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We investigate many-body localization in the chain of interacting spins with a transverse power-law interac-
tion, J0/rα , and random on-site potentials, φi ∈ (−W/2,W/2), in the long-range limit, α < 3/2, which has been
recently examined experimentally on trapped ions. The many-body localization threshold is characterized by the
critical disordering, Wc, which separates localized (W > Wc) and chaotic (W < Wc) phases. Using the analysis
of the instability of localized states with respect to resonant interactions complemented by numerical finite-size
scaling, we show that the critical disordering scales with the number of spins, N , as Wc ≈ [1.37J0/(4/3 −
α)]N4/3−α ln N for 0 < α � 1, and as Wc ≈ [J0/(1 − 2α/3)]N1−2α/3 ln2/3 N for 1 < α < 3/2, while the transition
width scales as σW ∝ Wc/N . We use this result to predict the spin long-term evolution for a very large number of
spins (N = 50), inaccessible for exact diagonalization, and to suggest the rescaling of hopping interaction with
the system size to attain the localization transition at finite disordering in the thermodynamic limit of infinite
number of spins.

DOI: 10.1103/PhysRevB.101.024201

I. INTRODUCTION

Many-body localization (MBL) transition separates two
distinguishable kinetic behaviors: The delocalized, chaotic
system acts as a thermal bath for each small part of it [1,2],
while in the localized system its different parts are approxi-
mately independent. In the chaotic phase, energy levels obey
the Wigner-Dyson statistics, while in the localized phase,
they obey the Poisson statistics [3]. The localized phase can
be characterized by related local integrals of motion [4,5]
(see also Refs. [1,6] for review of a more recent progress
in this area). The experimental investigations of many-body
localization [7–13] are carried out in systems of interacting
spins coupled by the long-range interaction, which decreases
with distance according to the power law U (r) ∝ r−α . The in-
teraction exponent, α, can be modified experimentally [7,14],
which helps us to understand the effect of different power-
law interactions on localization. Such systems are of interest
particularly because of their relevance in quantum computing
[9,11], while the ubiquitous power-law interactions are associ-
ated with the presence of dipole, magnetic, or elastic moments
[15–20]. Theoretical studies of these systems include the
investigation of entanglement entropy [21,22], superdiffusive
transport [23], ultrafast propagation of information [24], and
many-body localization in various settings [25–31].

It has been recently shown experimentally [7,32] that the
system of N spins with long-range power-law interactions can
be modeled on trapped ions simulating Hamiltonians of the
form

Ĥ =
∑
i< j

Ji jσ
x
i σ x

j + 1

2

∑
i

(B + φi )σ
z
i , (1)

where Ji j = J0| j − i|−α is the long-range interaction with
a tunable exponent α. Random fields, φi, are uniformly

distributed in the range (−W
2 , W

2 ), with an additional trans-
verse field, B, added to make the system delocalized in the
absence of disordering. The system is expected to be localized
at sufficiently strong disordering, W , where interaction can be
neglected, and the eigenstates are defined by spin projection
operators Sz, which serve as local integrals of motion. The
localization threshold is determined by the critical disordering
Wc such that the states are localized for W > Wc and delocal-
ized otherwise.

Many-body localization breakdown due to the instability
of localized states with respect to resonant long-range interac-
tions has been considered in the earlier work [16,17,33–35],
in models with both off-diagonal (transverse, hopping
σ x

i σ x
j /rα

i j) and diagonal (longitudinal, σ z
i σ z

j /rβ
i j) interactions

with power-law exponents α and β � α, respectively. Similar
premises were used for electronic systems in Refs. [36,37].
According to those considerations, delocalization takes place
in the presence of around one resonance if the diagonal
interaction of resonant transitions exceeds their amplitude.
This consideration led to the dimensional constraint β < 2d ,
for which delocalization always takes place in the thermody-
namic limit of infinite N . Recent papers [28–30] challeng-
ing this constraint possess isotropic interaction. According
to Ref. [14], such interaction leads to a much weaker di-
mensional constraint (β + 2 < 2d), which turns out to be
consistent with the numerical results of Refs. [28,29] (see
discussion of Ref. [29] in Sec. II D).

The argument of resonant interactions [14,17,35] is not
applicable to the system described by Eq. (1) since it lacks
the diagonal interaction. The investigation of the X -Y model
lacking the longitudinal interaction [38] led to a weaker
dimensional constraint, α < 3d/2. The power-law scaling of
the critical disordering, Wc, with the number of spins, N , was
predicted there for d < α < 3d/2.

2469-9950/2020/101(2)/024201(14) 024201-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8244-2851
https://orcid.org/0000-0003-1922-1711
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.024201&domain=pdf&date_stamp=2020-01-07
https://doi.org/10.1103/PhysRevB.101.024201


ANDRII O. MAKSYMOV AND ALEXANDER L. BURIN PHYSICAL REVIEW B 101, 024201 (2020)

The main target of the present work is to determine the
critical disordering in the regime of violated dimensional
constraint α < 3d/2 in the model described by Eq. (1). Using
the analysis of the instability of localized states with respect to
resonant interactions complemented by numerical finite-size
scaling, we express the critical disordering as an algebraic
function of the number of spins, N . This expression can be
used to characterize arbitrarily large spin systems, including
those not accessible for numerical simulations but only for
experimental measurements (N ≈ 50 [10,32]). We demon-
strate that the most efficient delocalization is associated with
resonant spin quartets. The analysis of the localization break-
down by quartets leaves dimensional constraint of Ref. [38]
(α < 3d/2) unchanged but leads to a faster increase of the
critical disordering with the system size. It should be easier
to observe the latter scaling in practice, compared to the
very slow increase of the critical disordering predicted in
Ref. [38], as noticed in Ref. [39]. The localization threshold
is also determined for the power-law interaction with small
exponents 0 < α < 1, which can also be realized in cold ions
[7,10,32].

The recent work [40,41] suggests that the power-law
interaction always breaks down MBL at sufficiently large
system sizes, because of chaotic spots; however, the critical
disordering is expected to increase logarithmically with the
system size [40,42,43]. This dependence is weaker than the
power-law scaling; therefore, the predictions of the present
work for the localization threshold in the case of α < 3d/2
should remain valid.

The paper is organized as following. In Sec. II, we derive
the scaling of the critical disordering with the system size
up to the accuracy of a power law and logarithmic factors,
based on the consideration of the delocalization induced by
resonant spin quartets. The obtained dependence is then used
to suggest rescaling of the interaction constant leading to the
finite localization threshold within the thermodynamic limit of
infinite number of spins. We show that this threshold is stable
with respect to the higher order resonance (sextets, etc.) and
chaotic spots [41].

In Sec. III, we compare numerical results for Ham-
ming distance and level statistics obtained by means of
exact diagonalization with some experimental data [7] and
our analytical predictions, using the latter comparison to
determine numerical factors in the definition of the criti-
cal disordering. We also obtain a universal expression for
the transition width, σW , justifying it both numerically and
analytically.

We summarize our results in Sec. IV and make a prediction
for the Hamming distance in a system of N = 50 spins with
the power-law interaction exponent α = 1. This prediction
can be directly compared to the Hamming distance measure-
ments, as in Ref. [7].

Appendixes A and B include detailed derivations of the
localization threshold due to interacting spin pairs and spin
quartet transition amplitudes. In Appendix C, a detailed de-
scription of numerical fitting is provided. Appendix D covers
differences in averaging over all states, as done for Hamming
distances, and over near zero energy states, as done for the
level statistics.

II. DELOCALIZATION DUE TO
INTERACTING QUARTETS

In a recent paper [38], the many-body localization tran-
sition has been considered within the X -Y model with 1/rα

interaction. The resonances in the pairs of interacting spins
leading to the delocalization has been examined as a potential
source of delocalization, while the longitudinal interaction
between them has been generated in the third order of pertur-
bation theory. This consideration has led to the dimensional
constraint for localization requiring α > 3d/2, which con-
verts to α > 3/2 in the case of interest for d = 1. Here and
in the rest of the paper, we consider one-dimensional systems
except for the few cases targeting the generalization to higher
dimensions.

The scaling of localization threshold has been obtained

in the form Wc ∝ N
α(3−2α)
2(α+1) . Here, we demonstrate that the

interacting resonant transitions of spin quartets lead to more
efficient delocalization and lower critical disordering, Wc. The
consideration is also generalized to the practically significant
case of the smaller power-law interaction exponents 0 < α� 1
[7], where delocalization is also determined by interacting
resonances in spin quartets, as can be seen by comparing the
criteria for spin quartets (derived below) with the criteria for
spin pairs (derived in Appendix A).

A. General definition of the localization threshold

We use the definition of delocalization transition of
Ref. [44] for the system of N spins, coupled by the long-range
interaction, in the way that the interaction at the maximum dis-
tance is the most significant, and the most relevant multispin
resonances are associated with spins separated by the system
size. We will see below that this is the case for interacting
spin quartets in the problem given by Eq. (1), in the regime of
interest of α < 3/2 (3d/2 in a d-dimensional system).

A collective transition of k spins (k = 2 for pairs and k = 4
for quartets of spins) can be characterized by the transition
amplitude V∗. The probability of resonance for a single k-spin
transition can be expressed as V∗/W . There are approximately
N∗ ∼ Nk/k! ways to create k-spin excitations, so the total
number of resonances can be estimated as N∗V∗/W , averaged
over possible realization of the k-spin transition. According to
Ref. [44], it is sufficient to have few resonances per system,
if the diagonal interaction between them, U∗, exceeds the typ-
ical resonant coupling strength, V∗. Then, the delocalization
transition can be described using the similarity of the present
problem with the localization problem on the Bethe lattice,
with resonant coupling V∗, disordering W , and coordination
number N∗ [45]. The transition is determined as [44]

N∗
V∗
W

ln
U∗
V∗

≈ 1. (2)

Since amplitudes V∗ for different spin transitions can fluctuate,
one can define the typical amplitude V∗ as the average absolute
value of contributing amplitudes similarly to Refs. [44,45].

This criterion is used below to describe the delocalization
due to quartet spin transitions. Considering all quartets of
spins, characterized by transition amplitudes Vklmn, defined
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below in Sec. II B, one can rewrite the criterion of Eq. (2) in
the form

η

W

∑
klmn

′〈|Vklmn|〉 ln

(
U∗

〈|Vklmn|〉
)

≈ 1, (3)

where the prime means that the sum is only over quartets
with Vklmn < U∗, and the diagonal interaction of resonances,
U∗, estimated in Sec. II C. We do not target analytically
the unknown numerical constant η ∼ 1 in Eq. (2), because
there are correlations in various contributions to the transition
amplitude, Vklmn, which are too difficult for accurate analytical
calculations; instead, we determine that constant using the
numerical study of the same problem in Sec. III.

B. Definition of quartets and their coupling amplitudes

Resonances created by interacting clusters of four spins
should be considered after the resonances of spin pairs, since
only transitions of even numbers of spins are permitted in
the system described by Eq. (1). Flipping a spin quartet from
an all-up to an all-down state can be done by flipping each
pair of spins independently in a second-order process. That
process, however, has zero amplitude in the resonant regime
φ1 + φ2 + φ3 + φ4 = 0 (see Appendix B), because of the
destructive interference of processes like

|↑↑↑↑〉 → |↓↓↑↑〉 → |↓↓↓↓〉. (4)

For the sake of simplicity, we consider the case of zero
external constant field, B = 0, in the Hamiltonian (1). Since
the critical disorder approaches infinity with increasing the
system size, the results in that limit should not be sensitive to
the finite field B that is consistent even with our finite-size
numerical studies in Sec. III.

The perturbation theory can be used to estimate spin-
quartet transition amplitudes, Vklmn, if there are no resonant
spin pairs within the quartet. Resonances can be excluded
by setting a constraint, |φi − φ j | > Ji j , that is justified with
logarithmic accuracy, similarly to Refs. [44–46]. The transi-
tion amplitude, Vklmn, comprises four distinguishable contri-
butions,

Vklmn = Ak,lmn + Al,kmn + Am,kln + An,klm, (5)

where each contribution corresponds to a process led by one of
four spins, flipping three times with other spins, as illustrated
below for the representative process led by the first spin:

|↑↑↑↑〉 → |↓↓↑↑〉 → |↑↓↓↑〉 → |↓↓↓↓〉. (6)

Each individual contribution can be expressed as (see Ap-
pendix B)

Ak,lmn =
∑
{lmn}

Jkl JkmJkn

(φk + φl )(φl + φm)

= 4φkJkl JkmJkn

(φl + φm)(φl + φn)(φm + φn)
, (7)

where the sum is taken over all six permutations of the indexes
{lmn}.

All four contributions are distinguishable, since they are
proportional to the product of three different interactions (e.g.,
Ak,lmn ∝ Jkl JkmJkn), and they cannot exactly compensate each

other, except for the case of α = 0, which is beyond the scope
of the present paper. The quartet transition amplitude can
also be calculated using Schrieffer-Wolff transformation, as
in Ref. [38], and it leads to the same result.

This amplitude is very sensitive to the random energies,
φ, so it is convenient to replace it with the characteristic
acting value. The acting value 〈|Vklmn|〉 can be determined
as the average absolute value of the amplitude in Eq. (3),
like that in the localization problem in the Bethe lattice [45].
The logarithmic divergence at small denominators should be
cut off at the critical energy, |φl + φm| ∼ Jlm, where the level
repulsion becomes significant due to resonances. The average
amplitude, 〈|Vklmn|〉, can then be expressed as

〈|Vklmn|〉 =
∫ W

J

d4φ

W 4
|Vklmn|. (8)

Average absolute value of the sum can, with the accuracy to
the constant factor, be approximately replaced with the sum of
absolute values of averages of each contribution leading to the
sum over four contributing processes, led by different spins k,
l , m, n respectively. The average amplitude can be represented
as

〈|Vklmn|〉 ∼
∑

k,l,m,n

Jkl JkmJkn

W 2

[
ln

W

Jkl
ln

W

Jkm
+

+ ln
W

Jkm
ln

W

Jkn
+ ln

W

Jkn
ln

W

Jkl

]
. (9)

For the quartet made of spins separated by the intermediate
distance 1 � R � N , one can estimate the average transition
amplitude as

V∗ ∼ W −2 J3
0

R3α
ln2

(
Rα

J0
W

)
. (10)

In the case of small α, the destructive interference leads
to the reduction of the quartet transition amplitude, up to its
complete vanishing for α = 0. This destructive interference
may be responsible for the factor α in the numerical estimate
of the critical disordering, as described in Sec. III.

C. Diagonal interaction

The localization-delocalization transition is expected to
happen when there are more than one spin-flipping resonances
[35,38,47]; however, the mere existence of local resonances is
not enough to establish chaotic behavior, because it is impor-
tant that the diagonal coupling between separate resonances is
strong compared to flipping amplitudes. In Ref. [38], the diag-
onal interaction of spins has been estimated in the third order
as an induced diagonal interaction, assisted by an additional
spin k. Following the same logic for the Hamiltonian (1), one
gets the diagonal corrections in the form U (3)

i j σ z
i σ z

j , where the

interaction U (3)
i j is defined as

U (3)
i j = 4

∑
k

φiφ jJi jJikJjk(
φ2

i − φ2
k

)(
φ2

j − φ2
k

) , (11)

which is given in the absence of the longitudinal field B in
Eq. (1), and generalization to the finite B is straightforward.
Since critical disordering Wc increases limitlessly with the
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system size, one can ignore the field effect on statistics of
interactions U∗ described below.

In case of α � 1, this sum is determined by long distances
rik ∼ r jk ∼ ri j ∼ N , and by short distances rik ∼ 1 or r jk ∼ 1,
in the case of α > 1. The estimate for U∗ [38,48] can then be
written as

U∗ ∼
{

J3
0W −2N1−3α, α � 1,

J3
0W −2N−2α, α > 1.

(12)

The importance of the induced diagonal interaction and
its influence on delocalized dynamics has been demonstrated
not only for spin systems but also for the localization-chaos
transition in the Fermi-Pasta-Ulam problem for vibrational
dynamics in atomic chains [49].

D. Localization threshold

The localization threshold is reached when the condition
in Eq. (2) is satisfied, meaning that the interaction energy
between resonances exceeds their amplitude, U∗ > V∗, and
the number of resonances approaches unity within loga-
rithmic accuracy. Depending on the case, the first or the
second requirement is stronger and defines the threshold.
Because of the different optimum choices of interspin dis-
tances in interacting quartets, the regimes of longer α � 1
or shorter α > 1 range interactions are considered separately.
We start our consideration with the most long-range case of
0 < α � 1.

1. Case of 0 < α � 1

For the case of α � 1, the localization threshold can be
determined by mapping the transverse field problem onto the
Bethe lattice [44] within the self-consistent theory of local-
ization or the forward approximation. The critical disordering
is determined from Eq. (3), where the largest contribution is
made by quartets of spins at distances R ∼ N from each other.
Setting R ∼ N in Eq. (10) and neglecting small corrections to
the logarithmic factor, we get

V (N ) = J3
0W −2N−3α ln2 N. (13)

The quartet resonance amplitude, V (N ), is clearly
smaller than the characteristic diagonal interaction, U∗ ∼
J3

0W −2N1−3α , that allows us to use Eqs. (2) and (3) to estimate
the localization threshold. Setting ln(U∗/V ) ≈ ln N and N∗ ∼
N4, one can express the localization threshold as

Wc ∝ J0N4/3−α ln N. (14)

2. Case of α > 1

If α > 1, the density of resonant quartets of the typi-
cal size R < N scales as R3(1−α), which means that it in-
creases as the size of the quartet decreases. Consequently,
the delocalization can be associated with quartets of the size
R < N , which are characterized by the transition amplitude
V (R) ∼ J3

0W −2R−3α ln2(N ) [cf. Eq. (10)]. These quartets lead
to delocalization when few of them are formed if their tran-
sition amplitude V (R) is less or equal to their longitudinal
interaction U∗ ∼ J3

0W −2N−2α , as defined in Eq. (12). Setting
U∗ ∼ V (R) and the number of quartets to unity, we obtain the

delocalization threshold in the form

Wc ∝ J0N1−2α/3 ln2/3 N. (15)

In this case, the logarithmic dependence is weaker than in the
case of α < 1, because U∗ ∼ V∗ so that the logarithmic factor
in Eq. (2) is of order of unity. The result is applicable only
for α < 3/2 where the critical disordering increases with the
system size. The interaction power-law exponent constraint
α < 3/2 agrees with Ref. [44], where interacting resonances
of spin pairs have been considered. The scaling exponent of
the critical disordering is different from that in Ref. [44] by
the factor 2(1 + α)/3. Below, we argue that the consideration
of more complicated spin excitations (sextets or more) does
not modify this criterion.

3. Multispin clusters

The resonant quartets, rather than the resonant pairs, de-
termine the localization transition in the problem under con-
sideration, because the longitudinal interaction of pairs is
insufficiently strong to suppress the destructive interference
of their transitions (cf. Ref. [44]); on the other hand, the more
complicated spin excitations possess the smaller probability
of resonance, and, therefore, we do not expect them to modify
the critical disordering estimated for quartets. Indeed, for
n-spin resonances, one can estimate their amplitude using
(n − 1)-st order of perturbation theory (e.g., simultaneous
transitions of the first spin with n − 1 other spins) as

Vn ∼ N−α(n−1)Jn−1
0 /W n−2. (16)

We consider here only the case α � 1, where all characteristic
distances are of order of N ; the case α > 1 can be treated
similarly. The logarithmic factors are ignored for the sake of
simplicity. The number of resonances can be estimated by
multiplying the probability of individual resonances, Vn/W ,
by the number of n-spin combinations, Nn, which yields

Nres(n) ∼ N (1−α)(n−1)+1Jn−1
0 /W n−1. (17)

Setting Nres ∼ 1, we get the critical disordering estimate as

Wc ∼ J0Nn/(n−1)−α, (18)

which obviously has a maximum at n = 4 corresponding to
quartets (remember that n must be even). At that maximum
where Wc ∼ J0N4/3−α , the number of higher order resonances
scales as Nres(n) ∼ Nres(4)N−2(n−4)/3 so they can be neglected
compared to quartets. Therefore, we believe that the localiza-
tion breakdown is determined by quartets, which is confirmed
by the numerical results reported in Sec. III.

4. Summary of analytic predictions

Both results for the localization threshold obtained in two
different regimes of large (Sec. II D 2) and small (Sec. II D 1)
power-law exponent α can be resumed as follows:

Wc = cα

{
J0N4/3−α ln N, 0 < α � 1,

J0N1−2α/3 ln2/3 N, 1 < α < 3
2 ,

(19)

where cα is a constant numerical factor determined below in
Sec. III by fitting the numerical results with our analytical
expression.
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The result in Eq. (19) cannot be extended to the case of
α = 3/2, since the dependence Wc ∝ ln2/3 N relies on the
factor ln2/3(Wc/J ), while Wc does not show the power-law
dependence of N at α = 3/2; therefore, we do not have any
reasonable prediction for the localization threshold scaling in
this crossover regime. The numerical analysis of Sec. III is
also inconclusive in this case.

The obtained scalings of the critical disordering that corre-
spond to the localization threshold (19) should be observable
in the dependencies of the level statistics and spin-spin corre-
lation functions. These parameters will be studied numerically
in Sec. III using exact diagonalization of the problem in
Eq. (1), and it will be shown that the numerical findings are
consistent with the analytic predictions of the present section.

E. Finite Wc in the thermodynamic limit

Since the critical disordering, Wc, in Eq. (19) becomes
infinite as the number of spins, N , approaches infinity, there
is no localization transition in the thermodynamic limit for
the system described by Eq. (1). Following the spin glass
model [50] and Rosenzweig-Porter random matrix model
[51,52], one can rescale the spin-spin coupling strength in the
Hamiltonian Eq. (1) as [cf. Eq. (19) in the large-N limit]

J̃0 → J0

cαNη lnξ N
, η = 1/3 + ξ (1 − α),

ξ =
{

1, 0 < α � 1,

2
3 , 1 < α < 3

2 .
(20)

After this rescaling, the critical disordering approaches the
size-independent limit Wc = J0, while the transverse interac-
tion becomes too weak to enter any thermodynamic parame-
ter, yet it is sufficient to bring the system to the chaotic state.

Comparing the mentioned rescaling to the Katz prescrip-
tion as in Refs. [30,53], it can be noticed that the latter is
not strong enough to make the critical disordering size inde-
pendent in the limit of large N . A weak size dependence of
critical disordering, Wc ∝ N1/3, remains after applying Katz
prescription. Reference [30] illustrates a significant effect of
Katz prescription on delocalization in the case of long-range
diagonal interaction; yet, as in the previous consideration, we
expect delocalization even in that regime with the scaling pre-
liminary estimated as Wc ∝ N1/2. The more accurate analysis
of that system should be performed separately.

A system described by Eq. (1) with the interaction con-
stant, J̃0, redefined according to Eq. (20) is stable with respect
to the formation of chaotic spots [40,41] of several neighbor-
ing spins with reduced random fields, |φi| ∼ J̃0  W ∼ J0.
Since chaotic spots are formed by rare fluctuations of random
energy making several adjacent spins chaotic, the random
energy for such a spot should be comparable to the coupling
strength decreasing as N−η, where η = 1/3 + ξ (1 − α) [see
Eq. (20)]. Logarithmic dependencies can be omitted here as
less significant compared to the power laws.

The probability to create a chaotic spot of k spins scales
as Pc(k) ∼ N−ηk with the maximum number of spins limited
by the constraint k < 1/η. Chaotic spots containing more
spins can be neglected since the total probability to form
such spots, NPc(k), vanishes in the thermodynamic limit

of infinite N . Surrounding spins that can exchange energy
with the chaotic spot of k spins should have random fields,
φi, not exceeding the maximum spot energy

√
kN−η  1.

The distance to the closest spin satisfying this condition is
r ∼ Nη/

√
k and the interaction with it can be estimated as

J̃0r−α2−k/2 ∼ N−η(α+1)2−k/2; cf. Ref. [41]. To add an external
spin to the chaotic spot, this interaction should exceed the
level splitting within the spot, which can be estimated as δ ∼
N−η2−k . Since the maximum number of spins in the chaotic
spot is finite, the spot-spin resonance condition, 2k/2 > Nηα ,
cannot be satisfied in the thermodynamic limit of infinite N .

Since the rare fluctuations associated with ergodic spots are
not relevant in our regime of interest of violated dimensional
constraint (α < 3/2), this should reduce finite-size effects
compared to the regime of a short-range interaction where
such fluctuations are significant. Consequently, the predicted
scaling of critical disordering can be studied at accessible sys-
tem sizes N ∼ 10–16 and it is consistent with our numerical
consideration of Sec. III below. The short-range interaction
regime is more difficult to study because of its sensitivity
to rare fluctuations. Thus, two regimes seem to belong to
different universality classes.

F. Transition width

Transitions at finite sizes can be characterized by size-
dependent width, σW (N ), of the critical region where both
phases coexist. Within the vicinity of the transition |W −
Wc| ∼ σW , it is natural to expect that system parameters
behave as a universal function of (W − Wc)/σW , where σW ∼
Wc/Nγ [54–57]. We will employ this anzatz in Sec. III to
analyze the numerical data for the MBL transition in our
system of interest. The estimates for the minimum transition
width given below turn out to fit the obtained numerical results
for Hamming distance and level statistics reasonably well.

Given two systems with maximum random energies W and
W − δW , one can estimate the difference δW to have them
statistically indistinguishable. The probability for each spin
random potential to stay within the range −(W − δW )/2 <

φi < (W − δW )/2 is p(W ) = 1 − δW
W . The probability of all

random potentials to fall into the same range can then be found
as

pN =
(

1 − δW

W

)N

≈ 1 − N

W
δW, (21)

which means that two realizations of random potentials dif-
fering by less than W/N are indistinguishable. The minimum
transition width estimate σW = Wc/N coincides with its nu-
merical estimate obtained in Sec. III.

G. Transition at small W for B = 0

As was noticed in the introduction, for B = 0 there is also
a localization transition at W  J0; this transition can be
described following Ref. [58] and the localization takes place
at W < Wl , defined as

Wl ∼

⎧⎪⎨
⎪⎩

J0N−(α+1/2) 0 < α � 1
2 ,

J0N−1 1
2 < α < 1,

J0N−(2−α) 1 � α < 2.

(22)
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Since this transition is already characterized in Ref. [58], we
do not focus on that regime. In the case of a finite field B in
Eq. (1), considered in the experiment [7], this transition does
not take place.

III. NUMERICAL STUDIES

The localization transition in the system described by
Eq. (1) is investigated using Hamming distance [7,53,59]
and level statistics, expressed in terms of the average mini-
mum ratio of adjacent energy differences [3]. The normalized
Hamming distance between the initial and final states can
be directly measured experimentally. The Hamming distance
between two Ising states is measured as the number of flips
required to change one state into the other. The normalized
Hamming distance is given as a ratio of the number of spin
flips to the total number of spins. At certain time, t , and all
spins in initial states determined by the sequence σ z

i (0), the
normalized Hamming distance can be expressed using the
initial state |ψ0〉 as

D(t ) = 1

2N

∑
i

〈ψ0|
[
σ z

i (0) − σ z
i (t )

]
σ z

i (0)|ψ0〉. (23)

In the fully delocalized regime in the long time limit, the
normalized Hamming distance approaches its maximum 1/2,
due to thermalization, while in the fully localized state it
remains zero.

The level statistics is represented by the averaged ratio
of minimum to maximum differences between successive
eigenenergies of the system

〈r〉 =
〈

min(�n,�n+1)

max(�n,�n+1)

〉
n

. (24)

The localized regime obeys Poisson statistics for �n and is
characterized by 〈r〉 ≈ 0.3863, while the delocalized regime
is known to obey the Wigner-Dyson statistics with 〈r〉 ≈
0.5307 [3]. To calculate the level statistics numerically, one
has to find eigenvalues of the system Hamiltonian and average
them over different disorder realization. For the Hamming
distance, the eigenstates of the system also need to be found.

Hamiltonian matrix diagonalizations are performed using
MATLAB software [60]. Eigenenergies and eigenstates of the
Hamiltonian (1) were found through exact diagonalization,
and averaged over 2000 realizations of random potentials for
every disorder.

Hamming distance and level statistics were studied in
the range of 8 � N � 16 with a transverse field, B. The
results below are given for the case of B = 4J0 (as
in Ref. [7]) and power-law interaction exponents α =
0.25, 0.5, 0.85, 1, 1.15, 1.25, and 1.5. We also studied the
case of B = 0, for which the results were quite similar, except
for the domain around W = 0 described by Eq. (22). Since
this work is focused on the transition at large W , we present
only the results for B = 4J0. For all calculations, the coupling
constant, J0, was set to unity.

Numerical results are to be compared with the theory
predictions expressed by Eq. (19). To account for the discrete
effects at small sizes, the power-law dependence of N in
Eq. (19), expressed in the form Nη with η = 1/3 + ξ (1 − α),

is substituted with the finite sum, similarly to Refs. [35,38], as

I (N, η) =
N∑

R=4

Rη−1 ≈ Nη

η
, (25)

where the minimum distance R = 4 is chosen as a minimum
quartet size. The critical disordering can then be given in the
form consistent with Eq. (19) as

Wc = cαηI (N, η) lnξ N (26)

The numerical optimization of data collapses for Hamming
distance and level statistics described below leads to the
accurate definition of the proportionality factors, cα , that can
be expressed as

cα ≈
{

1.37α
4/3−α

, 0 < α � 1,
α

1−2α/3 , 1 < α < 3
2 .

(27)

Hamming distance provides better information about de-
localization transition, because it is less sensitive to the sym-
metry and integrability of the problem in the limit of small
disordering, showing the most pure scaling for the transition
at large W ; therefore, we begin our consideration with the
Hamming distance. The level statistics is also very important,
since the observation of the Wigner-Dyson statistics gives
the best, basis-independent evidence for the chaotic behavior;
therefore, we analyze level statistics in Sec. III B and demon-
strate that the obtained behaviors are consistent with those
found using the Hamming distances.

It is noticeable that the data for level statistics are taken
from only states with nearly zero energy, while the Ham-
ming distance is calculated using all eigenstates. However,
we expect that this will lead to the minor modification of
the transition estimate since the error in the definition of
resonance probability being averaged over all states or states
with nearly zero energy is of order of 1/N (see the derivation
in Appendix D). Consequently, the associated error in the def-
inition of the critical disordering should be of order of Wc/N ,
which is comparable to the transition width (see Sec. III A 3)
and therefore can be neglected.

A. Hamming distance

The correlation functions of spins determine the Hamming
distance between initial spin state, chosen as antiferromag-
netic Néel state [7], and the state at time t . This distance
is defined in Eq. (23), which can be rewritten, assuming
averaging over disorder, in terms of the system eigenstate
basis as

D(t ) = 1

2
− 1

2N

∑
nm

〈ψ0|n〉2
∣∣σ z

mn

∣∣2
e−it (En−Em )/h̄, (28)

where summation goes over all eigenstates |n〉 and |m〉, having
energies En and Em, correspondingly. In the limit t → ∞, the
oscillating terms with n �= m can be neglected and the last
expression takes the form

D(∞) = 1

2
− 1

2N

∑
n

〈ψ0|n〉2
∣∣σ z

nn

∣∣2
. (29)

Below, we start with comparison of numerical results with
experimental observations in Ref. [7], then perform data
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0.3

0.35

0.4

0.45

0.5

t  5/J
0

t  

FIG. 1. The normalized Hamming distance according to Eq. (23)
(red line) and extracted from the experiment [7] for finite time t �
5/J0 (blue line) for α = 1.15 and N = 10.

rescaling to analyze the dependence of localization threshold
and transition width on the system size, and then consider the
dependence of critical disordering on the power-law interac-
tion exponent α.

1. Numerical results for infinite time

Comparison to the experimental results [7] at large finite
time shows that numerical results for the Hamming distance
give a slightly larger value compared to the experimental
data. As has been mentioned above, the normalized Hamming
distance grows with time, due to the thermalization process
to reach 1/2 for the fully delocalized regime at infinite time.
Since the experimental data provided are not at infinite time,
the measured Hamming distance is expected to be a bit less
than the numerically calculated, which can be observed in
Fig. 1.

2. Scaling of transition width with the system size

We analyzed the transition width using the pyfssa PYTHON

library [56,57] developed for the analysis of the critical
domains. Since this library is applicable only to transitions
with a transition point converging within the thermodynamic
limit, we rescaled random potentials for each data set contain-
ing N spins as W → W/(I (N, η) lnξ N ) following Eqs. (20)
and (26). The scaling exponents, γ , of the transition widths
σW (N ) ∼ Wc/Nγ have been evaluated as shown in Fig. 2 for
different power-law interactions, characterized by exponent α.
The result γ ≈ 1 is in agreement with the estimate for the
minimum transition width given in Sec. II F.

Using the same library, we extracted the constant factor dα

determining the critical disorder as Wc ≈ dαI (N, η) lnξ N [cf.
Eq. (20)]. It is shown in Fig. 3 together with the alternative
estimate of the same constant obtained from the calcula-
tions of the minimum root mean squared (rms) of mutual

0 0.5 1 1.5
0

0.5

1

1.5

2
theory prediction
pyfssa optimization

FIG. 2. Scaling exponent for transition width as a function of the
power-law interaction exponent α. Both exponents and error bars are
obtained using the pyfssa library [56,57].

logarithmic deviations between rescaled graphs (see Ref. [35]
and Appendix C for detail).

The linear fit for the constant factor dα yields dα ≈ α

for α � 1 and dα ≈ 1.37α for 1 < α < 1.5. Combining this
result with Eq. (26), we end up with Eq. (27), introducing
the constant, cα , in the definition of the localization threshold
in the large size limit where the power-law functions can
be used instead of discrete sums. Below, we demonstrate
data collapses for Hamming distances (Sec. III A 2) and
level statistics (Sec. III B) using our estimates for critical
disordering, Eq. (26), and transition width.

3. Collapse of rescaled data for Hamming distances

To analyze the data, we plot Hamming distances versus
disordering rescaled as (W − Wc)/σW , where the critical dis-
ordering Wc is given by (26) with cα as in Eq. (27) and the

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
fitting line
pyfssa optimization
rms optimization

FIG. 3. Estimate of numerical factors in the definition of the crit-
ical disordering as a function of the power-law interaction exponent
and a linear fit for this dependence.
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FIG. 4. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 8 � N � 16 and α = 0.25.

transition width σW chosen as

σW = Wc

N
. (30)

There, rescaled graphs collapse onto one curve, as can be
seen in Figs. 4 to 7 for selected α = 0.25, 0.5, 1, and 1.25,
respectively.

The data scaling for the threshold α = 3/2 (Fig. 8) is sur-
prisingly consistent with Eq. (26), in spite of the irrelevance
of the derivation as explained after Eq. (26). The observed
logarithmic dependence can have different origins, including,
for instance, ergodic spots [41,42]; this can be the reason for
the special behavior of level statistics in this case (see Fig. 14).

-20 0 20 40 60
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0.3

0.4

0.5

N=8
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N=12
N=14
N=16

0 10 20 30
W

FIG. 5. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 8 � N � 16 and α = 0.5.
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FIG. 6. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 8 � N � 16 and α = 1.

4. Scaling with the power-law exponent

As is clear from Figs. 4 to 7, the fit of the critical dis-
ordering by Eq. (26) gives a very good data collapse for
different power-law interaction exponents, α. Placing all data
for different numbers of spins, N , and interaction exponents,
α, onto one graph, it can be seen that all data for 0.5 < α <

1.5 can be represented by a single curve reasonably well (see
Fig. 9). The deviations for small α can be due to stronger
correlations between different interactions vanishing at α = 0.
This similarity supports the expectation of Sec. II E that MBL
transitions at violated dimensional constraint are similar to the
localization transition in the Bethe lattice and, therefore, they
show similar behaviors.

-20 0 20 40 60 80
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0.2

0.3

0.4

0.5

N=8
N=10
N=12
N=14
N=16

0 10 20 30
W

FIG. 7. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 8 � N � 16 and α = 1.25.
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FIG. 8. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 8 � N � 16 and α = 3/2.

B. Level statistics

The level statistics is calculated according to Eq. (24),
where averaging is done in a narrow (n ≈ 100) range of
eigenstates, with energies around zero, which corresponds to
the infinite temperature. Generally speaking, since there is
no restriction in participating eigenstates when the Hamming
distance is calculated, the results of two scalings do not have
to match.

1. Scaling with the system size

For the case of interest, B = 4J0, the level statistics was
rescaled following the same law, (W − Wc)/σW , and keeping
the coefficients found for the corresponding cases of Ham-
ming distance (Figs. 4 to 7). As can be seen in Figs. 10 to 13,
the fit gets better as the system size increases, because of rapid

-10 0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

=0.25
=0.50
=0.85
=1.00
=1.15
=1.25
=1.50

0 10 20 30
W

FIG. 9. The normalized Hamming distance at infinite time vs
disordering rescaled as (W − Wc )/σW (main plot) with original data
(inset) for 0.25 � α � 3/2 and N = 16.
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N=14
N=16

0 5 10 15
W

FIG. 10. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 8 � N � 16 and
α = 0.25.

narrowing of the weak disorder domain, affected by symmetry
at W = 0.

2. Scaling with power-law exponent

Rescaling for different α and fixed N also gives a nice
collapse, as seen in Fig. 15. It can also be noticed, in contrast
with Fig. 9, that the α = 3/2 curve went significantly lower
than others, but its tail still merged with other curves, which
is consistent with the discussion after Eq. (19); therefore, the
results for α = 3/2 seem to be inconclusive, which confirms
its threshold behavior. For α � 1, there is a nearly perfect
match.
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N=14
N=16

0 5 10 15
W

FIG. 11. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 8 � N � 16 and
α = 0.5.
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FIG. 12. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 8 � N � 16 and
α = 1.

IV. CONCLUSION

The proposed model of multispin resonances provides a
scaling of the critical disorder corresponding to the MBL
transition in the model of spins in random fields coupled
by transverse power law interaction 1/rα for 0 < α < 3/2.
It is shown that delocalization takes place due to interacting
resonant quartets. We predicted the critical disordering Wc to
behave as

Wc =
{ 1.37α

4/3−α
J0N4/3−α ln N, 0 < α � 1,

α
1−2α/3 J0N1−2α/3 ln2/3 N, 1 < α < 3

2 ,
(31)
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FIG. 13. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 8 � N � 16 and
α = 1.25.
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FIG. 14. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 8 � N � 16 and
α = 3/2.

and the width of transition as

σW ≈ Wc

N
. (32)

The scaling of the critical disordering has been predicted con-
sidering the localization breakdown by interacting resonant
spin quartets, while the quantitative definitions of the critical
disordering and the transition width were obtained using the
numerical analysis of the system eigenstates for system sizes
8 � N � 16.

Based on the obtained scaling, we predict a behavior of
the Hamming distance for the system with N = 50, α = 1,

-15 -10 -5 0 5 10 15

0.4

0.45

0.5

=0.25
=0.50
=0.85
=1.00
=1.15
=1.25
=1.50

0 10 20 30
W

FIG. 15. The level statistics vs disordering rescaled as (W −
Wc )/σW (main plot) with original data (inset) for 0.25 � α � 3/2
and N = 16.
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FIG. 16. The theoretically predicted normalized Hamming dis-
tance for N = 50 and α = 1 comparing to the numerically calculated
for N = 8, 12, 16.

and B = 4J0 described by Eq. (1) (Fig. 16). These results call
for comparison with the experiment that can be performed for
systems so large [10,32] that they are completely unaffordable
for exact diagonalization.

In the limit α → 0, the extension of results leads to a full
localization, consistent with preliminary studies.

There are no conclusive results for the threshold case
α = 3/2. The logarithmic scaling of the critical disordering,
Wc, gives a satisfactorily data collapse for Hamming dis-
tances, while the behavior of level statistics is more compli-
cated. More sophisticated analytical and numerical studies are
needed to describe MBL in this regime.

The analytical expression for the critical disordering can be
generalized to higher dimensions, d > 1, as

Wc = cα,d

{
J0N4/3−α/d ln N, 0 < α � d,

J0N1−2α/3d ln2/3 N, d < α < 3d
2 .

(33)

The reasoning based on spin quartet resonances can be applied
for higher dimensions, d , leading to a dimensional constraint
α < 3d/2. The proportionality coefficients, cα,d , are not pro-
vided here due to the much harder numerical studies of the
problem through full diagonalization for d > 1.

The rescaling of the interaction in a one-dimensional sys-
tem following Eq. (20) makes the critical disordering converg-
ing in the thermodynamic limit. This transition is stable with
respect to ergodic spots as justified in Sec. II E. The same
behavior can be expected in higher dimensions. The nature of
this transition is different from the delocalization transition for
α > 3d/2 where ergodic spots are crucially important [41].

Analytical predictions of MBL breakdown give a lower
estimate for the critical disordering at the localization thresh-
old, Wc, in case of α < 3/2. In contrast to the spin glass
model studied in Ref. [44], the present problem does not
directly match the Bethe lattice localization problem due to
the presence of resonant pairs; therefore, we cannot make
a rigorous upper estimate for the critical disordering, Wc.

Nevertheless, we do not expect the pairs to affect our re-
sults through forming the ergodic spots [40,41] as argued in
Sec. II E.

Although our numerical results support analytical expec-
tations, the relative error of the numerical estimates is large,
especially for α > 1 (Figs. 2 and 3). Further numerical and
experimental verification of the obtained results would help
solidify our assertions.

Note Added in Proofs. The recent investigation of energy-
resolved many-body localization using a 19-qubit pro-
grammable superconducting processor has been reported in
a recent work [61], where the long-range transverse spin-spin
interaction Ji j = hih j/� ∼ 2π · 0.5 MHz (hi ∼ 2π · 16 MHz
and � ∼ 2π · 568 MHz) possibly results in the localization
breakdown at disordering of order of 2π · 35 MHz. This
is reasonably consistent with the straightforward estimate
of the localization threshold, Wc ∼ cJ0N4/3 ln N ∼ 75c, for
the power-law interaction exponent α = 0; factor c ∼ 1/2 is
similar to that for the case of α = 1/2. Possibly c < 1 due
to destructive interference of different channels in quartet
transitions (see the end of Sec. II B) which needs a separate
study.
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APPENDIX A: SPIN PAIRS

The results for localization threshold due to spin pairs were
obtained only in the case of α > 1 [38]. Our results for spin
quartets in the case of α < 1 cannot be conclusive without
understanding the resonance contribution of spin pairs. We
begin with the definition of diagonal interaction at an arbitrary
distance between pairs. This interaction can be written as
Ui jσ

z
i σ z

j , with

Ui j =
∑

k

Ji jJikJjkφiφ j(
φ2

i − φ2
k

)(
φ2

j − φ2
k

) . (A1)

The typical interaction depends on the distance between
resonant pairs, R, and their energy difference, φi − φ j . The
minimum distance, R, and the minimum energy difference, ε,
can be expressed in terms of the total number of resonances,
nr as R ∼ N/nr , and ε ∼ W/nr . In the practically significant
case of nr ∼ 1, one gets R ∼ N and ε ∼ W , so the interaction
is defined by Eq. (12) as

Ui j ∼ J3
0W −2N−2α, α � 1;

Ui j ∼ J3
0W −2N1−3α, α < 1. (A2)
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If N > nr > 1, one can consider the contribution from
either (i) closest distance R ∼ N/nr and typical energies φi −
φ j ∼ W or (ii) smallest energy difference φi − φ j ∼ W/nr and
typical distances R ∼ N . These contributions can be estim-
ated as

Ui j ∼ J3
0 n2α

r

W 2N2α
, 1 � α <

3

2
, small distances,

Ui j ∼ J3
0 n2−α

r

W 2N2α
, 1 � α <

3

2
, small energies,

Ui j ∼ J3
0 n3α−1

r

W 2N3α−1
,

1

2
< α < 1, small distances,

Ui j ∼ J3
0 nr

W 2N3α−1
,

1

2
< α < 1, small energies,

Ui j ∼ J3
0 nα

r

W 2N3α−1
, 0 < α <

1

2
, small distances,

Ui j ∼ J3
0 nr

W 2N3α−1
, 0 < α <

1

2
, small energies. (A3)

The case of α > 2/3 is determined by the small distance
regime. For α > 1, considering pairs of the maximum size
N , we get nr = J0N2−α/W ; then, setting Ui j ∼ Vi j = J0/Nα ,

we obtain the criterion W ∼ J0N
α(3−2α)
2(α+1) , identical to the earlier

work [38]. Similar arguments in the case of 2/3 � α � 1

yield W ∼ J0N
5α−3α2−1

3α+1 . The case of α < 2/3 is determined
by the small energy regime; the calculations for this regime
yields Wc ∼ J0N1−α , which is always smaller than the contri-
bution of quartets.

In all regimes, the delocalization is determined by quartets,
because the diagonal interaction of pairs is too weak to disturb
resonances [44].

APPENDIX B: SPIN QUARTETS

We consider the case of B = 0, meaning that even for
the finite transverse field the threshold disordering satisfies
B  Wc, so the resonance condition for a spin quartet can be
written as φ1 + φ2 + φ3 + φ4 = 0. The contribution from spin
quartets in the second order gives zero, because only possible
flips are independent like

|↑↑↑↑〉 → |↓↓↑↑〉 → |↓↓↓↓〉, (B1)

and they interfere destructively with each other, resulting in
zero, as can be seen from the sum over all processes like (here,
the first spin flips with all other in arbitrary order and three
other processes like that should be added)

V (2)
4 = J12J34

φ1 + φ2
+ J13J24

φ1 +φ3
+ J14J23

φ1 + φ4

+ J34J12

φ3 + φ4
+ J24J13

φ2 + φ4
+ J23J14

φ2 + φ3

= J12J34

φ1 + φ2
+ J13J24

φ1 + φ3
+ J14J23

φ1 + φ4

− J34J12

φ1 + φ2
− J24J13

φ1 + φ3
− J23J14

φ1 + φ4
= 0. (B2)

In the third order, there is a nonzero contribution from six
processes led by first spins (similarly one can consider 18
more processes led by second, third, and fourth spins):

|↑↑↑↑〉 → |↓↓↑↑〉 → |↑↓↓↑〉 → |↓↓↓↓〉, (B3)

|↑↑↑↑〉 → |↓↑↓↑〉 → |↑↓↓↑〉 → |↓↓↓↓〉, (B4)

|↑↑↑↑〉 → |↓↑↑↓〉 → |↑↓↑↓〉 → |↓↓↓↓〉, (B5)

|↑↑↑↑〉 → |↓↓↑↑〉 → |↑↓↑↓〉 → |↓↓↓↓〉, (B6)

|↑↑↑↑〉 → |↓↑↑↓〉 → |↑↑↓↓〉 → |↓↓↓↓〉, (B7)

|↑↑↑↑〉 → |↓↑↓↑〉 → |↑↑↓↓〉 → |↓↓↓↓〉. (B8)

The resulting amplitude, A1,234, of contributions from pro-
cesses led by the first spin can be evaluated as

A1,234 = J12J13J14

(φ1 + φ2)(φ2 + φ3)
+ J13J12J14

(φ1 + φ3)(φ2 + φ3)

+ J14J12J13

(φ1 + φ4)(φ4 + φ2)
+ J13J14J12

(φ1 + φ3)(φ3 + φ4)

+ J12J14J13

(φ1 + φ2)(φ2 + φ4)
+ J14J13J12

(φ1 + φ4)(φ4 + φ3)

= J12J13J14
(2φ2 + φ3 + φ4)

(φ1 + φ2)(φ2 + φ3)(φ2 + φ4)

+ J12J13J14
(2φ3 + φ2 + φ4)

(φ1 + φ3)(φ2 + φ3)(φ3 + φ4)

+ J12J13J14
(2φ4 + φ2 + φ3)

(φ1 + φ4)(φ2 + φ4)(φ3 + φ4)

= −J12J13J14
4(φ2 + φ3 + φ4)

(φ2 + φ3)(φ2 + φ4)(φ3 + φ4)
. (B9)

This expression is used in the main text as Eq. (7). The sum
of all contributions, V1234 = A1,234 + A2,341 + A3,412 + A4,123,
is not zero because of different products of coupling constants
in each contribution, except for the case of all equal ampli-
tudes (α = 0), where the full compensation takes place.

APPENDIX C: ROOT MEAN SQUARE OPTIMIZATION
OF THE FITTING PARAMETERS

Root mean square optimization has been performed as
following. Each data rescaling can be determined by three
independent parameters including two exponents η and γ and
a proportionality constant c estimating localization threshold
and transition width as Wc(N ) = cηI (N, η) lnξ N , Eq. (26),
and σW (N ) = Wc(N )/Nγ . We redefine each data set of dis-
orderings and associated Hamming distances (WN , DN ) as
(wN , DN ), where wN = (W − Wc)/σW , and calculate the
match between different data sets as follows: 10 repre-
sentative Hamming distances Di = 0.115 + 0.03(i − 1) (i =
1, 2, . . . , 10) are selected for which the corresponding wNi

values are found using the MATLAB interpolation function “in-
terp1”; the logarithmic overlap between all sets is calculated
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FIG. 17. Optimization results for η (blue circles) vs the theoreti-
cal predictions, η = 1/3 + ξ (1 − α) [red line, Eq. (26)].

as

O(c, η, γ ) =
10∑

i=1

16∑
j,k=8

(w ji − wki )2

(w ji + wki )2
. (C1)

Minimization of this expression with respect to the constant, c,
at fixed exponents, η, defined according to Eq. (26) and γ = 1
was used to obtain rms fit data in Fig. 3 while minimization
of it at fixed constant c and exponent γ = 1 leads to the
estimate of the critical disordering exponent, η, consistent
with our theoretical predictions in Eq. (20), which can be seen
in Fig. 17.

APPENDIX D: AVERAGE RESONANCE PROBABILITY

We evaluate two-spin resonance probability using two
different ways to average over eigenstates. Averaging over all
states is relevant for the calculation of the Hamming distance
while averaging over the states around zero energy is used for
the calculation of level statistics.

Since near the transition point disordering scales as a
power of the system size, one can ignore spin-spin interaction
and perform averaging using only random potential part of
the Hamiltonian Eq. (1) given by

∑
i φiσ

z
i /2. The resonance

probability for two spins i and j can be estimated as the

probability density of zero transition energy given by Pres =
ζ 〈δ(φiσi + φ jσ j )〉, where ζ is the proportionality coefficient.
Averaging over all states runs over all possible spin and
random potential realizations. It can be then expressed using
the identity δ(t ) = ∫ ∞

−∞ eitxdx/(2π ) as

Pres,all = ζ

2π

∫ ∞

−∞
dx〈eix(φiσi+φ jσ j )〉. (D1)

Averaging in Eq. (D1) over spins and disorder realizations
yields

Pres,all = ζ

2π

∫ ∞

−∞
dx

4 sin2(W x/2)

W 2x2
= ζ

W
. (D2)

Averaging over the states with zero energy can be per-
formed introducing an additional δ function, setting the total
energy to zero as

Pres,0 = ζ

2π

∫∫ ∞
−∞ dydx

〈
eix(φiσi+φ jσ j )+iy

∑N
k φkσk

〉
∫ ∞
−∞ dy

〈
eiy

∑N
k φkσk/2

〉 . (D3)

Averaging both equations over disordering and performing
integration over x as in Eq. (D2), we get

Pres,0 = ζ

W

∫ ∞
−∞ dy

( 4 sin(W x/4)
W x

)N−2

( 4 sin(W x/4)
W x

)N . (D4)

The final ratio of two probabilities can be evaluated as

Pres,0

Pres,all
=

∫ ∞
−∞ dy

( 4 sin(Wy/4)
Wy

)N−2

( 4 sin(Wy/4)
Wy

)N . (D5)

Assuming N � 1, one can expand (sin(y)/y)N ≈ e−Ny2/6 in
the denominator. Applying a similar approximation to the
numerator, one gets

Pres,0

Pres,all
≈

√
N

N − 2
. (D6)

As we verified numerically, Eq. (D6) is valid for N = 10 with
only 0.5% deviation.

Equation (D6) predicts that the difference between the two
estimates of resonance probabilities (Pres,0 − Pres,all )/Pres,0 is
of order of 1/N . This result is used in Sec. III to consider
the difference between Hamming distance and level statistics
analysis.
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