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Dynamics of ferromagnetic domain walls under extreme fields
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We report the existence of a regime for domain-wall motion in uniaxial and near-uniaxial ferromagnetic
nanowires, characterized by applied magnetic fields sufficiently strong that one of the domains becomes unstable.
There appears a stable solution of the Landau-Lifshitz-Gilbert equation, describing a nonplanar domain wall
moving with constant velocity and precessing with constant frequency. Even in the presence of thermal noise,
the solution can propagate for distances on the order of 500 times the field-free domain-wall width before
fluctuations in the unstable domain become appreciable.
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The dynamical response of magnetic domains in ferro-
magnetic nanostructures to applied fields and spin-polarized
currents offers rich physics [1–5], presents unresolved mathe-
matical challenges [6,7], and promises exciting technological
applications [8,9]. Of particular importance is the problem
of domain-wall motion, in which a ferromagnetic material
has two neighboring magnetic domains, one expanding and
the other contracting under the action of an applied field.
To date, this problem has been addressed, analytically and
numerically, in nanoscale systems with a variety of geometries
and topologies, including tubes, ribbons, and films (see, e.g.,
Refs. [10–15]). Here we focus on the important case of
ferromagnetic nanowires [6,16–18].

A common feature of most of these studies (but cf.
Refs. [19,20], discussed below) is the assumption that the
applied field is not strong enough to destabilize either domain.
Here, we consider the case of applied fields sufficiently strong
that one of the two domains becomes intrinsically unstable.
We show that there emerges a fast-traveling precessing do-
main wall with nonplanar profile (see Fig. 1), and calculate its
velocity and precession frequency. We estimate the lifetime of
the domain wall in the presence of thermal noise; for realistic
parameters, it can travel 500 times the field-free domain-wall
width before being overtaken by thermal fluctuations.

We start from a standard model for domain-wall dynamics
under an applied field Haẑ, taking the wire to be one dimen-
sional along the z axis. For definiteness, we take Ha > 0.
The evolution of the magnetization, Msm(z, t ), where Ms

is the fixed saturation magnetization and the unit vector
m = (m1, m2, m3) determines orientation, is governed by the
Landau-Lifshitz-Gilbert (LLG) equation,

∂t m = γ H × m + αm × ∂t m, (1)

where H = −(Ms)−1δE/δm + Haẑ is the effective magnetic
field, γ the gyromagnetic ratio, and α the Gilbert damping
constant (typically α � 1). The micromagnetic energy per

unit cross-sectional area is given by

E = 1

2

∫ [
A|∂zm|2 + K

(
1 − m2

3

) + K2m2
2

]
dz, (2)

where A is the exchange constant and K, K2 � 0 are the
anisotropy constants along the (easy) z and (hard) y axes.
The spatially uniform domains m = ±ẑ are global minimiz-
ers of the energy, so that boundary conditions appropriate
for a (head-to-head) domain wall are m(±∞, ·) = ∓ẑ. This
description incorporates several simplifications, including re-
ducing to one dimension and incorporating the magnetostatic
energy into the local anisotropy (see [21,22] for discussion
and justification).

The model (1)–(2) has been extensively analyzed in the
literature (see, e.g., [17,18,23–28]). We will restrict our at-
tention to the case of near-uniaxial wires, for which K �
K2 (eventually, we will take K2 = 0). For applied fields Ha

below the Walker breakdown field HW = αK2/(2Ms), there
appears an explicit stable traveling-wave solution, m∗(z − vt ),
with velocity depending nonlinearly on Ha; for Ha = HW , the

Walker breakdown velocity is VW = γ

Ms

√
A

4K+2K2
K2 [23]. The

Walker profile m∗ lies in a fixed plane whose inclination to
the x axis increases with Ha up to a maximum of 45◦ at
breakdown.

For fields above breakdown, the dynamics is more compli-
cated. While there is no known explicit solution, numerical
simulations, collective coordinate models, and asymptotic
analysis reveal profiles in which the magnetization is no
longer planar and executes periodic motion, including transla-
tion, precession, and breathing (see, e.g., [17,18]). The mean
velocity of the domain wall actually decreases with increasing
Ha. For large enough applied fields so that K2 can be neglected
(but still with both domains stable), the behavior approaches
a simple explicit solution in which the static planar uniaxial
profile moves with uniform velocity Vp = αγ Ha/Ms � VW

and precession frequency �p = γ Ha [27].
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FIG. 1. High-field domain wall with tail-to-tail boundary condi-
tions. The envelope (yellow curve) of the magnetization (red arrows)
indicates a helical as opposed to planar profile. The asymptotic sense
and pitch of the helix may be interpreted in terms of the chirality and
wavelength of entrained spin waves.

The preceding description of domain-wall dynamics ap-
plies when the spatially uniform domains m = ±ẑ are ener-
getically stable; the condition for stability is |Ha| < K/Ms. For
Ha > K/Ms, the uniform domain m = −ẑ becomes unstable,
and under perturbations, e.g., thermal fluctuations, switches
spontaneously to +ẑ.

A similar switching process takes place in the unstable tail
of a domain wall.

However, as we report here, before this occurs, there
emerges a new, persistent domain-wall dynamics distinct from
the well-known behavior for Ha < K/Ms. The high-field pro-
file is strongly nonplanar; the tails are helical with pitches
that may have the same or opposite signs (see Fig. 2). The
velocity of the high-field domain wall scales nonlinearly with
applied field, and for suitable parameters is comparable to or
may substantially exceed the Walker breakdown velocity for
strongly anisotropic nanowires.

z(a) z (b)

FIG. 2. Two spherical pendulum trajectories, shown from per-
spectives above and below the sphere. In (a), with ha = 2.3, the sense
of the azimuthal rotation changes sign as the trajectory passes from
the north to the south pole. In (b), with ha = 5, the sense of rotation
stays the same. In both cases, α = 0.1, and v and ω are given by
Eq. (16).

To simplify the analysis, we consider the strictly uniaxial
case K2 = 0, so that the problem has rotational symmetry
about ẑ; it turns out that the behavior for small, nonzero K2

is qualitatively similar. It is also convenient to introduce di-
mensionless variables ζ = √

K/A z and τ = (γ K/Ms) t . Then
the LLG equation (1) becomes

ṁ = (m′′ + m3ẑ + haẑ) × m + αm × ṁ, (3)

in which the only (dimensionless) parameters are α and ha =
(Ms/K )Ha, the rescaled applied field. In these units, the static
(field-free) domain wall has unit width.

We look for solutions of Eq. (3) traveling with fixed
(dimensionless) velocity v and precessing with fixed (dimen-
sionless) frequency ω. These are of the form

m(ζ , τ ) = R3(ωτ )n(ζ − vτ ), (4)

where R3(φ) denotes the rotation about ẑ by angle φ, and n is
the domain-wall profile. Substituting (4) into (3), we get the
following second-order ordinary differential equation (ODE)
for n:

n′′ = (ω − n3 − ha)ẑ − vn × n′ + α(ωẑ × n − vn′) − λn,

(5)

where λ = |n′|2 − (n3 + ha − ω)n3.
While the ODE (5) cannot be solved explicitly, we can

obtain the main qualitative features of the high-field pro-
file through a dynamical-systems analysis. To this end, it is
helpful to introduce the following mechanical analogy. We
temporarily regard n(ζ ) as the position of a particle moving
on the surface of a sphere, with ζ regarded as a fictitious
time coordinate. From this point of view, (5) describes the
dynamics of a spherical pendulum (of unit length, mass, and
charge) subject to a uniform gravitational force −(ha − ω)ẑ as
well as the following additional forces:

(i) a Lorentz force, vn × n′, arising from a radial magnetic
field of uniform strength (which may be interpreted as the
field of a magnetic monopole of charge −v at the center of the
sphere); (ii) a harmonic force arising from a potential 1

2 n2
3; (iii)

a damping force, −αvn′; and (iv) a nonconservative azimuthal
torque, αωẑ × n. Finally, there is (v) a force of constraint, λn,
ensuring that the length of the pendulum remains fixed. We
remark that for α = 0, Eq. (5), regarded as a Hamiltonian sys-
tem, is integrable, with energy E = 1

2 n′2 + ( 1
2 n3 + ha − ω)n3

and canonical angular momentum L = ẑ · (n × n′) − vn3 as
conserved quantities.

The dynamics is no longer exactly solvable for α > 0.
However, it is easy to establish that Eq. (5) has just two

equilibria, namely, n = σ ẑ, corresponding to the pendulum
at rest and either upright (σ = +1) or downright (σ = −1).
In fact, we are seeking a trajectory which connects these
two equilibria—a heteroclinic orbit n(ζ )—with the pendulum
upright at ζ = −∞ and downright at ζ = +∞; this corre-
sponds to a domain-wall profile with the specified boundary
conditions.

In order for such a heteroclinic orbit to exist for a range of
values of v and ω, it turns out that we must require +ẑ to be
a saddle point and −ẑ to be a stable node. To determine when
these conditions hold, we consider the linearized dynamics
about the two equilibria.
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FIG. 3. Emergence of high-field profile: the evolution of the
polar angle θ (ζ , τ ) = cos−1(m3) obtained from numerical solution
of the LLG equation (3) with static (field-free) domain-wall profile
as initial condition. Here ha = 3 and α = 0.1.

For convenience, we write n = σ [ẑ + ε(η1x̂ + η2ŷ)] +
O(ε2) and introduce the complex coordinate η = η1 + iη2.
Substituting into Eq. (5), we obtain the linearized equation

η′′ + rvη′ − (1 + σha + irω)η = 0, (6)

where r = α + iσ . The associated characteristic equation (ob-
tained by substituting η = eikζ ) is [29]

k2 − irvk + (1 + σha + irω) = 0. (7)

The stabilities of σ ẑ are determined by the imaginary parts
of the roots k± of (7). For σ = 1, it is straightforward to
establish that Im k± have opposite signs provided ha > 1, in
which case +ẑ is a saddle point for all v and ω. For σ = −1, it
is straightforward to establish that (i) Im k± have the same sign
provided ω2 < (ha − 1)v2, in which case −ẑ is a node, and (ii)
−ẑ is a stable node provided v > 0. Thus, the conditions for
the existence of a heteroclinic orbit over a range of values of
v and ω are

v > 0 and ω2 < (ha − 1)v2. (8)

The heteroclinic orbit n(ζ ) is unique up to rotation about
the ẑ axis and translation in ζ . Via Eq. (4), it corresponds to a
traveling-wave solution of the LLG equation with velocity v

and precession frequency ω.
Numerical solution of Eq. (5) confirms the existence of

this heteroclinic orbit when Eq. (8) is satisfied; representative
examples are shown in Fig. 2 [30].

Numerical solution of the LLG equation (3) reveals the fol-
lowing surprising behavior: For initial conditions describing
a sufficiently sharp head-to-head domain wall, the evolving
profile approaches a traveling wave solution Eq. (4) with
specific values of v and ω. The selected velocity and pre-
cession frequency depend only on ha and α, and not on the
initial condition. This is illustrated in Fig. 3, where the initial
configuration is taken to be the static (field-free) domain-wall
profile. At first, the evolution follows the exact precessing so-
lution [27]. The precessing solution is unstable, however [31],
and after a short time, the new high-field profile emerges, with
much higher velocity.

For scalar partial differential equations (PDEs), there is a
well-established method for determining the selected veloc-
ity of traveling-wave solutions based on the theory of front
propagation into unstable states (see, e.g., [32], and references
therein). Here, we adapt this method for the vector-valued
LLG equation (3). The idea is to linearize the LLG equation
in the region of the unstable tail of the profile, i.e., where
ζ � 1, and find a frame of reference in which, at long times,
the propagating solution is nearly stationary. With

m = −[ẑ + iε(η1x̂ + η2ŷ)] + O(ε2), η = η1 + iη2,

the linearized LLG equation for η(ζ , τ ) is given by

(1 + iα)η̇ = iη′′ + i(ha − 1)η. (9)

The solution is given explicitly by

η(ζ , τ ) =
∫

η̂0(k)ei[kζ−�(k)τ ] dk, where (10)

�(k) = −(ha − 1 − k2)/(1 + iα). (11)

In a frame moving with velocity v and precessing with fre-
quency ω, the profile appears as η̃(ζ , τ ) = e−iωτ η(ζ − vτ, τ ),
with integral representation

η̃(ζ , τ ) =
∫

η̂0(k)ei(kv−�(k)−ω)τ eikζ dk. (12)

For long times τ , the integral in (12) may be evaluated by the
method of steepest descent; the contour is deformed through
the (complex) saddle point k∗, characterized by

�′(k∗) = v, Imk∗ > 0. (13)

Evaluation of (12) yields

η̃(ζ , τ ) ≈ η̂0(k∗)

[2π�′′(k∗)τ ]1/2
ei[k∗v−�(k∗ )−ω]τ eik∗ζ . (14)

We choose v and ω so that η̃(ζ , τ ) is τ independent (apart for
a diffusive prefactor τ−1/2), i.e., so that

k∗v = �(k∗) − ω. (15)

With some calculation, Eqs. (11), (13), and (15) yield

v = 2

(
ha − 1

1 + α2

)1/2

, ω = 2
ha − 1

1 + α2
. (16)

We note that it is precisely when v and ω are given by (16)
that the roots of (7) with σ = −1 coincide. This phenomenon
is well known for scalar PDEs of reaction-diffusion type, for
example, the Kolmogorov-Petrovskii-Piskunov (KPP) equa-
tion [33].

Confirmation of the preceding theory is provided in Fig. 4.
We solve the LLG equation (3) numerically for a variety
of initial conditions, using a finite difference scheme on a
uniform rectangular grid, where spatial derivatives are repre-
sented by central finite differences with Neumann boundary
conditions. A time step is calculated via an explicit fourth-
order Runge-Kutta method. In order to exactly maintain
the constraint on the magnetization norm, the solution is
renormalized after each time step. We determine the (initial-
condition-independent) velocity and precession frequency of
the emergent profile as functions of ha and of α. These
are in good agreement with the analytic formulas (16). Nu-
merically computed profiles are shown in the Supplemental
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FIG. 4. Velocity (circles) and precession frequency (diamonds)
of the high-field profile obtained from numerical solution of the LLG
equation (3), along with the analytic predictions of Eq. (16), plotted
as functions of (a) damping constant α for ha = 3 and (b) applied
field ha for α = 0.1.

Material [34]. They coincide with solutions of the ODE (5)
with v and ω given by (16). In particular, the chiralities of the
domain-wall tails are obtained from (7).

As noted previously, with ha > 1, the uniform profile m =
−ẑ is unstable. It follows that the high-field profile is unstable
to perturbations in the region ζ � 1, for example due to ther-
mal excitation of spin waves. To estimate the time scale for
this instability to set in, we model this region as a cylindrical
nanowire of finite length L � δex, where the exchange length,
δex = √

A/K , is the width of the field-free domain wall. (The
estimate turns out to be independent of the choice of L.) The
magnetization is governed by the linearized LLG equation (9)
with transverse component, η(ζ , τ ), given by (10) but with the
k integral replaced by a sum over spin-wave modes of wave
number k j , with spin-wave amplitudes η̂0(k j ) and (complex)
frequencies �(k j ). The phases arg η̂0(k j ) are uncorrelated, so
that the mean-squared amplitude |η|2 is the sum of the squared
amplitudes of the spin waves. We suppose the magnetic field
is applied from τ = 0 onwards, and let τc denote the time
required for |η|2 to equal 1.

As a crude approximation, we suppose that only spin waves
with wavelengths greater than δex contribute; the number
of such spin waves is approximately L/δex. Moreover, for
these spin waves, we replace |η̂(k j )| and �(k j ) by their
long-wavelength limits |η̂0| and �0, replacing k j by k0 =
1/L (more careful calculation does not change the estimate
appreciably). We obtain |η(ζ , τ )|2 ≈ (L/δex )|η̂0|2e2 Im �0τ , so
that 2 Im �0τc ≈ ln[(δex/L)/|η̂0|2]. After time τc, the domain
wall travels a distance (in units of the exchange length)

dc = vτc = 1

α

√
1 + α2

ha − 1
ln

δex/L

|η̂0|2 , (17)

where v is given by (16) and we have used (11) for �0.
The initial amplitude |η̂0| may be estimated from a simple

equipartition argument. The associated spin-wave energy is
approximately |η̂0|2KSL, where S is the cross-sectional area

of the wire (for long wavelengths, the exchange energy is
negligible). At temperature T , before the magnetic field is
applied, each spin-wave mode has energy kBT , where kB is
Boltzmann’s constant. Thus,

|η̂0|2 = kBT/(KSL). (18)

To estimate dc, we take as representative values A = 10−11

J/m, MsHa = 2K = 106 J/m3, S = 100 nm2, T = 100 K, and
α = 0.01. (For Ms = 106 A/m, this corresponds to an applied
field strength of 1 Tesla.) In this case, the high-field domain
wall propagates for approximately 500 static domain-wall
widths before being overtaken by thermal instabilities.

It is interesting to compare the (unscaled) high-field
domain-wall velocity V in a uniaxial wire with easy-axis
anistropy K to the Walker velocity VW for a strongly
anisotropic wire with easy-axis anisotropy K and hard-axis
anisotropy K2 > K . For large applied field in the uniaxial
case and large K2 in the anisotropic case (and weak damping
for both),

V/VW ∼
√

8MsHa/K2. (19)

Thus, for Ha comparable to K2/Ms, the high-field domain-wall
velocity in the uniaxial wire is greater than the Walker velocity
in the anisotropic wire.

We have concentrated on the case of uniaxial nanowires.
Numerical calculations reveal qualitatively similar behavior
for small nonvanishing hard-axis anisotropy, i.e., a new high-
field domain-wall profile with characteristic velocity and pre-
cession frequency. A perturbative analysis can be developed
for small K2 > 0.

The dynamics of domain walls in nanowires under small
applied fields and currents has been extensively studied. Here
we consider the response of a domain wall to an applied mag-
netic field strong enough to make one of the domains unstable.
Naively one might imagine the unstable domain to reorient
itself spontaneously and incoherently. Surprisingly, we show
that for small transverse anisotropy, there emerges a coherent
reorientation, whereby the energetically stable domain grows
via the propagation of a traveling and precessing domain wall.

The threshold for the high-field regime is Ha > K/Ms. For
an isotropic material such as Permalloy, K � 1

4μ0M2
s [35]. In

particular, for Permalloy, Ms � 800 kA/m [36], so that the
threshold is given approximately by 1

4μ0Ms � 0.25 T.
We note that early experiments on domain-wall motion in

iron-garnet films at applied fields above the anisotropy thresh-
old [37,38] indicate a sublinear velocity response compatible
with (16). Radiation damping at high fields is discussed in a
related theoretical work [39].

The high-field domain-wall profile has novel features.
Unlike the well-known Walker profile, it is nonplanar with
asymmetrical tails comprised of spin-wave trains of differ-
ent characteristic wave numbers and helicities. The coherent
magnetization switching is eventually overtaken by thermal
fluctuations far into the unstable domain, but can persist over
length scales of many hundreds of widths of the domain wall.
For realistic parameters, the domain-wall velocity in the high-
field regime can be comparable to or larger than the Walker
velocity.

Benguria and Depassier [19,20] consider the complemen-
tary case of strong biaxial anisotropy K � K2, characteristic

020418-4



DYNAMICS OF FERROMAGNETIC DOMAIN WALLS UNDER … PHYSICAL REVIEW B 101, 020418(R) (2020)

of thin ferromagnetic films. There appear transitions (de-
pending on α and K/K2) between the Walker solution with
velocity v ∼ Ha and a KPP-type solution (for which one of
the domains is necessarily unstable) with v ∼ √

Ha. In this
regime, the magnetization is confined to a plane, and the LLG
equation reduces to a scalar equation of reaction-diffusion
type, for which the theory of unstable front propagation is
highly developed (see, e.g., [32]). For the case of near-uniaxial
wires considered here, the LLG equation is a vectorial equa-
tion; much less is known about unstable front propagation for
systems as opposed to scalar equations.
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