1. The entire
constant is minimized by α ≈ 0.6347, which gives

〈 f (t )〉T � κπξp

(
1

T

)
, (D18)

where κ ≈ 2.8637. This completes the proof.
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