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The plasticity transition, at the yield strength of a crystal, typically signifies the tendency of dislocation defects
towards relatively unrestricted motion. An isolated dislocation moves in the slip plane with velocity proportional
to the shear stress, while dislocation ensembles move towards satisfying emergent collective elastoplastic modes
through the long-range interactions. Collective dislocation motions are discussed in terms of the elusively defined
back stress. In this paper, we present a stochastic continuum model that is based on a two-dimensional continuum
dislocation dynamics theory that clarifies the role of back stress and demonstrates precise agreement with the
collective behavior of its discrete counterpart as a function of applied load and with only three essential free
parameters. The main ingredients of the continuum theory are the evolution equations of statistically stored and
geometrically necessary dislocation densities, which are driven by the long-range internal stress; a stochastic
yield stress; and, finally, two local “diffusion”-like terms. The agreement is shown primarily in terms of the
patterning characteristics that include the formation of dipolar dislocation walls.
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I. INTRODUCTION

Crystals mainly deform through the motion of dislocations
[1], extended linelike defects in the crystal lattice. This sole
fact can provide key explanations for the magnitude and char-
acter of uniaxial and shear strength, as well as the plastic crys-
talline behavior. However, the complex spatiotemporal dy-
namics of dislocations is elusive: It has long been known that
many aspects of the stress-strain response of deformed metals
are associated with collective and emergent dislocation pat-
terning that cannot be predicted by single-dislocation features,
e.g., dense dipolar wall (DDW) formation and corresponding
dislocation cell walls (see, for example, Refs. [2–8]). Also,
failure due to mechanical fatigue is preceded by the forma-
tion of complex dislocation patterns that have been labeled
“vein structures,” typically observed after multiple thousands
of fatigue cycles [9–13]. Dislocation patterning is therefore
not only interesting in relation to analogous phenomena in
statistical mechanics [14], but also it correlates with the vital
technological interest of characterizing and predicting the
lifetime of mechanical components [9].

Although during the past five decades several attempts
have been proposed to model pattern formation [15–20], most
of them are based on purely phenomenological arguments,
so they are not derived from the properties of individual
dislocations. Very recently, however, models based on statis-
tical physics considerations have been derived, establishing
a direct link between micro- and mesoscale descriptions of
the collective motion of dislocations [21–26]. Yet neither the
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dynamical or energetic origin of DDWs (or that of the vein
structures or other specific dislocation patterns) nor their rela-
tion to back-stress terms (induced by dislocation correlations
schematically shown in Fig. 1) appearing in continuum dislo-
cation dynamics was clarified. These latter dislocation force
components are typically associated with the Bauschinger
effect (the asymmetry of deformation upon reversed loading)
and represent key ingredients of kinematic hardening theories
[1,27,28]. In dislocation dynamics and strain-gradient plastic-
ity theories [29], such terms involve nonlinear derivatives of
the local dislocation density; however, their precise form has
been elusive [21,30,31].

In this paper, we develop further the deterministic approach
proposed by Groma et al. [25] that is able to display the spon-
taneous formation of dislocation walls through a dynamical
transition [14] and can be used to establish basic constitutive
rules for continuum dislocation plasticity theories. The key
ingredients are a particular form of dislocation back stress,
a “diffusion”-like stress term proportional to the gradient of
the statistically stored dislocation density, and the yield stress
being proportional to the square root of the statistically stored
dislocation density (Taylor hardening law). Each term arises
from a consistent coarse-graining procedure and contains
dimensionless prefactors. Here we show that although pattern-
ing is a general feature of the original model [25,32], realistic
DDW formation observed in lower-scale discrete dislocation
dynamics (DDD) simulations [33] occurs only when the yield
stress is replaced by a local random variable that makes the
model stochastic. Such a random term were previously used
in general plasticity models for crystal [34] and amorphous
[35] plasticity, and its precise form for two-dimensional (2D)
dislocation plasticity was determined recently from DDD
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FIG. 1. A gradient in the geometrically necessary dislocation
density is one form of spatial correlations that may affect local
strength (through the back stress τb) and lead to different yielding
thresholds for (a) and (b). The configuration of (b) is stronger
(weaker) if D < 0 (D > 0). The dashed lines denote spatial dis-
cretization, which is necessary to define continuous densities.

simulations [36]. Our results therefore shed new light on the
role of the back stress as well as the stochastic local yield
threshold in dislocation patterning of bulk single crystals and
provide a successful multiscale description of the dynamics in
single-slip edge dislocation systems.

The emergence of dislocation patterns has been investi-
gated numerically using multiple approaches, including 2D
[33,37–44] and three-dimensional (3D) DDD [45,46], as
well as continuum dislocation dynamics (CDD) [2,47–49].
Realistic 3D DDDs have been too expensive and remain
below 1% strain in bulk conditions, while CDD has not yet
captured local entanglement and back-stress interactions that
are expected to play a critical role in patterning [50,51]. In
contrast, not only are 2D DDD methods numerically tractable
at large strains, but also a rigorous coarse-graining procedure
has been developed for the special case of edge dislocations
in single slip [21,23,25]. In this paper, we will investigate the
continuum description of patterns in this case.

II. PATTERN FORMATION ON THE DISCRETE LEVEL

We consider a configuration of straight parallel edge dis-
locations, lying along the z axis with their Burgers vectors
pointing in the x direction. We track the motion of dislocations
in the z = 0 plane. To emulate an infinite crystalline medium,
periodic boundary conditions (PBCs) are applied at the bor-
ders of the square-shaped simulation area of size L × L. The
Burgers vector can be written as bi = sib, where b = (b, 0),
si = ±1, and 1 � i � N , with N being the total number of
dislocations. To mimic easy glide a linear relationship is
assumed between the projection of the Peach-Koehler force
to the glide plane (denoted by F hereafter) and the dislocation
velocity in the glide direction v as v = MF , where M is the
dislocation mobility [52]. Throughout this paper dimension-
less units summarized in Table I are used, where ρ0 = N/L2 is
the average total dislocation density and G = μ/[2π (1 − ν)]
is an elastic constant (where μ and ν are the shear modulus
and Poisson’s number, respectively). Using these units, the
equation of motion for the ith discrete dislocation (0 � i � N)
reads

ẋi(t ) = si

⎡
⎣τext +

N∑
j=1, j �=i

s jτind(ri − r j )

⎤
⎦, ẏi(t ) = 0, (1)

TABLE I. Summary of the units of dimensionless quantities.

Quantity Units

Distance x ρ
−1/2
0

Stress τ Gbρ1/2
0

Plastic strain γ bρ1/2
0

Time t MGb2ρ0

Dislocation density ρ, κ ρ0

where τind denotes the shear stress field of an individual
dislocation (see, e.g., [38]). For further details on our 2D DDD
simulations and the exact formula for τind see the Supplemen-
tal Material [53] (see also Refs. [21,23,25,25,34,36,38,54–56]
therein).

The typical evolution of a dislocation configuration can
be seen in the left column of Fig. 2. At zero applied shear
stress τext no clear pattern can be observed even though there
are specific local (low-energy) configurations: Opposite-sign
dislocations organize into short dipoles, whereas those of

FIG. 2. Dislocation pattern evolution in DDD simulations. Left
column: Dislocation configurations obtained at different strain γ

values. Middle and right columns: Same-sign and opposite-sign
spatial correlation functions (d++ and d+−, respectively) of discrete
dislocations.
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identical sign form short vertical walls. As τext increases,
dislocation patterns become increasingly heterogeneous with
predominant long, dense vertical walls [33]. These DDWs are
induced by the external shear stress and represent the stablest
configuration that can be formed in this 2D system. Recently,
it was shown that orientation of the slip system with respect
to the simulation box strongly influences the correlation prop-
erties of the dislocation network at large strains [57]. This
type of boundary condition sensitivity is common to pattern-
ing instabilities in condensed-matter systems with long-range
interactions [58]. In all such systems, the local interaction
that causes the instability is believed to be independent of the
particular boundary condition to be investigated. Thus, in the
present system, the emergent local order is not expected to be
affected by boundary conditions at small strains.

To characterize the pattern evolution in a quantitative man-
ner the two-point spatial correlation functions are computed
at different strain levels. These functions are defined as

d++(r) =
〈
ρ++(r′, r′ + r)

ρ2
0

− 1

〉
r′
, (2)

where ρ++(r′, r) denotes the two-point density of a + sign dis-
location at r′ and a + sign dislocation at r′ + r [59]. In the def-
inition the averaging with respect to r′ is introduced since the
system due to the PBCs is homogeneous, so ρ++(r1, r2) can
depend on only the relative coordinate r2 − r1. The correlation
function for the opposite-sign dislocations d+− is defined ac-
cordingly. The numerically obtained correlation functions and
their evolution with increasing strain can be seen in the middle
and right columns of Fig. 2. These functions were averaged
over 200 individual realizations, so they represent the average
patterning behavior of the DDD system. At zero strain the
microstructure is dominated by vertical walls of same-sign
dislocations and short dipoles of opposite-sign dislocations
having a 45◦ angle with the horizontal glide plane. The d++
function has a slow |y|−1.5-type power-law decay along the y
axis, signaling a broad distribution of the wall lengths [22].
With increasing strain (i) the walls get longer and denser
(see the change in the magnitude of the correlation function
d++), and (ii) the function d+− becomes asymmetric due to
the polarization of the microstructure; that is, the − sign
dislocations tend to be positioned to the right with respect to
the + sign dislocations. In addition, with accumulating strain
the d+− function extends in the vertical direction similarly
to d++, signaling the buildup of the DDWs seen in the left
column of Fig. 2.

III. PATTERN FORMATION ON THE CONTINUUM LEVEL

In order to identify the precise continuum form of the
DDW instability in the 2D DDD simulations, we consider
the theory that was directly derived from the equations
of motion (see the Supplemental Material) using a rigor-
ous coarse-graining procedure [25] and is based on the
continuous-density fields ρ±(r, t ) of dislocations with iden-
tical (+ or −) signs and the corresponding total dislocation
density ρ = ρ+ + ρ− and geometrically necessary dislocation
(GND) density κ = ρ+ − ρ−. The recently revisited form of

the evolution equations with the dimensionless variables of
Table I reads

∂tρ+ = −∂x

{
ρ+

[
τext + τsc + τb − 2

ρ−
ρ

τ f + τd

]}
, (3)

∂tρ− = +∂x

{
ρ−

[
τext + τsc + τb − 2

ρ+
ρ

τ f − τd

]}
, (4)

where

τsc(r, t ) =
∫

τind(r − r′)κ (r′, t )d2r′ (5)

is the long-range (or “self-consistent”) stress field of GNDs,
which together with the external field τext represents the
experimentally measurable average shear stress in a small
volume around r. This is complemented by the gradient stress
components

τb(r, t ) = −D

ρ
∂xκ (r, t ), τd (r, t ) = −A

ρ
∂xρ(r, t ) (6)

and friction stress τ f that is as big as necessary to prevent
dislocation flow but cannot be larger than the yield stress
αρ1/2. In the equations above, α, D, and A are dimensionless
constants: α is the dimensionless parameter of the Taylor
hardening law, whereas A and D are specific moments of the
dislocation interaction stress τind and the two-point correlation
functions [21]. Note that, as described above, the material-
dependent Burgers vector, elastic constants, and dislocation
mobility were absorbed into time and stress scales, so all
quantities in the above equations are dimensionless. For the
dimensional versions, see [25].

The origin of the friction stress τ f and local gradient terms
τb (back stress) and τd (diffusion stress) is clear from the
formal derivation of the theory [25]: They stem from the fact
that dislocations are not positioned randomly but are spatially
correlated, a fact that was already postulated by Wilkens based
on energetic considerations [60] and is also demonstrated in
numerical simulations [59] and in Fig. 2. Dislocation patterns
themselves are also a manifestation of these correlations (see,
for example, Fig. 1 for a schematic). As for the physical
meaning of these terms, friction stress, and therefore the yield
stress, is the result of the small-scale correlated substructures
(most importantly, dislocation dipoles in the 2D system being
studied) that may be stable against external load. Indeed, in
Eqs. (3) and (4) τ f is multiplied by ρ±/ρ, expressing that
dislocations can be withheld only by dislocations of opposite
sign. Interpretation of gradient terms is subtler: In the flowing
regime they can be envisaged as a correction to the yield
stress. In particular, due to the back-stress term local strength
may depend on the gradient of the GND density as depicted
in the sketch of Fig. 1. According to the sign of parameter D,
the strength of the local volume in Fig. 1(b) may be larger (for
D < 0) or smaller (for D > 0) than that of Fig. 1(a). A similar
explanation can be given for the diffusion stress τd .

The importance of our multiscale formulation becomes
transparent when one compares it with traditional plas-
ticity theories of constitutive formulations of back-stress
fields [1]. In traditional formulations, the most common
approach involves the modeling of back stress χ in a
particular slip system, as a correction to the shear stress τ ,
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FIG. 3. Stress fields in a model of a dipolar wall in the SCDD.
(a) and (b) Total and GND densities of a dipolar wall placed in a
constant dislocation density background. (c) Self-consistent field τsc

of the dipolar wall. (d) Gradient stresses (τb + τd ) acting on a positive
sign (s = 1) dislocation. Notice the development of a back stress on
the left side of the dipolar wall. The model parameters used are the
same as in Fig. 4.

that displays a typical evolution equation with direct hard-
ening and dynamic recovery coefficients (see, for example,
Ref. [61]):

χ̇ = cγ̇ − dχ |γ̇ |, (7)

where γ̇ is the shear strain rate in the slip system and c and d
are material dependent constants. This equation has a natural,
intuitive, and experimentally verifiable explanation in terms
of polycrystalline, grain-boundary-dominated plasticity since
it is transparent that dislocations that “cross” grain boundaries
should face an opposite-sign, discontinuous resistance when
loaded in the opposite direction. However, in dislocation
ensembles, such explanations were elusive and vague, es-
pecially since continuum dislocation density theories desire
continuous, analytic terms if not required to do otherwise.
Nevertheless, in the single-slip theory we have developed, it
is transparent how the d term in Eq. (7) emerges, without
the particular need of nonanalytic mathematical terms. As
shown in Fig. 3, the response of a continuum dipolar wall in
our theory contains all the ingredients that were constitutively
assumed in traditional multiscale formulations: If a positive-
sign dislocation moves across the wall, it would have an
opposite-sign resistance if it moved in opposite directions.

The numerical implementation is based on the phase field
functional:

P[ρ, κ] = Eel +
∫ [

Aρ ln

(
ρ

ρ0

)
+ D

2

κ2

ρ

]
d2r, (8)

where Eel is the mean-field stored elastic energy of the system
(measured in units of Gb2) that includes information about the
self-consistent and external stress fields (see its exact form in
the Supplemental Material) [25] and ρ0 is a constant that does
not appear in the evolution equations. It was shown before that

Eqs. (3) and (4) can be derived from Eq. (8) assuming that
|κ| � ρ and that P can decrease only during the evolution of
the system [25]. In the present implementation, densities are
discretized on a regular grid of cell size a, and the yield stress
(that is, the maximum of the friction stress τ f ) is replaced
by a local stochastic variable (representing the fluctuations
of the underlying dislocation microstructure at every cell).
For the distribution of the yield stress, in accordance with
recent DDD results, a Weibull distribution is used with a shape
parameter of 1.4, and the scale parameter is defined through
〈τ f 〉 = α

√
ρ (see details in the Supplemental Material) [36].

We apply extremal dynamics: At every time step, dislocation
activity takes place at the site where the decrease in P is
the largest, and this consists of a quantum of dislocation
flux �ρ = a−2 (of either positive or negative dislocations)
flowing through the cell boundary. If no such cell exists,
external stress τext is increased until one cell is triggered.
After each triggering, a new random yield stress from the
same Weibull distribution is assigned to the given cell. Further
details of the implementation are summarized in the Sup-
plemental Material [53]. In the rest of this paper this model
is referred to as stochastic continuum dislocation dynamics
(SCDD).

The continuum theory does not yield exact values for the
parameters α, D, and A; one must therefore consider them to
be fitting parameters. The results of DDD simulations summa-
rized above, however, give insight on possible values. As seen
in Fig. 2, the strongest possible dislocation configuration is the
dipolar wall structure. According to Fig. 1 this might imply
the necessity of the back-stress term τb and that D < 0. How-
ever, according to the linear stability analysis of Eqs. (3) and
(4), in the absence of stochastic terms, which is discussed in
Ref. [25], one may conclude that if D = A = 0 or either D or A
is negative, then all perturbations are unstable, and the fastest-
growing perturbation is seemingly the largest possible wave
vector kx = 2π/|b|, where |b| is the smallest possible Burgers
vector magnitude. This implies that in such cases the wave-
length of the instability approaches the lattice scale, and one
would expect a dislocation pattern where positive and negative
dislocation walls arrange in a (+ − +−)-type instability. In
the following, that is exactly what we observe. Moreover, if
A > 0 and D > 0, resulting in the phase field functional given
by Eq. (8) being convex, then the linear stability analysis
of Ref. [25] concludes that there is an emergent wavelength
selection for a periodic pattern that should appear. However,
in the presence of quenched stochastic terms, such as the ones
considered in both the presented DDD and SCDD models,
it is expected that such instabilities would be suppressed by
the quenched disorder, which typically takes the form of a
stochastic yield stress term. The inclusion of a stochastic
yield stress term (such as the one in this work) is critical
to suppress nonlinear dynamical instabilities that are tied
to the particular deterministic dynamical equations and thus
nongeneric, and this difference may explain the different con-
clusions of our work compared to prior efforts on analogous
questions [32].

In accordance with our 2D DDD simulations, at t = 0 a
random pattern of ρ+ and ρ− is assumed, and initially, a
relaxation step is performed at τext = 0. Then, the external
stress τext is quasistatically increased. The two left columns
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FIG. 4. Dislocation pattern evolution in SCDD simulations with D = A = 0.25, α = 1.0, and a = 2. Left two columns: Total and GND
density maps obtained at different strain γ values. Right two columns: Same-sign and opposite-sign spatial correlation functions (d++ and
d+−, respectively) of dislocation densities.

of Fig. 4 depict this evolution in terms of the total and GND
densities (ρ and κ , respectively) for a given parameter set
(D = 0.25, A = 0.25, α = 1.0, a = 2). Analogous behavior
is obtained between DDD and SCDD in the evolution of both
total and GND profiles: short vertical DDWs form in the
initial phases of deformation which then merge and extend
in the vertical direction upon increasing strain. To describe
the patterns in more detail, the correlation functions d++ and
d+− were also calculated and can be seen in the right two
columns of Fig. 4. Although fine details of the correlation
functions cannot be reproduced with a continuum method
defined on a coarse mesh, the evolution of these functions is

remarkably similar to the DDD case (seen in Fig. 2); however,
pattern development is somewhat delayed in the SCDD (also
note the difference in the spatial scale between DDD and
SCDD results). In particular, at strain γ = 0 the configuration
consists of short vertical walls of same-sign dislocations and
short dislocation dipoles of opposite sign that have an angle
of 45◦ with the x axis. As the stress and strain increase, the
vertical walls become more extended, and strong asymmetry
develops in the d+− correlation function, signaling the pres-
ence of DDWs. To quantitatively compare the polarization
due to the asymmetry in d+− between DDD and SCDD
we consider the spatial average of d+− along the vertical
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FIG. 5. Correlation functions averaged along the DDW direction
C+− for the two applied models: (a) DDD and (b) SCDD. Notice
the asymmetry developing upon increasing strain. The simulation
parameters are the same as in Figs. 3 and 4.

direction

C+−(x) = (1/L)
∫

d+−(x, y)dy, (9)

which measures the polarization of individual configurations.
Indeed, Fig. 5 shows that strong asymmetry emerges upon
plastic deformation for both models. In addition, a quick,
exponential decay follows the peak in the x > 0 domain, with
a characteristic distance of approximately five average dislo-
cation spacings. This length scale can be identified with the
characteristic width of the DDWs. We identify this asymmetry
as the most basic origin of the Bauschinger effect [62], as will
be discussed below.

We now address the role of SCDD parameters in the
patterning instability. Figure 6 plots the dependence of typical
patterns and the corresponding correlation functions on the
coefficients of the gradient terms D and A and the aver-
age strength of the yield threshold α. As can be seen, in the
absence of gradient terms (D = A = 0) the (+ − +−)-type
instability discussed above can be clearly observed (second

row). This behavior is, in agreement with the theory, induced
by the friction stress term τ f and is at odds with the patterns
of DDD and demonstrates the necessity of the inclusion of
gradient terms. The third row of Fig. 6 shows the effect of
D < 0: The increased strength of the GND gradient depicted
in Fig. 1 leads to even stronger + − +− instability, again in
agreement with the linear stability analysis of Ref. [25]. As
for the role of the other parameters, we first recall that τd is a
diffusive term in the total dislocation density ρ, so increasing
the value of A leads to smoothening of the dislocation patterns
(see the fourth row of Fig. 6), while A < 0 would lead to
antidiffusion and the immediate blowup of the pattern (not
shown). The effect of decreased yield strength is seen in
the last row of Fig. 6: One observes weaker patterns and
polarization, and the increase of α would lead to the strength-
ening of the + − +− instability. To summarize, it is evident
that in order to obtain realistic patterns D > 0 and A > 0
are required and both too large and too small values of α

should be avoided. A more detailed analysis will be published
elsewhere.

IV. DISCUSSION AND SUMMARY

It is instructive to compare the continuum plasticity theory
with general elastoplastic constitutive models and, in partic-
ular, with those of kinematic hardening [1]. The back-stress
term appearing therein has the phenomenological role of mod-
eling the Bauschinger effect observed at reversed loading with
the appropriate translation of the yield surface. In this paper,
we showed that there is an explicit correspondence: Since
τb in Eqs. (3) and (4) can also be considered an asymmetric
correction to τ f and using the identity ∂tκ (r, t ) = −∂xγ̇ (r, t ),
with the GND density connected to the shear component
γ̇ of the plastic strain rate, one arrives at τ̇b = (D/ρ)∂2

x γ̇ ,
which is analogous to the phenomenological rate equation
of Melan and Prager (τ̇b ∝ γ̇ ) [63,64] (the appearance of
the second derivative reflects the strain gradient origin of
the Bauschinger effect and the back stress in microscopically
derived continuum theories of dislocation behavior). The sim-
ulations presented above therefore emphasize the microscopic
origin of the back stress: The asymmetry of the yield sur-
face in kinematic hardening is the result of the bulidup of
asymmetric dislocation substructures (polarized walls in the
present setup). Furthermore, back-stress terms are also used
in gradient plasticity theories to account for the short-range
interactions in pileups close to grain boundaries [65]. Such
terms exhibit the same form as Eq. (6) also with a positive
dimensionless prefactor.

In the case of SCDD the picture that emerges is as follows:
the DDWs formed during plastic deformation are, in fact, two
GND pileups piling up against each other. The +− instability
at the center is due to the yield stress, which also provides the
great strength of such structures. However, back-stress terms
are also required to suppress the + − +− instability discussed
in the paper and to provide a length scale for the pileup
widths.

In summary, not only does SCDD provide a precise
description of its microscopic DDD counterpart, thus rep-
resenting a successful multiscale step, but it also syn-
thesizes previous theoretical approaches of dislocation
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FIG. 6. Dislocation pattern evolution in SCDD simulations for different parameters at γ = 1 and a = 2. Left two columns: Total and GND
density maps obtained at different strain γ values. Right two columns: Same-sign and opposite-sign spatial correlation functions (d++ and
d+−, respectively) of dislocation densities.

pattern formation, kinematic hardening, and strain gradient
plasticity in a simple 2D setting. By identifying the physical
interpretation and key role of the strain gradient terms our
results may serve as a starting point for more complex 3D
implementations.
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