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Nonlocal emergent hydrodynamics in a long-range quantum spin system
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Generic short-range interacting quantum systems with a conserved quantity exhibit universal diffusive trans-
port at late times. We employ nonequilibrium quantum field theory and semiclassical phase-space simulations
to show how this universality is replaced by a more general transport process in a long-range XY spin chain at
infinite temperature with couplings decaying algebraically with distance as r−α . While diffusion is recovered for
α > 1.5, longer-ranged couplings with 0.5 < α � 1.5 give rise to effective classical Lévy flights, a random walk
with step sizes drawn from a distribution with algebraic tails. We find that the space-time-dependent spin density
profiles are self-similar, with scaling functions given by the stable symmetric distributions. As a consequence,
for 0.5 < α � 1.5, autocorrelations show hydrodynamic tails decaying in time as t−1/(2α−1) and linear-response
theory breaks down. Our findings can be readily verified with current trapped ion experiments.

DOI: 10.1103/PhysRevB.101.020416

In quantum many-body systems, macroscopic inhomo-
geneities in a conserved quantity must be transported across
the whole system to reach an equilibrium state. As this is in
general a slow process compared to local dephasing, essen-
tially classical hydrodynamics is expected to emerge at late
times in the absence of long-lived quasiparticle excitations
[1–8]. The universality of this effective classical description
may be understood from the central limit theorem: In the
regime of incoherent transport, short-range interactions lead
to an effective random walk with a finite variance of step sizes,
leading to a Gaussian distribution at late times. This univer-
sality is only broken when quantum coherence is retained,
such as in integrable models [9–15] or in the vicinity of a
many-body localized phase, where rare region effects give rise
to subdiffusive transport [16–22].

In this Rapid Communication, we show how this universal
diffusive transport in short-range interacting systems is re-
placed by a more general, nonlocal effective hydrodynamical
description in systems with algebraically decaying long-range
interactions. We use semianalytical nonequilibrium quantum
field theory calculations (referred to as spin-2PI below) and
a discrete truncated Wigner approximation (dTWA) to show
that in a long-range interacting XY spin chain, spin transport
at infinite temperature effectively obeys a classical master
equation with long-range, algebraically decaying transition
amplitudes. This effective description can be reformulated as
a classical random walk with an infinite variance of step sizes,
giving rise to a generalized central limit theorem and to a
late-time description in terms of classical Lévy flights [23], an
example for superdiffusive anomalous transport. As a result,
we demonstrate that the full spatiotemporal shape of the
correlation function C( j, t ) = 〈Ŝz

j (t )Ŝz
0(0)〉, and, in particular,

the exponent of the hydrodynamic tail in the autocorrelation
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function C( j = 0, t ), depends strongly on the long-range ex-
ponent α. While for α > 1.5 we recover classical diffusion,
the autocorrelation function shows hydrodynamic tails with
an exponent 1/(2α − 1) for 0.5 < α � 1.5, as we show in
Fig. 1. Furthermore, C( j, t ) possesses a self-similar behavior,

FIG. 1. Hydrodynamic tails in the spin autocorrelator. (a) For
long-range coupling exponents α > 0.5, autocorrelations decay al-
gebraically at late times with an exponent that depends on α. By con-
trast, for α � 0.5, hydrodynamic tails are absent. (b) The exponents
βα of the hydrodynamic tail obtained from two different approaches
(symbols) agree with the predictions from classical Lévy flights in
the thermodynamic limit (dashed curve). Deviations at large α are
due to finite-time corrections to scaling which can also be understood
from Lévy flights.
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with the scaling function covering all stable symmetric dis-
tributions as a function of α, smoothly crossing over from a
Gaussian at α = 1.5 over a Lorentzian at α = 1 to an even
more sharply peaked function as α → 0.5. We also extract
the generalized diffusion coefficient Dα from the scaling func-
tions, and explain its α dependence by Lévy flights; quantum
effects are incorporated in a many-body timescale depending
only weakly on α. For α � 0.5 no emergent hydrodynamic
behavior is found as the system relaxes instantaneously in the
thermodynamic limit [24].

This Rapid Communication not only shows how nonlocal
transport phenomena emerge in long-range interacting sys-
tems, but also establishes both nonequilibrium quantum field
theory and discrete truncated Wigner simulations as efficient
tools to study transport phenomena in the thermalization
dynamics of quantum many-body systems.

Model. We study the long-range interacting quantum XY
chain with open boundary conditions, given by the Hamilto-
nian

Ĥ = −1

2

L/2∑
i �= j=−L/2

J

NL,α|i − j|α
(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
. (1)

Here, Ŝα = 1
2 σ̂ α denotes spin- 1

2 operators given in terms of
Pauli matrices, L is the (odd) length of the chain [25], and
we set h̄ = 1. The interaction strength J is rescaled with the

factor NL,α =
√∑

j �=0 | j|−2α in order to remove the L and α

dependence of the timescale associated with the perturbative
short-time dynamics of the central spin at i = 0. The above
model shows chaotic (Wigner-Dyson) level statistics for the
whole range of α considered here (0.5 � α � 2) and is an
effective description of the long-range transverse field Ising
model for large fields [26,27]. In particular, it conserves the
total Sz magnetization, with product states in the Sz basis
evolving radically differently depending on the complexity of
the corresponding magnetization sector. For just a few spin
flips on top of the completely polarized state, the dynamics
can be exactly solved and are described in terms of ballisti-
cally propagating spin waves, with a diverging group velocity
at α = 1 [26,28,29] related to the algebraic leakage of the
Lieb-Robinson bound [30–33]. In contrast, here we show that
the exponentially large Hilbert space sector for an extensive
number of spin flips gives rise to rich transport phenomena,
driven by the long-range nature of the interactions.

Effective stochastic description of long-range transport. As
the model in Eq. (1) is equivalent to long-range hopping hard
core bosons, we conjecture the effective classical equation
of motion for the transported local density f j (t ), in our case
〈Ŝz

j (t )〉 + 1
2 , to be of the form [34]

∂t f j (t ) =
∑
i �= j

[Wi→ j fi(1 − f j ) − Wj→i f j (1 − fi )]. (2)

Here, the transition rate Wi→ j is determined by the micro-
scopic transport processes present in the Hamiltonian, in our
case the long-range hopping of spins. More specifically, from
Fermi’s golden rule, the transition rate for a flip-flop process
between spins i and j is proportional to |〈↑i↓ j |Ĥ | ↓i↑ j〉|2,

and hence we phenomenologically set

Wi→ j = Wj→i = λ

|i − j|2α
, (3)

where λ−1 is a characteristic timescale determined by the full
many-body Hamiltonian.

Starting from an initial state with a single excitation in the
center of the chain, the solution of this master equation is
given by [35]

f j (t ) ≈
⎧⎨
⎩

(Dαt )−1/2 G
( | j|

(Dαt )1/2

)
for α > 1.5,

(Dαt )−βα Fα

( | j|
(Dαt )βα

)
for 0.5 < α � 1.5,

(4)

in the limit of long times and large system sizes. Here, G(y) =
exp(−y2/4)/8

√
π denotes the Gaussian distribution, indicat-

ing normal diffusion for α > 1.5 with a diffusion constant
Dα ∝ λ. For 0.5 < α � 1.5, G(y) is replaced by the family
of stable, symmetric distributions Fα (y), given by

Fα (y) = 1

4

∫
dk

2π
exp(−|k|1/βα ) exp(iyk), (5)

with the constant prefactor Dα = λcα constituting a gen-
eralized diffusion coefficient [36]. We find cα = −2�(1 −
2α) sin(πα) from the classical master equation, with � de-
noting the gamma function [35]. Furthermore, the exponent
of the hydrodynamic tail βα is given by

βα = 1

2α − 1
. (6)

The Fourier transform in Eq. (5) only leads to elementary
functions for α = 3/2 and α = 1, resulting in a Gaussian
and a Lorentzian distribution, respectively [37]. The scal-
ing functions Fα (y) are the fixed point distributions in the
generalized central limit theorem [38] of independent and
identically distributed (i.i.d.) random variables with heavy
tailed distributions. Importantly, Fα (y) has diverging variance
for α < 1.5, undefined mean for α � 1, and displays heavy
tails ∼|y|−2α . The classical master equation hence predicts a
crossover from diffusive (α � 1.5) over ballistic (α = 1) to
superballistic (0.5 < α < 1) transport.

When adding a linear magnetic field gradient ∼E
∑

i iŜz
i

to the Hamiltonian, the resulting classical master equation
predicts the spin current to depend nonlinearly on the ar-
bitrarily weak E for α < 1.5, indicating a breakdown of
linear-response theory [35,39]. Calculating the current re-
sponse function from Eq. (4), we find a diverging response for
vanishing momentum q → 0 for every value of the frequency
ω [35,40].

Quantum dynamics from spin-2PI and dTWA. In the follow-
ing, we demonstrate the emergence of these effective classical
dynamics in the quantum dynamics of the Hamiltonian (1), by
studying the unequal-time correlation function

C( j, t ) := Tr
[
Ŝz

j (t )Ŝz
0(0)

]
| j=0〉=|↑〉. (7)

Here, we perform the trace over product states in the Sz

basis, restricted to the Hilbert space sector with
∑

i Sz
i = 1

2 ,
such that 〈Sz

i (t = 0)〉 = 1
2δ0,i for all spins i. This way, we

probe the transport of a single spin excitation moving in an
infinite-temperature bath with vanishing total magnetization.
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We employ two complementary, approximate methods to
study the dynamics at long times and for large system sizes,
in a regime that is challenging to access by numerically exact
methods [41]. Schwinger boson spin-2PI [42,43], a nonequi-
librium quantum field theory method, employs an expansion
in the inverse coordination number 1/z to reduce the many-
body problem to solving an integrodifferential equation that
scales algebraically in system size. As the effective coordi-
nation number is large in a long-range interacting system, we
expect this approximation to be valid for small α. The discrete
truncated Wigner approximation evolves the classical equa-
tions of motion, while introducing quantum fluctuations by
sampling initial states from the Wigner distribution [44–47]
and was shown to be particularly well suited for studying
long-range interacting systems [46,48]. In both methods, we
evaluate C( j, t ) by starting from random initial product states
in the Sz basis and then averaging over sufficiently many such
initial states [49]. If not stated otherwise, all our results have
been converged with respect to system size, for which we
employed chains with 201–601 sites.

We study two distinct regimes in the dynamics. A pertur-
bative short-time regime characterized by initial dephasing
is followed by the emergent effective classical long-range
transport described by the master equation.

Perturbative short-time dynamics. At short times, second-
order perturbation theory yields

Tr
[
Ŝz

j (t )Ŝz
0(0)

] ≈
{ 1

4

(
1 − J2t2

4

)
for j = 0,(

Jt
4NL,α

)2 1
| j|2α for j �= 0.

(8)

Physically, in this regime each spin is precessing in the effec-
tive magnetic field created by all other spins. The autocorre-
lation function is independent of α and L due to our choice
of the normalization factor NL,α , ensuring that the typical
magnetic field at the center of the chain remains of the order
of J . The spatial correlation function at a fixed time inherits
the algebraic behavior of the interaction strength, falling off
as | j|−2α between spins of distance j, which is reproduced by
both dTWA (not shown) and spin-2PI (see Fig. 2).

Hydrodynamic tails. The scaling form from classical Lévy
flights in Eq. (4) implies the presence of a hydrodynamic
tail in the autocorrelation function C( j = 0, t ) with exponent
βα = 1/(2α − 1), which replaces the universal exponent 1/2
for diffusion in one dimension (1D) (see Fig. 1 for our field
theory results). For α → 1.5 we find slight deviations from
βα , but these can, however, be explained by a subtle finite-time
effect also present in classical Lévy flights [35]. For α < 0.5
we find no hydrodynamic tail for the numerically accessible
system sizes L < 601. This matches the expectation that the
system relaxes instantaneously in the thermodynamic limit
[24], which is also indicated by the fact that the perturbative
short timescale diverges, NL→∞,α = ∞, for α � 0.5. On even
longer timescales, the discretized Fourier transform underly-
ing the derivation of Eq. (4) is dominated by the smallest wave
number in finite chains, and the hydrodynamic tail is replaced
by an exponential convergence towards the equilibrium value
0.25/L with a rate ∼(1/L)2α−1.

Self-similar time evolution of correlations. In Fig. 3 we
show the spreading of tβαC( j, t ) for two values of α. While
for α = 2 a diffusive cone is visible, the spreading for α = 1

FIG. 2. Short-time dynamics. We compare spin-2PI results with
second-order perturbation theory, Eq. (8). (a) The collapse of the
autocorrelator for different exponents α shows that the short-time
evolution is independent of α and L when the Hamiltonian is
rescaled with Nα,L . (b) The unequal-time correlation function for
α ∈ {0.75, 1, 1.5, 2} (from top to bottom), shows algebraic tails that
are entirely captured by second-order perturbation theory. We used a
moving average over five to ten lattice sites to smoothen the results.

is ballistic, as expected from the master equation. The scaling
collapse of these data shows good agreement with classical
Lévy flights [Eq. (4)] at late times. Interestingly, we find
heavy tails even for α � 1.5. We explain these by subleading
corrections to the scaling ansatz Eq. (4) present in the master
equation [35]. They survive up to algebraically long times for
α > 1.5, turning to a logarithmic correction at α = 1.5 [50].

For α � 2 we furthermore find signs of peaks propagating
ballistically for intermediate times in the dTWA scaling func-
tions, which survive longer as α increases. These peaks are
remnants of the integrable point at α = ∞ [35]. Such behavior
is not present in the spin-2PI data as this method is not able to
capture integrable behavior [43].

Generalized diffusion constant. The only free parameter of
our effective classical description is the generalized diffusion
coefficient Dα , which we obtain from the fits to the scaling
function. In Fig. 4 we show that the leading α dependence
of Dα can be explained by Dα ∼ cα for α < 1.5 [51], hence
the prefactor λ−1, constituting the quantum many-body time
scale, depends only weakly on α. As expected from their
differing approximate treatment of the quantum fluctuations
in the system, we find slight differences between the values
of λ determined by spin-2PI and dTWA, λ2PI ≈ 0.25 and
λdTWA ≈ 0.15. For α > 1.5 we find considerable differences
between the dTWA and spin-2PI results, because the emergent
ballistic peaks, stemming from the nearby integrable point,
accelerate the spreading in the dTWA simulations.

Conclusions. In this Rapid Communication, we have
shown that spin transport at high temperatures in long-range
interacting XY chains is well described by Lévy flights for
long-range interaction exponents 0.5 < α � 1.5, effectively
realizing a random walk with an infinite variance of step
sizes. In particular, we have shown that the scaling func-
tion of the unequal time spin correlation function covers
the stable symmetric distributions, in accordance with the
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FIG. 3. Emergent self-similar time evolution. The correlation function C( j, t ) obtained from spin-2PI for chains of lengths L = 201 [(e)–(h)
α = 2], L = 301 [(a)–(d) α = 1]. (a), (e) C( j, t ) multiplied by t1/(2α−1) to account for the overall decay expected from Lévy flights shows a
diffusive cone for α = 2, whereas for α = 1 a ballistic light cone emerges. The contour lines for α = 1, 2 correspond to values t1/(2α−1)C( j, t ) =
0.03, 10−4, respectively. (b), (f) Rescaling of linearly spaced time slices for 23 � Jt � 84 (α = 1) and 42 � Jt � 226 (α = 2) (lines become
darker as time increases) for the same data as in (a) and (e) agrees well with the scaling function expected from classical Lévy flights [Eq. (4)].
The only fitting parameter is the generalized diffusion coefficient. (d), (h) Rescaled time slices (2 � Jt � 28) on a double-logarithmic scale
reveal for α = 1 the heavy tail ∼y−2 expected from Lévy flights [Eq. (4)], where the dashed-dotted line is the same fit as in (b). The tail ∼y−4

(thick black line) for α = 2 (8 � Jt � 85) is a finite-time effect also present in classical Lévy flights. (c), (g) Unscaled data.

generalized central limit theorem. While the system relaxes
instantly for α < 0.5, standard diffusion was recovered for
α > 1.5, with heavy tails from finite-time corrections surviv-
ing until extremely long times. We demonstrated the non-
trivial dependence of the generalized diffusion coefficient
Dα on α, and found that it is captured by classical Lévy
flights, with the quantum many-body timescale being ap-
proximately independent of α. While we only studied one-
dimensional systems, we expect this phenomenon to gener-

FIG. 4. Generalized diffusion constant. The α dependence of the
diffusion constant obtained from fits with the scaling function of
Lévy flights [Eq. (4)]. The qualitative behavior follows the Lévy
flight prediction Dα ∼ cα for α < 1.5.

alize straightforwardly to d > 1 dimensions. Assuming the
effective classical Lévy flight picture persists, superdiffusive
behavior would be found for d/2 < α < 1 + d/2 with the
exponent of the hydrodynamic tails given by d/(2α − d )
[35]. Furthermore, we indicated that Lévy flights also imply
a nonlinear response of the spin current to magnetic field
gradients.

The long-range transport process found here can be ex-
perimentally studied in current trapped ion experiments [52],
which can reach the required timescales [53–56]. The ef-
fective infinite-temperature states can also be realized by
sampling over random product states which are then evolved
in time.
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