
PHYSICAL REVIEW B 101, 024108 (2020)

Electron polarons and donor point defects in americium dioxide AmO2
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Intrinsic donor point defects and electron polarons are investigated in bulk AmO2 using density functional
theory +U calculations. Oxygen vacancies are deep double-donor defects, with transition energy levels closer to
the valence band maximum than to the conduction band minimum. Americium interstitials are unlikely, due to
prohibitive formation energies. Self-trapped electron polarons (which locally correspond to reducing one Am4+

in Am3+) are found extremely stable (self-trapping energy = −1.01 eV). The electron is even more stable in the
self-trapped state (far from an oxygen vacancy) rather than in association with an oxygen vacancy, indicating that
oxygen vacancies have the tendency to spontaneously ionize, and thus automatically liberate electron polarons
in the lattice. This large stability of the electron polarons confines the accessible range of Fermi levels to a very
narrow interval between the valence band maximum EVBM and ∼EVBM + 0.09 eV. In oxygen-poor conditions,
oxygen vacancies may be formed in rather large concentration in AmO2 and have a strong probability to be
doubly or singly ionized, with charge compensation being mostly ensured by a large number of electron polarons.
The electron polaron hopping from an Am atom onto the nearest one involves a rather large activation energy of
∼0.6 eV and probably takes place by a nonadiabatic mechanism.
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I. INTRODUCTION

Insulating metal oxides with partially filled f orbitals such
as actinide oxides (5 f ), have a wide class of technological
applications. For instance, americium oxides are considered as
potential material for radioisotope thermoelectric generators
for space exploration devices [1,2]. Furthermore, americium
(a few percent) will be contained in the reference nuclear
fuel envisaged for fast neutron reactors because it will be
fabricated from uranium dioxide or mixed uranium-plutonium
oxides spent fuel. The physical properties of these mixed
oxides may thus be strongly influenced by those of americium
oxides, especially AmO2.

AmO2 is an insulating oxide with a fluorite structure (like
PuO2 and UO2) and a rather small band gap between 0.8
and 1.6 eV [3–6]. This material is known to undergo self-
irradiation, namely α decay, which induces ballistic effects
and related elastic collisions. This leads to atomic displace-
ments, and thus damages such as lattice parameter expan-
sion [7–9] and defect formation [10]. Self-irradiation dam-
ages in AmO2 were the subject of very few studies in the
literature. For instance, some authors have investigated the
self-irradiation effect on structural properties of Am-bearing
oxides using x-ray diffraction [11]. Furthermore, other authors
have carried out studies on He bubbles and the nature of the
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defects induced by α decay in AmO2 using transmission elec-
tronic microscopy [12]. However, no study to our knowledge
has been undertaken on the elementary mechanisms occurring
under self-irradiation in AmO2, such as the formation and the
migration of electronic and/or atomic point defects. Yet, a bet-
ter knowledge of these mechanisms is essential to understand
the evolution of the microstructure in this material.

Aside from the possible creation of point defects by self-
irradiation effects (which is a nonequilibrium phenomenon),
we note that the Am-O phase diagram has been shown to
be rather complex. Americium oxides are mixed valence
compounds, in which Am may exist in the two charge states
+III (in Am2O3) and +IV (in AmO2). There is a strong ten-
dency for AmO2 to the departure from stoichiometry, and the
possibility of intermediate phases between AmO2 and Am2O3

[13,14]. AmO2 is thus a system that may easily deviate from
the nominal O/Am ratio = 2, and in which oxygen vacancies
are easily formed at equilibrium (thus independently from
self-irradiation effects). In an ionocovalent insulator, any point
defect (vacancy, interstitial, etc.) can generally be described
either as an acceptor or as a donor. More explicitly, a defect
releases holes or electrons, which can possibly be localized
on one single atom (especially in the case of mixed valence),
leading to a so-called small polaron. It is therefore strongly
probable that oxygen vacancies in AmO2 are associated with
the presence of small electron polarons.

In this work, we investigate the chemistry of point defects
in AmO2. However, since AmO2 is the most oxidized form of
americium, which has, in most real conditions, the tendency to
lose oxygen (yielding the appearance of Am3+), the study of
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acceptor defects is not a relevant issue. We therefore restrict
our investigations to native donor point defects, i.e., oxygen
vacancies and americium interstitials, and to the behavior of
excess electrons released in the lattice. Our computational
approach is described in Sec. II. Section III presents the
results on oxygen vacancies and americium interstitials. Some
basic concepts about small polarons in insulators are briefly
reviewed in Sec. IV before presenting the results on electron
polaron in AmO2 in Sec. V. Section VI establishes a simple
defect model to discuss how our ab initio results can be used
to estimate defect concentrations in AmO2.

II. COMPUTATIONAL SCHEME

A. Defect formation energies

The formation energy of a point defect X in charge state q
in AmO2 is given by

�E f (X, q) = Etot (X, q) + Ecorr − Etot (AmO2)

−
∑

i

�niμi + qμe, (1)

where Etot (X, q) is the total energy of the AmO2 supercell
containing the defect X in charge state q and Etot (AmO2) is
the energy of the supercell without defect (perfect system).
�ni = ni (in defective system) (ni in perfect system) denotes
the variation in the number of atomic species i following the
formation of the defect. μi is the chemical potential of species
i. This variable reflects the external conditions in which the
materials have been grown, i.e., i rich or i poor. μe is the
electron chemical potential and Ecorr is the set of corrections
which are applied when the supercell is charged (q �= 0).

The chemical potentials of Am and O cannot be completely
determined through first-principles calculations because they
depend on the external conditions (e.g., μO depends on tem-
perature and oxygen partial pressure PO2 ), but knowledge of
the stability domain of the AmO2 oxide (with respect to other
oxides and pure elements) provides an accessible range for
these chemical potentials compatible with existence of bulk
AmO2. The formation enthalpy of AmO2 writes

�HAmO2
f = μbulk

AmO2
− μ

Ammet
Am − 2μ

O2
O (2)

with

μbulk
AmO2

= μAm + 2μO, (3)

where μ
Ammet
Am is the Am chemical potential in its standard state

(metallic α-americium), and μ
O2
O is the O chemical potential

in its standard oxygen gas state. We will now consider the
chemical potentials of the elements with respect to their
standard state:

�μAm = μAm − μ
Ammet
Am , �μO = μO − μ

O2
O . (4)

In order to find the stability domain of AmO2 with respect
to O2, α-Am and americium sesquioxide Am2O3, the follow-
ing conditions should be satisfied:

�μO � 0, �μAm � 0, �HAmO2
f = �μAm + 2�μO,

�HAm2O3
f � 2�μAm + 3�μO. (5)
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FIG. 1. �μO as a function of �μAm for different phases of the
Am-O system. This figure is obtained by solving the set of Eqs. (5).
For AmO2 (respectively Am2O3), the formation enthalpies �Hf =
−9.15 eV (respectively −17.20 eV) are the ones obtained in our
previous study [3] (see Table II).

For consistency, we take the GGA + U formation en-
thalpies as obtained in our previous work [3] �HAmO2

f =
−9.15 eV and �HAm2O3

f = −17.20 eV. The graphic solution
of this set of equations is plotted on Fig. 1. From this figure,
the accessible range for �μAm and �μO (in eV) regarding the
stability of AmO2 relative to Am2O3 and the pure elements in
their standard state, write

−1.10 � �μO � 0, (6)

−9.15 � �μAm � −6.95. (7)

Since �μAm and �μO are related to each other by
�HAmO2

f = �μAm + 2�μO, the external conditions are com-
pletely fixed by choosing �μO within the range of Eq. (6).
Then, we have access to μAm and μO using Eq. (4). Density
functional theory (DFT) total energies are used to estimate
μi for O and Am in their standard state, i.e., μ

O2
O = 1

2 E tot
O2

and μ
Ammet
Am = E tot

α-Am. However, the generalized gradient ap-
proximation (GGA), which is used in this work, is known to
overestimate the binding energy of the O2 molecule by about
1 eV. To overcome this problem, the total energy of the oxygen
atom is used instead, and combined with the experimental
value for the binding energy E coh

O2
as follows:

2μ
O2
O = 2E tot

O + E coh
O2

, (8)

where E coh
O2

(<0) is the experimental binding energy of O2

[15]. For consistency, the AmO2 and Am2O3 formation en-
thalpies also include this correction [3].

In this study, we will consider two limiting cases which
correspond to different external conditions, i.e. either O-rich
or O-poor. The maximal value allowed for �μO is 0. However,
this oxygen chemical potential is in practice unreachable since
it corresponds to extremely high oxygen pressure or very low
temperatures: using ideal gas law [16] we find that �μO = 0
corresponds to T = 300 K and PO2 ∼ 1.0 × 109 atm or T ∼
a few K and PO2 = 1.0 atm. Thus, we use instead the ambient
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TABLE I. External conditions (O-poor and O-rich) considered in
this work.

O-poor O-rich

�μO −0.75 −0.29
�μAm −7.65 −8.56

conditions T = 300 K and PO2 = 0.2 atm to define our O-rich
conditions. This corresponds to �μO = −0.29 eV.

From Eq. (6), the minimal value allowed for �μO is
−1.10 eV. However, using such a value for �μO leads to
a situation in which the formation energies of neutral va-
cancies are very close to zero (∼0.04 eV). Moreover, com-
bined with the formation energies of the electron polaron
presented below, we would obtain that there is no region of the
band gap over which all the defect formation energies would
be positive. This apparent inconsistency disappears only for
�μO �∼ −0.93 eV. In other words, there is a small interval
of the chemical potential [−1.10; −0.93] eV over which
either oxygen vacancies or electron polarons (or both) have
a negative formation energy, and thus spontaneously form in
very large quantity, leading to the loss of the AmO2 compound
integrity and the appearance of a large concentration of Am3+.
And yet AmO2 should be more stable than Am2O3 over this
interval of �μO according to the formation enthalpies given
above.

An explanation for this inconsistency is the possible ex-
istence of a phase with intermediate stoichiometry between
AmO2 and Am2O3, in relation with the easy departure from
stoichiometry in AmO2. As noticed in the Introduction, the
Am-O phase diagram as determined experimentally is rather
complex [13,14]. In particular, a phase with stoichiometry
AmO1.62 is reported in the experimental literature at high
temperature, with a complex cubic structure [14,17], probably
isostructural to C-type Am2O3. This phase should contain
americium in both oxidation states Am3+ and Am4+, and is
probably stable for oxygen chemical potentials intermediate
between those that stabilize Am2O3 and AmO2. Considering
this intermediate phase can explain why oxygen vacancies

and/or electron polarons are found to spontaneously form
in AmO2 (and thus do exist in very large concentration) for
�μO ∈ [−1.10 eV; −0.93 eV].

As O-poor conditions, we will thus consider the following
conditions: �μO = −0.75 eV, which corresponds to T ∼
680 K and PO2 = 0.2 atm. The external conditions chosen to
plot the defect formation energies in this work are summarized
in Table I.

The formation energy of the electron polaron is
defined as

�E f (e′, −1) = Etot (AmO2 + e′, −1) − Etot (AmO2) − μe,

(9)

where Etot (AmO2 + e′, −1) is the total energy of the super-
cell containing one self-trapped electron polaron.

The calculation of defect formation energies according to
Eq. (1) involves a correction term Ecorr, which is the sum
of the monopole part of the Markov-Payne correction [18]
(using the static dielectric calculated in our previous work,
see Table II) and of a band alignment performed using the 6s
semicore levels of americium, as in Refs. [19,20]. In the case
of the charged supercell containing a delocalized electron or a
delocalized hole, however, only the band alignment correction
is applied.

The electron chemical potential μe is referenced to the
valence band maximum (VBM), EVBM, and is written as μe =
EVBM + εF . The Fermi level εF is assumed to vary between
0 and the band gap Eg, equal to 1.1 eV (Table II) using
U = 6 eV and J = 0.75 eV (Kohn-Sham band gap).

The energy of the VBM is calculated by [21] EVBM =
Etot (AmO2) − Etot (AmO2,+1), with Etot (AmO2,+1) being
the energy of a perfect supercell in which an electron has
been removed (thus emptying a delocalized Kohn-Sham state
at the VBM). Also, we can estimate the energy of the con-
duction band minimum (CBM) in the same way, ECBM =
Etot (AmO2,−1) − Etot (AmO2), with Etot (AmO2,−1) being
the energy of a perfect supercell in which an electron has
been added (thus filling a delocalized Kohn-Sham state at the
CBM). The band gap may then be alternatively obtained as
ECBM − EVBM and is found here to be 1.10 eV, thus very close
to the Kohn-Sham band gap.

TABLE II. Lattice parameter, band gap, formation enthalpy, Am magnetic moment, and static dielectric constant εS of AmO2 and
Am2O3 obtained in our previous study and compared with other studies. Our results were obtained using GGA + U with U = 6 eV and
J = 0.75 eV [3].

a (Å) Band gap (eV) Hf (eV) μmag (μB) εS

AmO2 GGA + U a 5.44 1.1 −9.15 5.1b 16.8
Other works 5.42c; 5.37d 0.8c; 1.3e −9.66f 4.8g

Am2O3 GGA + U a 11.18 1.25 −17.20 6.2
Other works 11.02d −17.52e

aPrevious work [3].
bUsing 5 f occupation matrices and no symmetry (5.2 from integration of electron density inside PAW atomic spheres) [3].
cReference [6].
dReference [9].
eReference [5].
fReference [34].
gReference [35].
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B. Density functional theory calculations

1. DFT functionals

Our DFT calculations are carried out using the ABINIT

package [22,23] within the projector augmented wave (PAW)
[24,25] formalism. We use the generalized gradient approx-
imation, as parametrized by Perdew, Burke, and Ernzerhof
(GGA-PBE) [26]. The strong correlations among the 5 f elec-
trons of americium are treated by adding an onsite Coulomb
repulsion, under the form of a Hubbard-type term in the
Hamiltonian [27]. The rotationally invariant form by Liecht-
enstein et al. [28] is used for the electron interaction energy
associated with the Hubbard term (EHub). The total energy in
this GGA + U scheme is the sum of the GGA energy (EGGA),
the Hubbard interaction energy EHub and the double-counting
term Edc:

EGGA+U = EGGA + EHub − Edc. (10)

For the double-counting expression (Edc), we use the full
localized limit (FLL) [27,29,30] because americium oxides
have an insulating ground state (thus, orbital occupation of
the strongly correlated 5 f electrons is close to one or zero).

2. Numerical parameters

The onsite Coulomb terms U and J used for Am 5 f orbitals
are (6.00; 0.75) eV. Indeed, in our previous study [3], by
computing several bulk properties of AmO2 as a function
of the U and J parameters and comparing with available
experimental data, we showed that (U = 6.00; J = 0.75) eV
can be used to provide a good description of AmO2. Results
are obtained using a plane-wave cutoff energy of 871 eV.
According to our convergence tests, this parameter leads to
a precision lower than 1 meV per atom on physical energies
(total energy differences). A 96-atom supercell (2 × 2 × 2
in terms of the conventional fcc fluorite unit cell of AmO2)
is used, with various point defects inserted inside: oxygen
vacancy, americium interstitial, and electron polaron.

The calculations are done using a 2 × 2 × 2 k-point mesh
to sample the Brillouin zone associated with the supercell,
generated by the Monkhorst-Pack [31] method, which is suffi-
cient for an energy convergence much better than 0.3 meV per
atom on the insulating supercells. In the case of the metallic
supercells (delocalized electron, delocalized hole), however,
the k-point mesh is increased to 4 × 4 × 4. We performed
structural optimizations keeping fixed the lattice vectors (fixed
according to the theoretical values yielded by GGA + U on
bulk AmO2) of the supercell, until the forces acting on the
atoms become less than 2.0 × 10−4 Ha/bohrs (∼0.01 eV/Å).
In other words, only atomic positions are relaxed.

The supercell is constructed by doubling in the three di-
rections the unit cell obtained in our previous work [3] after
full structural relaxation without accounting for symmetries.
Accordingly, the 5 f occupation matrix denoted as Mno sym

3
in Ref. [3] is used throughout this work to initialize all
the supercell calculations. For the simulation of the electron
polaron, however, a specific methodology is applied (see
Sec. V). Note that a careful control of the occupation matrices
of the 5 f orbitals of americium is absolutely necessary to
obtain a correct description of the ground state of the defective

supercells within DFT + U , in order to avoid convergence
toward electronic metastable states [32].

For the charged supercells, the extra charge is compensated
by a uniform background, as usually done for the compensa-
tion of charged defects in insulator compounds. Oxygen va-
cancies are studied in charge states q = 0, +1, +2, americium
interstitials in charge states q = 0, +1, +2, +3, and +4, and
the electron polaron is simulated by adding an extra electron
in the supercell (q = −1).

3. Magnetic configuration

All the present calculations are spin polarized, and symme-
tries are switched off. The 1k antiferromagnetic (AFM) state
is assumed for AmO2 since we showed in our previous study
[3] that, although the magnetic ground state of AmO2 is more
probably a 3k AFM order below the Néel temperature (8.5 K),
1k AFM order (without taking relativistic effects into account)
can be used as a good approximation. Thus, we do not include
spin-orbit coupling (SOC) in our calculations, and perform all
our calculations in the framework of collinear magnetism (i.e.,
the magnetization is a scalar field) with a 1k AFM order. Note
that taking SOC into account is computationally extremely
demanding, and prevents the use of supercells sufficiently
large for an accurate description of the properties of defective
systems. Furthermore, it has been showed in UO2 [33] that
the order of magnitude of energy corrections due to SOC is of
the 10th electron volts, whereas defect formation energies are
usually much larger (of the order of electron volts).

Table II gathers quantitative data on AmO2 and Am2O3

compounds obtained in our previous study [3] and used
throughout this study.

III. OXYGEN VACANCIES AND AMERICIUM
INTERSTITIALS

We begin by a description of the donor point defects in
AmO2, i.e., oxygen vacancies and Am interstitials.

A. Oxygen vacancies

The oxygen vacancy is double-donor defect. It liberates
two electrons. In its charge-neutral state (V X

O ), these two extra
electrons are localized on two of the four adjacent Am atoms,
giving rise to the formation of two Am3+ ions in the close
vicinity of the vacancy. If these two electrons unbind from
the vacancy and migrate far away in the lattice, they leave
behind a charged (ionized) oxygen vacancy V ••

O or at least a
partially ionized oxygen vacancy V •

O if one of the electrons
remains bonded to the vacancy. Indeed, the calculation of
V •

O provides only one Am3+, while the fully ionized oxygen
vacancy V ••

O is associated with no Am3+ in the supercell.
Note that Am3+ are easily identified by their spin magnetic
moment: our GGA + U calculations provide a moment of
∼5.8 μB for Am3+ versus ∼5.1 μB for Am4+ (in this work,
the magnetic moments are evaluated using the 5 f occupation
matrices on Am atoms).

Figure 2 displays the formation energies of the oxygen
vacancies V X

O , V •
O, and V ••

O as a function of Fermi level in the
two external conditions described above: oxidizing (O-rich)
and reducing (O-poor). From these formation energies, we can
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FIG. 2. Formation energies of the oxygen vacancy, americium interstitial, and self-trapped electron polaron in their possible charge states,
as a function of the Fermi level in the band gap of AmO2 for (a) oxygen-rich and (b) oxygen-poor conditions. ST e− denotes the self-trapped
electron polaron. Inset (in right panel): zoom on the VBM region.

calculate the transition energy level between the O vacancy
in charge state q and the same defect in charge state q′. It is
defined as

εVO (q/q′) = �E f (VO, q; εF = 0) − �E f (VO, q′; εF = 0)

q′ − q
,

(11)
where �E f (VO, q; εF = 0) is the formation energy of the O
vacancy in charge state q, calculated for the Fermi level at the
VBM [36]. εVM (q/q′) corresponds to the Fermi level at which
the formation energies of the defect in charge states q and q′
are equal.

We find here εVO (+2/ + 1) = 0.01 eV and εVO (+1/0) =
0.28 eV. These transition levels are very far from the CBM
(∼1 eV or more), indicating that the oxygen vacancy in AmO2

is a deep double-donor defect.
Figures 3(d)–3(f) display the electronic density of states

(e-DOS) of the supercell containing the charge-neutral oxygen
vacancy. Figure 3(d) plots the total e-DOS. It can be seen that
two occupied states with opposite spin appear in the band
gap, but at very low energy, very close to the VBM (they
are spotted with green arrows), which emphasizes the picture
of a deep donor for the O vacancy in AmO2. Figure 3(e)
plots the e-DOS projected on the 5 f orbitals of the two
Am3+ which are next to the vacancy and that carry the two
electrons released by the defect, while Fig. 3(f) plots the

e-DOS projected on the 5 f orbitals of two Am4+ (with oppo-
site spin) of the supercell (their projected e-DOS are typical
of those of the other Am4+). We observe that the occupied 5 f
orbitals of Am4+ are localized down in the valence band, a
feature that has already been pointed out in our previous work
[3]. This positioning is noticeably changed for Am3+ since
adding one electron in a 5 f orbital has two effects: first, the
energy of the newly occupied state strongly decreases from
the CBM down to the VBM and, second, at the same time, the
energy of the other 5 f states increases towards the VBM.

Am3+ has thus the tendency to accumulate the occupied
5 f states at the VBM, which can be seen as a precursor
to the formation of Am2O3, which is a Mott insulator with
a band gap Am 5 f → Am 5 f (in contrast to AmO2 which
rather behaves as a charge-transfer insulator with a band gap
O 2p → Am 5 f ).

B. Americium interstitials

The americium interstitial IAm liberates four electrons and
is thus a quadruple donor defect. In the charge-neutral state,
IX
Am induces the formation of four trivalent americium Am3+

in the crystal. Upon charging the defect, the number of Am3+

in the supercell decreases accordingly (3 for I•
Am, 2 for I••

Am, 1
for I•••

Am ) up to the fully ionized Am interstitial I••••
Am , that does

not induce the presence of any Am3+, as expected.
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FIG. 3. Electronic density of states. Left panels: supercell with the self-trapped electron polaron. Right panels: supercell with the charge-
neutral oxygen vacancy. Top: total density of states. Middle: density of states projected on f orbitals of the Am3+ atoms of the supercell (one
single in the case of the polaron, two in the case of the vacancy). Bottom: density of states projected on f orbitals of two Am4+ with opposite
spin of the supercell. In (a) and (d), the small green arrows spot the defect states (occupied in both cases). The Fermi energy (highest occupied
state) is set at 0 eV. Positive values: spin up; negative values: spin down.

The formation energies of this defect in charge states q
from 0 to +4 are plotted as a function of Fermi level on
Fig. 2, superimposed to those of the oxygen vacancy. Only
two of the studied charge states are found stable: I••

Am and
IX
Am, with a transition energy level between them equal to
εIAm (+2/0) = 0.18 eV. Once again, this ionization energy is
far from the CBM, which indicates that the Am interstitial is
a deep donor, as the oxygen vacancy.

On the other hand, one can see (Fig. 2) that the for-
mation energies of Am interstitials are several eV higher
(∼6 eV at εF = 0.0 eV) than those of the oxygen vacancies,
indicating that these defects are unlikely, and will never be
present in the AmO2 matrix. This suggests that the major-
ity of the intrinsic donor defects in AmO2 are the oxygen
vacancies.

IV. SELF-TRAPPED SMALL POLARONS IN INSULATORS:
BASIC CONCEPTS

Having described the donor point defects in AmO2, we
now investigate how the electrons released by these defects
behave in the lattice and, more precisely, whether they can
localize on single Am atoms far from the vacancies, under the
form of small polarons. Before, however, we briefly review
some basic concepts about small polarons in insulators.

A. Self-trapping

A small polaron corresponds to the localization of an
extra elementary electronic charge (electron or hole) on a
single atom in an insulating crystal, associated with a set
of atomic distortions around. In an insulator, these charges
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are generally released by some point defect. For example,
in most oxide materials, the oxygen vacancy liberates two
electrons. These two electrons can either stay localized very
close to the vacancy (which is then said to be in the neutral
state), or diffuse in the lattice, leaving behind them a doubly
charged oxygen vacancy. Whether the vacancy is ionized
or not depends on the electronic chemical potential μe. If
one of these electrons, once released in the lattice, localizes
on a single atom, the entity corresponding to this localized
electron, with the associated lattice distortion is called a small
polaron.

The mechanism by which an extra electronic charge local-
izes on a single atom in the lattice is called self-trapping: this
is a self-consistent mechanism along which the localization of
the electronic charge, and the appearance of distortions around
it favor each other. Indeed, the localization of the electronic
charge on one atom (which corresponds to a change in the
oxidation state of the atom) creates a distortion all around
because it breaks the translational periodicity of the lattice.
Moreover, this distortion is mostly the result of the electro-
static interaction between the localized electronic charge and
the surrounding polarizable matrix. The immediate environ-
ment is therefore radially polarized. In return, this polarization
field creates on the polaronic site a deep electrostatic potential
which favors the localization of the charge. Roughly speaking,
the formation of a polaronic state (rather than a delocal-
ized Bloch-type band state) takes place if the energy cost
associated with the self-trapping distortion and the quantum
confinement of the charge is compensated by the (favorable)
interaction between the charge and the polarization field of the
self-trapping distortion, a balance which is obviously system
dependent. Other mechanisms (electron-electron interaction,
stress field associated with the polaron) also play a role. It is
important to understand that the charge localization and the
self-trapping distortion are necessary to each other and cannot
be dissociated in a small polaron. The formation of the pola-
ronic state is schematically described on Figs. 4(a) and 4(b).

B. Diffusion

Under the effect of thermal fluctuations, small polarons
may jump from an atom onto a nearest one. However, the
physical mechanism that underlies this hopping is not the
same as the one encountered in the hopping of (heavy enough)
atoms. Indeed, atomic hopping is usually considered as re-
sulting from a thermal overbarrier process (at least at large
enough temperature), in which the potential energy barrier
that separates one site from the other is overcome thanks to the
thermal vibrations of the atoms themselves (including those
of the hopping atom). In the case of small polaron hopping,
however, it is not possible to invoke the thermal vibrations
of the localized electron (or hole) itself because this charge
carrier, in its ground state, is subject to a strong quantum
confinement, associated to a strong quantization of its energy
levels. At room or moderate temperatures, the excited states
of the localized charge may lie too high, so that the localized
charge, in many situations, does not undergo the thermal
fluctuations and remains frozen in its ground state. Thus,
the notion of thermal overbarrier for a localized electron (or
hole), i.e., including the thermal fluctuations of the electron

FIG. 4. Schematic representation of the self-trapping process
[37] of an excess electron in AmO2 (the positioning of Am
and O atoms is here schematic and does not correspond to that
of the real fluorite structure). The blue line schematically represents
the potentiel felt by the electron; (a) periodic undistorted crystal:
the excess electron is delocalized throughout the crystal under the
form of a Bloch wave and its eigenstates form a band (purple lines);
(b) self-trapped state at site Ami: the crystal is distorted around the
particle (here the first-neighbor oxygens are pushed away, which is
schematically featured by the red arrows), which makes the Ami site
more stable than the neighboring sites for the excess electron. Note
that transfer by tunneling from Ami site onto the neighboring sites is
impossible. The polaron is the association of the particle localized at
site Ami and of the set of surrounding distortions; (c) coincidence
configuration (CC) [37] for polaron hopping from site Ami onto
site Am f : the atomic distortions have been modified so that the
electron feels a symmetric potential, the two (diabatic) ground levels
in the two wells (Ami and Am f ) are equalized (purple lines), making
transfer by tunneling possible through the remaining barrier. The
green/yellow lines represent the ground and first-excited adiabatic
states of the electron, which, at coincidence, are separated by 2C
(electronic coupling).

(or hole) itself, does not make sense in such a situation. And
yet, small polaron hopping is known as being a thermally
activated process [38], with a hopping rate being proportional
to an Arrhenius term e−Ec/kBT .

In fact, the process by which the small polaron hopping
takes place involves thermal fluctuations, but those of the lat-
tice atoms. With temperature, the atomic vibrations occurring
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around the polaron may, occasionally, lead to specific atomic
configurations in which the self-trapping is weakened and,
more precisely, confined to a pair of neighboring sites (instead
of one), so that the energy of the electronic charge is the same
whether it is localized on the initial site or on the final site
[see Fig. 4(c)]. Such an atomic configuration, in which the
energies of the ground states in the initial well and in the final
well are in coincidence, is called a coincidence configuration
(CC) [37]. These specific lattice configurations are the ones
in which the hopping of the excess electronic charge may
effectively take place because they are favorable to a resonant
tunneling between the two (diabatic, i.e., considered as con-
strained to remain localized on one site) ground states (the
charge feels a symmetric double well at coincidence). The
mechanism by which the electronic charge transfers onto the
nearest site is thus intrinsically quantum (tunneling), but this
tunneling takes place in a specific configuration created by the
thermal fluctuations of the lattice atoms.

There is obviously an infinity of such coincidence con-
figurations, and many of them can play a role in the hop-
ping. However, very often in polaronic hoppings, one single
coincidence configuration is relevant (that of lowest energy)
[37]. It plays the role of the saddle point configuration for
the polaronic hopping process. Let us call its energy Ec (with
respect to the self-trapped state of the polaron). Since this
configuration is reached by thermal fluctuations, the rate at
which it is visited is therefore proportional to e−Ec/kBT , which
explains the Arrhenius form of the polaronic hopping rate.

The reaction coordinate for the hopping of the polaron
consists therefore in the set of atomic distortions that drives
the system from the initial self-trapped configuration (denoted
as STi) up to the final self-trapped one (denoted as ST f ), tran-
siting along the path by the coincidence configuration (CC).
Here, we denote this (atomic) reaction coordinate as S. The
set of atomic distortions along S may follow one or several
phonon modes of the lattice. For simplicity, we consider that
only one phonon mode, with pulsation ωS , contributes to the
reaction coordinate S. ωS

2π
can therefore be considered as an

attempt frequency for the hopping of the small polaron.
The energy of the system as a function of S is schematically

plotted on Fig. 5. The dashed curves on this figure represent
the energy of the system with an excess electron in its ground
state, considered as strictly localized on the initial or on the
final atom. They are often called diabatic curves (or diabatic
surfaces) and, as explained above, they cross at CC. However,
at coincidence, the two electronic diabatic ground states are
usually coupled, and the electronic coupling C breaks the
degeneracy, so that the two adiabatic levels (i.e., the true
electronic eigenstates within the adiabatic approximation)
are split by 2C. Taking into account the coupling C, the energy
of the system as a function of S is represented by the adiabatic
curves (or adiabatic surfaces, solid lines on Fig. 5). Note
that the adiabatic curves deviate from the diabatic ones only
around the coincidence point

We have said that polaronic hopping takes place in a coinci-
dence configuration, by a tunneling of the charge through the
barrier felt at coincidence. Indeed, in a symmetric double well,
a quantum particle initially localized in one of the two wells
with an energy smaller than the barrier oscillates, through a
tunneling motion, with a typical time h̄/2C, where C is the

FIG. 5. Typical energy profile along the hopping path of a small
electron polaron, as a function of the reaction coordinate, denoted
here as S. S is an atomic distortion that drives the lattice from the
initial self-trapped configuration (STi) to the final self-trapped one
(ST f ), passing by a coincidence configuration at the transition point
(CC). It is important to distinguish this energy profile (function of
an atomic coordinate) from the ones drawn on Figs. 4(b) and 4(c),
which correspond to the electronic potential (i.e., seen by the excess
electron) at fixed lattice configuration (either STi or CC). Ec is the
coincidence energy, which plays the role of the activation energy for
the hopping process of the small polaron.

electronic coupling. 2C is the energy separation between the
ground and first-excited (adiabatic) states in the double well
at coincidence. However, the coincidence event has a certain
timescale itself and, obviously, the hopping event does take
place only provided the typical time for tunneling through the
barrier is smaller than the coincidence timescale. Thus, two
opposite limit behaviors may exist:

(i) If the typical time for tunneling through the barrier at
coincidence is much smaller than the coincidence timescale,
polaronic hopping is automatic at each coincidence event. In
other words, it is as if the polaron had the time to adjust its
state to the atomic configuration: the hopping is thus said to be
adiabatic because the system stays on the adiabatic surface all
along the transfer (the adiabatic approximation is always true).
The hopping rate in that case takes the form k = k0e−Ec/kBT ,
k0 being the typical frequency of the phonon mode that drives
the system to the coincidence (∼1013 s−1).

(ii) If, on the contrary, the typical time for tunneling
through the barrier at coincidence is much larger than the
coincidence timescale, polaronic hopping is not automatic at
all, and many occurrences of the coincidence configuration
can be necessary before the jump takes place. The prefactor
of the jump rate in that case is controlled, not only by the
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phonons, but also by the probability for the charge to transfer
through the barrier at coincidence, which is a typical quantum
mechanism, and will involve the coupling C in the expression
of the prefactor. The prefactor may in that case be much
smaller than the phonon frequencies (k0 � 1013 s−1). In that
case, since the polaronic charge has not the time to adjust its
state to the atomic configuration and remains on one side of
the symmetric barrier at coincidence (instead of adjusting to
the true adiabatic ground state which is delocalized over the
two wells), the jump is said to be nonadiabatic because the
system leaves the adiabatic surface around CC (the adiabatic
approximation is not true at CC).

Whether polaron transfer takes place adiabatically or not
may be determined by inspecting the Landau-Zener adiabatic-
ity criterion [38] (or Landau-Zener thermal parameter)

γth(T ) = 2π

h̄ωS

√
π

ESkBT
C2, (12)

in which ωS is the pulsation of the lattice phonon mode that
drives the system from the self-trapped configuration up to
the coincidence, and ES is the reorganization energy, that may
be approximated by 4Ec in a harmonic model. Note that γth

has been used also to characterize the adiabaticity of proton
transfers in solutions [39].

γth � 1 corresponds to the adiabatic case, the prefactor
of the transfer rate in then k0 = ωS

2π
. In contrast, γth � 1

corresponds to the nonadiabatic situation described above.

V. ELECTRON POLARON

The results of Sec. III clearly indicate that the donor defects
in AmO2 tend to form Am3+ cations thanks to the localization
of the electrons released by the defect on single Am atoms.
Note that this local change of oxidation state of americium is
in agreement with the electronic density of states of AmO2,
for which the CBM has been shown to be formed by Am 5 f
states (see, e.g., our previous work [3]): the electrons released
by the donor O vacancy thus come to populate these states,
forming Am3+.

However, instead of localizing on single atoms in the vicin-
ity of the defect, the excess electrons can escape and diffuse
through the crystal. Here, two limit behaviors are a priori
possible: either they are delocalized, under the form of a Bloch
wave [conduction electron, Fig. 4(a)], or they remain localized
on another single Am atom, which corresponds therefore to a
self-trapped electron polaron [Fig. 4(b)]. The mechanisms by
which an electron can localize on a single atom far from a
defect (self-trapping) have been recalled in Sec. IV A.

A. Computation of the self-trapped electron polaron in AmO2

It is easy to compute the delocalized state of an excess elec-
tron in the supercell (we just add one electron and compute the
total energy of the system without performing any structural
optimization). But, the computation of the self-trapped elec-
tron polaron is more complex. We follow the methodology
described in Ref. [40] (hereafter recalled). However, we also
have to test among the different possible occupation matrices
for the 5 f orbitals of the Am atom that receives the excess
electron.

First, we select one Am atom in the supercell, that will
receive the excess electron (and thus will be reduced from
Am4+ to Am3+). For each of the possible 5 f occupation
matrices of Am3+ (there are seven possibilities corresponding
to placing six electrons among the seven orbitals of a given
spin channel), we use the following two-step procedure:

(1) We first perform a structural optimization with the
5f occupation matrices on all the Am atoms kept strictly
constant along all the electronic self-consistent cycles. The
occupation matrix for the 5f electrons of the Am3+ atom
(which carries the excess electron) is fixed to one of the seven
possibilities mentioned above, while the occupation matrix for
the 5f electrons of the Am4+ atoms (all the others) is the one
obtained in our previous study [3], i.e., the Mno sym

3 matrix.
This imposes that the chosen Am atom carries the charge
+3 while all the other Am carry the charge +4, with the
5 f orbitals occupied according to the imposed matrices, and
creates around Am3+ the appropriate self-trapping distortion.
At the end, the lattice around the polaron has relaxed and is
characteristic of a self-trapping distortion able to localize the
excess electron on the chosen atom [i.e., a potential similar to
that of Fig. 4(b)].

(2) Then, the system is completely optimized without any
constraint, starting from the preoptimized geometry obtained
just above, and the previous occupation matrices for 5f orbitals
(but maintained only over the 20 first electronic iterations of
the first ionic step). This way, the system normally relaxes to
a polaronic state with the electron localized on the chosen Am
atom, and moreover in the chosen 5 f orbital (provided this
state is stable).

The calculations are performed by switching off all the
symmetries. This two-step procedure is achieved for the seven
possible occupation matrices of the 5 f orbitals of the Am3+,
and the most stable final configuration is selected as the one
that best describes the polaronic state of the excess electron in
AmO2.

In this final configuration, we observe that the added
electron is indeed localized on the chosen americium atom
(as expected). This localization is associated to (i) an increase
of the magnetic moment of the atom on which the electron is
localized, from ∼5.1 μB up to 5.85 μB, and (ii) an expansion
of the Am-O bond lengths between the Am3+ and its eight
oxygen first neighbors, by ∼3.3%. This increase in the Am-O
distances, i.e., the O atoms are slightly pushed away from
the localized excess electron, corresponds to the self-trapping
distortion characteristic of the polaronic state in AmO2.

B. Self-trapping energy, formation energy
of the electron polaron

The supercell containing the self-trapped electron polaron
is 1.01 eV lower in energy than that with a delocalized
electron (i.e., at the bottom of the conduction band, in the
perfect crystal). The self-trapping energy is thus −1.01 eV.
This very large value indicates that electron polarons are
extremely stable in AmO2. This self-trapping energy is larger
than the one encountered, e.g., in some rare-earth titanates
(−0.55 eV [41]). However, large self-trapping energies may
be found, for instance, in BaCeO3, where Swift et al. [42]
report a self-trapping energy of −0.78 eV for the electron
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polaron (which locally corresponds to the reduction of Ce4+ in
Ce3+). In bulk ceria, however, electron polaron self-trapping
energies are less negative (−0.54 to −0.30 eV) [43].

Figure 2 plots the formation energy of the electron polaron
as a function of Fermi level, superimposed to the formation
energies of oxygen vacancies and Am interstitials. Note that
the formation energy of the polaron does not depend on the
external conditions.

We observe that, due to its large stability, the formation
energy of the electron polaron is positive only over a very
small range of the Fermi level near the VBM (between 0 and
0.09 eV). This restricts the accessible range of the Fermi level
in AmO2 to 0–0.09 eV. This is related to the fact that the
self-trapping energy of the electron polaron in AmO2 is very
close to the (theoretical) band gap (1.1 eV [3]). Note that
a negative value for the formation energy of small polaron
would indicate a spontaneous reduction of Am4+ to Am3+

and, thus, the spontaneous formation of americium sesquiox-
ide Am2O3.

The self-trapped electron polaron is therefore a very stable
intrinsic defect in AmO2. In the accessible range of the Fermi
level, the dominant atomic point defect is first the fully ionized
oxygen vacancy V ••

O (up to εF = 0.01 eV), then the singly
ionized oxygen vacancy V •

O. Therefore, in the absence of other
point defect in AmO2, the electron polarons are probably, at
least partly charge compensated by fully ionized and partially
ionized oxygen vacancies. Note that with a Fermi level so
close from the VBM, the AmO2 matrix can also contain holes,
which will be discussed in Sec. VI.

C. Electronic density of states of the polaronic system

Figures 3(a)–3(c) display the electronic density of states
(e-DOS) of the supercell containing the self-trapped electron
polaron. Figure 3(a) plots the total e-DOS. It can be seen that
one occupied state appears in the band gap (it is spotted with
green arrow), at very low energy, very close to the VBM,
just like the defect states of the neutral oxygen vacancy.
Figure 3(b) plots the e-DOS projected on the 5 f orbitals of
the Am3+ which carries the excess electron, while Fig. 3(c)
plots for comparison the e-DOS projected on the 5 f orbitals
of two Am4+ (with opposite spin) of the supercell (their
projected e-DOS are typical of those of the other Am4+).
Like in the charge-neutral oxygen vacancy (and in bulk
AmO2), the occupied 5 f orbitals of Am4+ are localized down
in the valence band [3]. For Am3+, we also observe exactly
the same tendency as for the charge-neutral oxygen vacancy:
the energy of the newly occupied 5 f state of Am3+ strongly
decreases from the CBM down to the VBM, while the energy
of the other (occupied) 5 f states of Am3+ increases toward
the VBM. As for the oxygen vacancy, Am3+ accumulates the
occupied 5 f states at the VBM.

D. Association energy between electron polaron
and oxygen vacancy

The large stability of the electron polaron in AmO2 sug-
gests that the electrons released by an oxygen vacancy may
have the tendency to spontaneously unbind from their parent
defect, in order to be rather in a self-trapped state, far from

the defect in the lattice. We examine this possibility in this
section. Having computed the oxygen vacancy in its different
possible charge states and the self-trapped electron polaron,
we can indeed calculate the association energy between the
electron polaron and the oxygen vacancy.

We consider the following processes:
(i) Association between an electron polaron and a singly

ionized oxygen vacancy, providing a neutral oxygen vacancy:

V •
O︸︷︷︸

part ially ionized
vacancy

+ Am′
Am︸ ︷︷ ︸

isolated small
polaron

→ AmX
Am + V X

O︸︷︷︸
neutral oxygen

vacancy

. (13)

We note as Ea1 the energy of this process.
(ii) Association between two electron polarons and a fully

ionized oxygen vacancy, providing a neutral oxygen vacancy:

V ••
O︸︷︷︸

f ully ionized
vacancy

+ 2Am′
Am︸ ︷︷ ︸

2 isolated
small polarons

→ 2AmX
Am + V X

O︸︷︷︸
oxygen
vacancy

. (14)

We note as Ea2 the energy of this process.
−Ea1 (respectively −Ea2 ) is thus the energy required to

unbind one (respectively two) electron(s) from the neutral
vacancy V X

O and put it (them) far away in the lattice under
the form of an (respectively two) isolated self-trapped electron
polaron(s), leaving behind a partially (respectively fully) ion-
ized V •

O (respectively V ••
O ). We find two positives values Ea1 =

0.20 eV and Ea2 = 0.12 eV, confirming the larger stability of
the polaronic state, i.e., the electron released by the vacancy
is more stable far from the vacancy as a self-trapped polaron,
rather than bonded to the vacancy (in its close vicinity). In
other words, the charge-neutral vacancy is never stable. This
is consistent with the fact charged oxygen vacancies are more
stable than the neutral one over the accessible range of the
Fermi level (Fig. 2).

Other defects are reported in the literature to have the
released electrons or holes preferentially localized not on
their nearest neighbors: for instance, the electrons liberated
by the neutral oxygen vacancy at the CeO2(111) surface rather
localize on next-nearest-neighbor Ce atoms rather than nearest
neighbors [44,45]. In bulk ceria, however, electron polarons
are found to effectively bind to oxygen vacancies, however
weakly, with association energies ∼ − 0.1 eV [43]. In some
perovskites such as BaZrO3 or BaSnO3 doped with trivalent
elements on their B site (Zr or Sn), the hole liberated by the
acceptor dopant is found to localize on one oxygen second
neighbor of the dopant in the case of the largest dopants
[40,46].

E. Transfer of the electron polaron

We now investigate the possibility for the electron polaron
to migrate from an Am atom onto the nearest one. We denote
as Ami (respectively Am f ) the americium atom on which the
electron polaron is initially (respectively finally) localized.
The two atoms chosen are first neighbors on the Am sublat-
tice, and carry the same spin (we recall that AmO2 is modeled
as an AFM compound). The basic concepts that underlie the
physics of small polaron transfer have been recalled above
(Sec. IV B): the hopping of a small polaron is a quantum
mechanism taking place in a coincidence configuration, which
may appear due to the thermal fluctuations of the lattice atoms.
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In a coincidence configuration, the ground levels of the excess
electron, considered as localized either in the initial or in the
final well, are equalized, making possible a resonant tunneling
of the electron from one of these (diabatic) ground states onto
the other.

As we have said above, it is generally admitted that,
in small polaron transfer, there is mostly one coincidence
configuration that contributes to hopping, although in theory,
the number of coincidence configurations is infinite, and that
this configuration is the lowest-energy one [37]. Along the
hopping path, this CC plays the role of the transition state,
while its energy Ec (coincidence energy) plays the role of an
activation energy for the hopping process of the polaron. It
has been proposed to obtain this CC by linear interpolation
between the initial and the final self-trapped configurations,
and plotting the total energy of the system along this path [47].
This, however, may slightly overestimate the coincidence
energy. On the other hand, it is possible to use methods such
as the “nudged elastic band” (NEB) or the “string method,”
which allow computing the minimum energy path (MEP)
between the two self-trapped configurations. Note, however,
that these techniques assume that the energy evolves smoothly
enough along the path: the energy profile must be derivable
at the coincidence point, which is the case only if the elec-
tronic coupling at coincidence is large enough (see Fig. 5).
In theory, this excludes the hopping processes in which
the electronic coupling is very weak, i.e., the nonadiabatic
processes.

It is, however, difficult to predict by advance the nature
(adiabatic or not) of the hopping. Thus, we assume the validity
of the string-method algorithm for the present problem, and
use it to compute the MEP between two self-trapped configu-
rations corresponding to the polaron localized on neighboring
Am sites (with same spin). In the string method, the path
between the initial and the final configurations is discretized
in a series of intermediate configurations (or images). Ini-
tialization is achieved by a linear interpolation, and we use
11 images to make the calculation (including the initial and
final ones). The string method is an iterative algorithm in
which each iteration consists of two steps: (i) an evolution
step, during which the images are moved along the atomic
forces computed by a ground-state DFT calculation on each
image; (ii) a reparametrization step, during which the images
are equally redistributed along the path so that the distance be-
tween image k and k + 1 is constant along the “string.” Along
the final path, the index of the image is thus proportional to
the distance, and thus can be considered as a good reaction
coordinate.

At the end of our calculation, the average difference per
image between two successive iterations is ∼2.0 × 10−4 Ha
(∼5 meV). The occupation matrices of the 5 f orbitals are
imposed, for each image, over 20 electronic steps at the initial
iteration of the string method. For the nine images intermedi-
ate between the initial and the final self-trapped configuration,
a linear interpolation between the occupation matrices of the
two self-trapped configurations is used, as implemented in the
ABINIT code [40].

Figure 6 displays the energy profile obtained, as a function
of image index: the energy barrier is ∼0.55 eV. Along the
hopping path, the spin magnetic moments on the initial and
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FIG. 6. Energy along the hopping path of the self-trapped po-
laron, as provided by the string method. Hopping is considered here
between two first-neighbor Am atoms. The black (respectively red)
part of the curve gathers the configurations in which the polaron is
localized on Ami (respectively Am f ). Inset: energy as a function of
configuration linearly interpolated between images 5 and 6 (black
symbols: configurations in which the polaron is localized on Ami;
red symbols: configuration in which the polaron is localized on
Am f ). Configuration number 1 (respectively 11) is the self-trapped
configuration at site Ami (respectively Am f ).

final Am show a discontinuous behavior [Fig. 7(b)], transiting
suddenly from their initial value (∼5.85 μB for Ami, ∼5.1 μB

for Am f ) to their final one (∼5.1 μB for Ami, ∼5.85 μB

for Am f ), between images 5 and 6. We recall that 5.85 μB

(respectively 5.1 μB) is a magnetic moment characteristic of
Am3+ (respectively Am4+). This means that the electron itself
is abruptly transferred from Ami onto Am f .

In order to show how the self-trapping distortion is trans-
ferred along the hopping path, we now scrutinize the evolution
of the Ami-O and Am f -O distances (between Ami/Am f

and the eight first-neighbor oxygens of the first coordination
shell, averaged over the eight oxygens), and plot these mean
distances as a function of image index along the hopping path
[Fig. 7(a)]: we observe that the system undergoes a progres-
sive weakening of the self-trapping distortion in the initial site,
and a progressive strengthening of the self-trapping distortion
in the final site: indeed, the 〈Ami-O〉 distance progressively
decreases from ∼2.43 Å to the undistorted value 2.35 Å,
while at the same time, there is a progressive increase of
this distance in the final site 〈Am f -O〉. In the coincidence
state, that should be reached somewhere between image 5
and 6, the 〈Am-O〉 distances should be equal to 2.39–2.40 Å
in both sites. The CC corresponds to a state in which the
distortion is equally shared between the two Am atoms. The
self-trapping distortion is therefore continuously transferred
along the hopping path, in contrast to the electron itself.

Finally, we construct a set of atomic configurations to
approach as much as possible the coincidence configuration
(CC) involved in the hopping path. For that, we take the two
configurations of the path which surround the CC (from Fig. 7,
configurations number 5 and 6), and linearly interpolate these
two configurations, building 9 intermediate configurations.
Then, two series of calculations are performed: the total
energy of each of these configurations is computed, with the
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FIG. 7. (a) Evolution of the average distance between the initial (or final) Am and the eight oxygen atoms of the first coordination shell,
as a function of image index along the hopping path onto a first- neighbor Am atom. The oxygen atoms are pushed away from the Am3+ ion
by about 0.08 Å (on average) in the self-trapped state, which is a hallmark of the self-trapping distortion. Here, we see that the self-trapping
distortion is progressively transferred from the initial Am onto the final Am along the hopping path of the polaron. (b) Evolution of the
magnetic moments of the initial and final Am atoms along the hopping path. Black (respectively red) circles correspond to configurations in
which the polaron is localized on Ami (respectively Am f ).

5 f occupation matrices initialized either to those of image 5,
or to those of image 6 (which corresponds to initialize the
electronic loop with the polaron either on Ami or on Am f ).

The results are shown in the inset of Fig. 6. The crossing
of these two curves provides a better approximation of the
CC involved in the hopping. Its energy is ∼0.6 eV above that
of the self-trapped configuration. In all these configurations,
intermediate between configurations 5 and 6 and close to the
CC, the polaron is always obtained as strictly localized on one
side of the barrier, i.e., either on Ami or on Am f , according to
how the calculation is initialized. The calculation does never
evolve spontaneously to a state in which the excess electron
would be equally shared between Ami and Am f , as it could be
expected in an adiabatic hopping. Only a small decrease (re-
spectively increase) of the magnetic moment on the polaronic
(respectively neighboring) site to ∼5.8 (respectively 5.2) μB

is observed. The smallest energy difference between the state
found localized on Ami and that found localized on Am f

(reached at the configuration number 7 of the inset of Fig. 6)
provides an upper limit to the electronic coupling, namely,
C < 7.2 meV, because (unconstrained) DFT is not expected to
provide diabatic states, but only adiabatic states. The curves
of Fig. 6 (with inset) are thus expected to correspond to the
solid line curves of Fig. 5. The electronic coupling in the CC
is thus probably very weak, providing here the picture of a
nonadiabatic hopping.

Having an upper limit to the electronic coupling (C <

7.2 meV), we can estimate an upper limit to the adiabaticity
criterion given by Eq. (12). We take as typical phonon energies
0.000 86–0.0026 Hartrees (wave numbers ∼189–570 cm−1)
corresponding to the range of the zone-center modes com-
puted in AmO2 and involving only oxygen displacements
(see Appendix). At room temperature, we obtain γth <

∼0.03–0.10, which provides further indication that the hop-
ping probably rather takes place in the nonadiabatic limit.

The transfer barrier of 0.6 eV found here is noticeably
larger than polaronic transfer barriers reported in the literature

for other oxide compounds, for instance, 0.4 eV [48] or
0.12–0.23 eV [43] in CeO2 and ∼0.3 eV in BaCeO3 [42]
for electron polarons, or ∼0.1–0.2 eV for oxygen-type hole
polarons in several oxides [40,46,47], 0.15–0.30 eV for Fe3+

holes in LiFePO4 [49–52]. We note that a barrier of 0.5–
0.6 eV is reported for hole polarons in TiO2 in the case of
a nonadiabatic hopping [47,53]. The high barrier found here
is probably related to the large self-trapping energy of the
electron polaron in AmO2.

A posteriori, we can question the validity of the string-
method algorithm on such a mechanism, along which the
energy appears as not very smooth at the CC. However, the
method provides a continuous path (in the sense of the lattice
distortions) between the two self-trapped configurations, with
an activation energy smaller than what would be provided by
a simple linear interpolation between these two configurations
(the linear interpolation provides an activation energy of
0.97 eV). It is thus clearly an improvement over this latter
approach.

VI. DISCUSSION

The previous results allow to build the following scenario
for AmO2: the large stability of the electron polaron (which
is related to the easiness for Am4+ to be reduced into Am3+)
restricts the range of possible Fermi levels to a very narrow
interval just above the VBM (0–0.09 eV). Electron polarons
will be thus in large number in AmO2, and it is probable that
they will be mostly charge compensated by ionized oxygen
vacancies (moreover, we have seen that oxygen vacancies
spontaneously liberate electron polarons in the lattice). How-
ever, since the Fermi level is thus very close to the VBM, we
must also consider the possibility to have free holes in addition
to the oxygen vacancies to ensure charge compensation of the
electron polarons.

We set up a simple and approximate model in order to
estimate the concentration in the different defects, charges,
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and equilibrium Fermi level [54]. The concentration of free
holes is assumed to be

p =
∫ EVBM

−∞
nv (E ) fp(E )dE , (15)

with

nv (E ) = 1

2π2

{
2m∗

h

h̄2

}3/2√
EVBM − E (16)

and fp(E ) = 1
1+e−(E−μe )/kBT . The concentration of free (band)

electrons is neglected since electrons in the lattice clearly
prefer the polaronic state. For simplicity, we take the effective
mass m∗

h equal to the electron mass [55]. The concentration of
point defect X in charge state q is

[X q] = [M]e− �E f (X,q)

kBT , (17)

with [M] being the concentration in possible sites for the
defect (e.g., for VO this is the oxygen concentration in AmO2)
[36]. The formation energy of the defect, �E f (X, q), depends
on the oxygen chemical potential �μO (external conditions)
and on the Fermi level εF if q �= 0.

The Fermi level at equilibrium ε
eq
F may be obtained by

solving the electroneutrality equation, assuming that oxygen
vacancies are the only atomic defects in the system (with
possible charge states 2+, 1+, 0):

[e−
pol] = p + 2

[
V 2+

O

] + [
V 1+

O

]
, (18)

where [e−
pol] denotes the concentration of electron polarons.

Numerical applications are done here for T = 300 K. Note
that Eq. (18) is solved for a given value of �μO (which acts
as a parameter).

Equation (18) admits positive solutions (i.e., εeq
F remains in

the band gap) only for oxygen-poor conditions. Using �μO =
−0.75 eV, we obtain ε

eq
F = 0.012 314 eV. In these conditions,

the concentration of electron polarons is ∼0.059 per f.u.,
that of free holes ∼5.2 × 10−4 per f.u., and that of oxygen
vacancies, 0.040 per f.u. This means that almost 6% of the Am
atoms in AmO2 are spontaneously reduced into Am3+ under
such external conditions. We see that the electron polarons are
mostly compensated by the oxygen vacancies rather than by
the holes, and that the concentration of oxygen vacancies is
significant, leading for AmO2 to the picture of a nonstoichio-
metric compound, with formula AmO1.96 (for T = 300 K and
�μO = −0.75 eV). With an equilibrium Fermi level so close
to the VBM, the concentration of free holes is significant, but
is dominated by that of electron polarons by about two orders
of magnitude, at least for a hole effective mass equal to the
free-electron mass. If a larger hole mass is assumed, e.g., 10
times that of free electron, we have ε

eq
F = 0.014 845 eV and

the concentration in oxygen vacancies slightly decreases to
∼3.5%. Then, the concentration in free holes is increased,
although remaining ∼4 times smaller than that of electron
polarons. The important loss of oxygen in those oxygen-poor
conditions may be seen as precursor for the formation of
hypostoichiometric Am oxide.

Note, however, that the very large concentrations found
here (due to very small formation energies) make the present
defect model very approximate since the calculation of the

concentration based on the formation energy normally as-
sumes concentrations �1.

In oxygen-rich conditions (�μO = −0.29 eV), the forma-
tion energy of the oxygen vacancy becomes too large to allow
charge compensation of the electron polarons by V ••

O or V •
O,

and this role is probably entirely played by free holes. There
is probably no important loss of oxygen in those conditions.

VII. CONCLUSION

In this work, we have studied intrinsic donor point de-
fects and electron polarons in AmO2, using a first-principles
GGA + U framework within which the Am 5 f orbital oc-
cupation matrices are carefully controlled. We have shown
that the oxygen vacancy is a deep double donor, with small
to moderate formation energies. Americium interstitials have
prohibitive formation energies and are thus unlikely in AmO2.
The self-trapped electron polaron is extremely stable (self-
trapping energy −1.01 eV). This large stability confines the
possible values of the Fermi level in AmO2 to a very narrow
interval just above the valence band maximum (0–0.09 eV).

In the oxygen-poor conditions here considered (�μO =
−0.75 eV, i.e., T = 680 K and PO2 = 0.2 atm), oxygen va-
cancies are easily formed in AmO2. The liberated electrons
have the tendency to move far from the vacancies and localize
in the lattice under the form of self-trapped polarons since this
state is found more stable than when the electron is trapped
close to the vacancy. In other words, the oxygen vacancies
are spontaneously ionized. Electron polarons are probably
in rather large number, with charge compensation mostly
ensured by ionized and partially ionized oxygen vacancies. In
oxygen-rich conditions, electron polarons may remain in large
concentration but should be charge compensated by free holes
rather than by ionized oxygen vacancies.

The self-trapped state of the excess electron in AmO2 is
associated with a self-trapping distortion mostly consisting of
an increase of the Am-O distance (between Am carrying the
excess electron and the eight first-neighbor oxygens) by about
0.08 Å. The hopping of the polaron involves a rather large
activation barrier of ∼0.6 eV, and probably takes place by a
nonadiabatic mechanism.
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APPENDIX: PHONON MODES AT THE �

POINT IN AmO2

The phonon modes at the � point in AmO2 have been
computed using a finite-difference (frozen-phonon) method,
in a six-atom supercell (to allow 1k antiferromagnetism), op-
timized without symmetry constraint to reach the GGA + U
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ground state [3]. The occupation matrix for the 5 f correlated
orbitals is the one called Mno sym

3 in Ref. [3]. Note that the
structural optimization within GGA + U without symmetry
constraint provides a unit cell which is slightly distorted
from the ideal fluorite cell, which explains why the computed
phonon modes are nondegenerate. The phonon wave numbers

obtained, using for Am a mass of 241 a.m.u. (and excluding
the three zero-frequency acoustic modes) are 114.3, 116.5,
188.6, 189.3, 230.5, 238.3, 305.2, 317.6, 320.7, 424.2, 425.2,
453.4, 454.2, 463.8, and 570.4 cm−1. Among these modes,
the first one involving only oxygen displacements is the one
at 189.3 cm−1.
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