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We consider frustrated Heisenberg antiferromagnets, whose clean-limit ground state is characterized by
noncollinear long-range order with nonzero vector chirality, and study the effects of quenched bond disorder, i.e.,
random exchange couplings. A single bond defect is known to induce a dipolar texture in the spin background
independent of microscopic details. Using general analytical arguments as well as large-scale simulations for
the classical triangular-lattice Heisenberg model, we show that any finite concentration of such defects destroys
long-range order for spatial dimension d � 2, in favor of a glassy state whose correlation length in d = 2 is
exponentially large for small randomness. Our results are relevant for a wide range of layered frustrated magnets.
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Spatially inhomogeneous exchange couplings are ubiq-
uitous to magnetic solids. Such disorder, usually dubbed
random-bond disorder, arises from crystalline defects or in-
tentional chemical substitution on nonmagnetic sites, causing
local changes in bond lengths or bond angles which in turn
influence local exchange couplings.

The effect of bond disorder in magnets has been studied
extensively, both experimentally and theoretically, with par-
ticular focus on frustrated systems [1,2] where the delicate
balance of partially satisfied constraints can be easily broken
by disorder. In general, systems which are gapped in the clean
limit are expected to be stable against weak disorder, such
that the phase realized in the clean system survives up to a
critical level of disorder where it typically gives way to a
spin-glass state [3]. The fate of gapless systems is more subtle,
and various scenarios are possible: For strongly frustrated
systems, weak bond disorder may immediately induce a spin
glass, as in the classical pyrochlore Heisenberg antiferromag-
net [4,5], or it may stabilize a distinct disorder-driven long-
range-ordered state, as in the classical XY antiferromagnet
on the pyrochlore lattice [6] or the frustrated square lattice
[7]. In contrast, for weakly frustrated systems it is frequently
assumed that the clean-limit order survives the introduction of
weak bond disorder, as is the case without frustration.

In this Rapid Communication, we argue that long-range
order (LRO) is in fact not stable against weak bond dis-
order for an important class of weakly frustrated magnets,
namely SU(2)-symmetric noncollinear magnets in two space
dimensions, with the triangular-lattice Heisenberg antiferro-
magnet being a prominent example. A single bond defect
induces a dipolar texture in the spin background [8,9]. A
finite concentration of defects then corresponds to spatially
fluctuating dipoles which we show to destroy ground-state
LRO in space dimension d � 2 [Fig. 1(a)]. The resulting
noncoplanar glassy state is characterized by exponentially
decaying spin and chirality correlations. Given that d = 2 is

the lower critical dimension, the magnetic correlation length
of this spin glass is exponentially large for weak disorder,
implying that both numerical simulations and experiments
will detect the destruction of LRO only beyond a resolution-
dependent level of bond disorder. As a by-product, we show
that site dilution has a much weaker effect, leaving bulk
LRO intact in the weak-disorder limit, thus invalidating the
assertion that bond disorder and site dilution have similar
effects. To connect to experiments, we discuss the physics
of finite temperature, weak interlayer coupling, and weak
breaking of SU(2) symmetry. In all these cases, the behavior
of the clean system survives up to a small finite level of bond
randomness.

We note that previous numerical work [10–12] for the
triangular-lattice spin-1/2 Heisenberg model suggested that
LRO is destroyed only beyond a critical level of bond dis-
order, in favor of a randomness-dominated spin-liquid-like
(or random-singlet) state [13,14]. Our results instead imply
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FIG. 1. Schematic ground-state phase diagram of chiral non-
collinear magnets with quenched bond disorder in space dimension
1 < d � 2, with �/J parametrizing the disorder strength. (a) Classi-
cal limit (S → ∞): The LRO of the clean system is destroyed for
infinitesimal disorder in favor of a spin glass. (b) Quantum case
(conjectured): The spin glass turns into a random-singlet (or valence-
bond) state at a critical level of disorder (whose value depends on
microscopic details).
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that true LRO is lost already for infinitesimal bond disorder
[Fig. 1(b)], but this could not be detected in the numerics
because of finite-size effects.

Model and general considerations. To be specific, we
will consider the spin-S triangular-lattice Heisenberg model
with antiferromagnetic first-neighbor and second-neighbor
couplings,

H =
∑
〈i j〉

J1,i j �Si · �S j +
∑
〈〈i j〉〉

J2,i j �Si · �S j, (1)

whose ground state in the clean limit, J1,i j ≡ J1 and J2,i j ≡ J2,
displays coplanar spiral 120◦ LRO with propagation wave
vector �Q = ±(4π/3, 0) for α ≡ J2/J1 < 1/8. We will vary α

to tune the stiffness of the 120◦ LRO. The 120◦ state is chiral:
For spins in the x-y plane in spin space, the vector chirality
�Si × �S j for any given directed pair of sites i, j can point along
either +ẑ or −ẑ, corresponding to the two possible propaga-
tion wave vectors [15]. As a result, inversion symmetry is
broken as well, which plays an important role for the defect
physics.

We will be interested in the random-bond case where the
J1,i j and J2,i j are taken as (independent) random variables.
Bond disorder can be made weak either by employing a
narrow distribution of J , or by having a small concentration of
defect bonds deviating from the majority coupling strength.

Our main focus will be on semiclassical spin order—this
is appropriate for the clean system in the presence of LRO,
and by continuity also for weakly disordered systems. In this
regime, quantum effects will only yield quantitative correc-
tions, and we will show explicit results for the classical case,
formally S → ∞. Strong quantum effects can be expected to
be relevant at large disorder and small S: Here, the formation
of singlet bonds akin to a random-singlet state has been
proposed [10–12]; we will comment on this at the end of this
Rapid Communication.

Most generally, our qualitative results will apply to all
two-dimensional Heisenberg magnets with semiclassical non-
collinear, but coplanar LRO, both with spontaneous and ex-
plicit (i.e., crystallographic) chirality.

Single bond defect. A single defect bond in an otherwise
homogeneous system has been studied before [8,9], and we
summarize the key results. We consider

J1,i j =
{

J1 + δJ, (i, j) = (0, 1),

J1, otherwise,
(2)

and J2,i j ≡ J2. The presence of the defect locally relieves
frustration, leading to a readjustment of the spin directions.
Numerical results for a bond defect with δJ = −J1 are shown
in Fig. 2(a). The spin configuration remains coplanar and
can be analyzed in terms of angles δ�i which describe the
defect-induced in-plane rotation of the spins �Si with respect
to the 120◦ LRO. The Hamiltonian with couplings (2) has
inversion symmetry with respect to the center of the defect
bond, and δ�i is found to be odd under this inversion: δ�i

has a p-wave-like shape and decays proportional to 1/r, where
r is the distance from the defect [Fig. 2(b)]. This implies
that the bond defect acts as a dipolar perturbation; this can
be contrasted to the case of a vacancy which induces an
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FIG. 2. Single bond defect in a triangular-lattice Heisenberg
antiferromagnet. (a) Spin configuration near the defect bond (shaded)
for δJ = −J1 (2) and J2 = 0; the unperturbed 120◦ order is shown
in gray. (b) Defect-induced spin rotation angles δ� as a function of
distance r from the defect, for δJ = −J1/10 and different α ≡ J2/J1.
The dashed lines are fits to 1/r behavior for 2 < r < 20; deviations
at large r arise from finite sample size and periodic boundary
conditions, L = 300.

octupolar texture, with an f -wave shape and a 1/r3 decay of
δ�i [16,17].

The connection between the local release of frustration
and the long-range nature and shape of the distortion can
be understood at a linear-response level: The frustration is
released such that the two spins 0,1 on the defect bond align
more (less) antiparallel compared to the 120◦ state for δJ >

0 (δJ < 0), respectively. This rotation can be induced by a
locally transverse field, h⊥ ∝ δJ , acting on �S0 and �S1 with
opposite signs. Working in a local frame of spin coordinates
such that the order is uniform along the x̂ axis, the locally
transverse field acts as h⊥ ∑1

j=0 β jS
y
j with β j = (−1) j . The

long-distance pattern follows as the response of the ordered
state to this local dipolar field. The relevant in-plane suscep-
tibility χ‖(�q) is dominated by the in-plane spin-wave modes
whose dispersion is ωq ∝ |�q| such that χ‖(�q) = N2

0 /(ρsq2),
where ρs is the spin stiffness against in-plane twists, and N0 is
the magnitude of the order parameter [18], both taken for the
clean system. This yields, in the continuum limit, δ�(�r) ∝∫

dd qei �q·�rβ�qχ‖(�q) in d space dimensions where β�q = ê · �q is
the p-wave form factor of the local perturbation, with ê being
the lattice vector of the directed defect bond. Together, we
obtain

δ�(�r) = κ δJ
N2

0

ρ̃s

ê · �r
rd

, (3)

where ρ̃s = ρs/A with A the unit-cell area [19], and κ a
numerical prefactor (see Ref. [20] for details). Being inversely
proportional to the stiffness, the defect response thus depends
significantly on α = J2/J1, consistent with Fig. 2(b).

The fact that a bond defect produces an antisymmetric (or
inversion-odd) texture is intimately connected to the chirality
of the ground state: The Hamiltonian itself is inversion-even,
and a single defect cannot spontaneously break this symmetry.
However, the ground state is chiral, with broken inversion
symmetry, enabling the defect to produce an odd perturbation.
In other words, the ground-state chirality endows the bond
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defect with a direction, as required for a dipole, and reversing
the chirality will reverse the sign of the dipole, ê ↔ −ê.

As an aside, we note that the state with a single bond
defect has a finite uniform magnetization mimp which takes
a nonuniversal fractional value, similar to the vacancy case
[16]. For the bond defect with δJ = −J1 and α = 0 we
have found mimp/S = 0.396 + O(S−1). We also note that a
single (weak) defect on a second-neighbor bond has no effect
on the classical spin order, as second-neighbor spins are
parallel in the 120◦ state.

Destruction of LRO by dipolar fluctuations. We now turn to
the case of a finite defect concentration and argue that LRO is
generically destroyed for d � 2, adopting an argument origi-
nally due to Aharony [21]. To this end, we assume LRO and
employ local rotated frames as above, with order along the x̂
axis. We distribute random bonds J1,i j on the lattice and define
δJi j = J1,i j − J1 where J1 = J1,i j is the disorder-averaged J1,

such that the disorder strength is parametrized by δJ2
i j ≡ �2.

For each directed bond êi j , �di j ≡ êi jδJi j takes the role of
a local dipole strength. For weak randomness, the resulting
rotation of an individual spin is proportional to its transverse
magnetization in the rotated frame, δ�l = 〈S⊥

l 〉/N0. It can be
estimated using the linear response as above,

〈S⊥
l 〉 = κ

N3
0

ρ̃s

∑
〈i j〉

�di j · �rl,i j

rd
l,i j

, (4)

where �rl,i j is the vector connecting site l and the center of the

i j bond. The disorder-averaged transverse magnetization 〈S⊥
j 〉

vanishes because the averaged dipole strength has zero mean.
In contrast, the averaged magnetization correlation function is
nonzero [20],

〈
S⊥

l
2〉 = κ̃ �2 N6

0

ρ̃2
s

∫
dr r1−d , (5)

where we have passed to the continuum limit, the angular
average has been performed, and κ̃ ∝ κ2 is a prefactor.

The above integral is infrared divergent for d � 2, such
that the local transverse magnetization fluctuations diverge for
d � 2: These fluctuations, arising from dipolar bond disorder
and transmitted by long-wavelength modes, then destroy the
assumed ordered state. In contrast, for d > 2 a finite defect
concentration is required to destroy order. The same conclu-
sion can be reached by a more elaborate renormalization-
group (RG) treatment of a relevant nonlinear sigma model
(for details see Ref. [20]). The destruction of LRO by dipolar
fluctuations has been studied in different contexts before
[22,23].

Emergent spin glass. We now discuss the nature of the
emerging zero-temperature state without magnetic LRO. In
the semiclassical limit, this must be a state with spontaneously
broken SU(2) symmetry and, given the random-field character
of the problem, is a spin glass with frozen short-ranged spin
order [24,25].

We can estimate its magnetic correlation length ξ simply
by assuming that ξ provides an infrared cutoff to the integral
Eq. (5), i.e., by identifying ξ with a domain size. The stabil-

ity condition 〈S⊥
l

2〉 � N2
0 translates into ξ 2−d ∝ ρ̃2

s /(�2N4
0 )

for d < 2, whereas in d = 2 the correlation length is
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FIG. 3. Magnetic correlation length ξ for the triangular-lattice
Heisenberg model with Gaussian bond disorder. (a) Finite-size scal-
ing of 1/ξ as function of linear system size L for α = 0.05, T = 0,
and different disorder strength �. (b) Comparison of ξ obtained
from finite-T MC simulation and T = 0 energy minimization (EM),
for α = 0.05 and L = 36. (c) ln ξ plotted as a function of 1/�2,
illustrating the scaling from Eq. (6). (d) Test of stiffness dependence:
[ln(ξ/ξ∞)]1/2� and single-defect 1/[rδ�(r)] for different α, plotted
as functions of spin stiffness. The solid line corresponds to the RG
result for ξ . Dashed lines are linear fits.

exponentially large for small �,

ln
ξ

ξ∞
∝ ρ̃2

s

�2N4
0

, (6)

where the constant ξ∞ formally represents the correlation
length as � → ∞. While the spin configurations remain
coplanar in the limit of small �, this is no longer true at finite
disorder [20].

Numerical results for finite disorder. Our analytical results
are well borne out by large-scale simulations for the bond-
disordered triangular-lattice J1-J2 Heisenberg model, using
both ground-state energy minimization and finite-temperature
Monte Carlo (MC) techniques [20]. We have employed dif-
ferent disorder distributions; below we show results where the
J1,i j and J2,i j have been drawn independently from Gaussian
distributions with mean J1 (which we use as unit of energy)
and J2 = αJ1 and widths � and α�, respectively.

We have determined the magnetic correlation length ξ from
the disorder-averaged static structure factor. An example for
the finite-size scaling of ξ at T = 0 is shown in Fig. 3(a). For
large disorder, we clearly detect the absence of LRO, while
for small disorder the correlation length exceeds the available
system sizes, such that the finite-size scaling is inconclusive.
The temperature dependence of ξ obtained via MC simula-
tions is consistent with the data at T = 0 [Fig. 3(b)]. The
finite-T spin-glass correlation length is found much larger
than its magnetic counterpart, consistent with a spin-glass
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ground state. An analysis of individual spin configurations
confirms that the glassy state is noncoplanar [20].

Plotting the extrapolated data for ξ at T = 0 as a function
of disorder strength � [Fig. 3(c)], we find the � dependence
perfectly consistent with the exponential behavior predicted
by Eq. (6). This strongly suggests that LRO is indeed de-
stroyed for any nonzero �. Equation (6) also predicts that
[ln(ξ/ξ∞)]1/2� is proportional to the clean-limit stiffness
which reads ρ̃s = S2(J1 − 6J2)

√
3/2 in the classical limit

[20]. This proportionality is tested in Fig. 3(d) and found
to be perfectly obeyed. In fact, the RG treatment [20] also
yields an approximate expression of the proportionality factor
which agrees with the data. In addition, Fig. 3(d) also shows
1/[rδ�(r)] for the single-defect texture which is proportional
to the stiffness, in quantitative agreement with Eq. (3). Finally,
we do not detect any crossing points in the � dependence of
both the magnetic correlation length and the Binder parameter
for different L [20]. This confirms the absence of a critical �

and thus the phase diagram in Fig. 1(a).
Perturbations: Finite T , interlayer coupling, and

anisotropies. Beyond the two-dimensional Heisenberg model
discussed so far, a number of effects are important. First,
in a strictly two-dimensional SU(2)-symmetric system, the
clean-limit LRO is restricted to T =0 due to the Mermin-
Wagner theorem. Hence, the clean system is short-range
ordered at any finite T , with the thermal correlation length
ξT scaling as ln ξT ∝ ρs/T [26]. Now, bond disorder limits
the correlation length according to Eq. (6), which defines
a disorder-dependent crossover temperature which scales
quadratically with the disorder level, T ∗ ∝ �2N4

0 /ρs, below
which the system settles into its T =0 glassy state. We note
that d = 2 is below the lower critical dimension for spin-glass
order [27], hence, there will be no thermodynamic glass
transition in a strictly two-dimensional system. Second, a
small but finite interlayer coupling will render the system
three-dimensional at sufficiently low temperature, leading to
finite-T LRO which is also stable against weak bond disorder.
As a result, LRO is destroyed in favor of a glassy state only
beyond a critical level of disorder which scales with the
interlayer coupling according to J⊥/J ∝ �4N8

0 /ρ4
s . Third,

if SU(2) is broken down at the Hamiltonian level such that
there is no spin rotation symmetry in the ordering plane, the
in-plane mode of the clean system acquires a gap. As a result,
the texture induced by a single defect decays exponentially.
The system displays again LRO at low T which is stable
against weak bond disorder. Here, the critical level of disorder
scales logarithmically with the gap (for details see Ref. [20]).

Quantum effects. So far our analysis was based on semi-
classical spin order. It is strictly valid for S → ∞, but quali-
tatively also applies to finite S: 1/S corrections to observables
can be calculated and are generically nonsingular at T =0
[16,20]. However, for small S the physics can change; in
particular, local spin order can be destroyed by quantum
fluctuations.

For the noncollinear magnet at hand, it is conceivable that
a finite amount of bond disorder can lead to the suppression
of local order via the emergence of a disorder-dominated
valence-bond state [28,29], similar to the celebrated random-
singlet state in one dimension [13,14]. In fact, the emergence
of such a state has been proposed on the basis of numerical
simulations for the bond-disordered Heisenberg model both
on the triangular and honeycomb lattices [10–12]. Together
with our insight that infinitesimal bond disorder destroys
noncollinear LRO in favor of a spin glass, we conjecture the
phase diagram in Fig. 1(b), where the glass gives way to a
random-singlet state at large disorder.

Conclusions. Combining analytical arguments and large-
scale simulations, we have shown that random-bond defects
destroy long-range magnetic order in the ground state of two-
dimensional noncollinear antiferromagnets with SU(2) spin
symmetry. The key insight, demonstrated explicitly for the
triangular-lattice Heisenberg model, is that a finite concentra-
tion of effectively dipolar defects destabilize LRO even for
weak disorder in favor of a spin-glass state.

Remarkably, the effect of random site dilution in the same
system is much weaker: Vacancies induce an octupolar texture
[16,17], and LRO is stable against a small vacancy concen-
tration because the integral corresponding to Eq. (5) is not
divergent in this case [30].

Our analysis shows that none of the two cases can be
described as random-mass disorder in the relevant low-energy
field theory for the ordered state, because this would miss
the defect-induced random transverse fields. This underlines
a fundamental difference between the present noncollinear
magnets and their unfrustrated collinear counterparts, where
both random-bond disorder and site dilution correspond to
random-mass terms in the field theory. We note that bond
disorder also tends to destroy LRO in frustrated magnets
with strong spin-orbit coupling where defect-induced random
transverse fields are even stronger [31,32].

We expect our ideas to motivate further studies into differ-
ent types of quenched disorder in weakly frustrated magnets.
Investigations for noncoplanar order are underway. On the
experimental front, our results are pertinent to many materials
such as Ba3CoSb2O9 [33], Ba3NiSb2O9 [34], Ba8CoNb6O24

[35], Cs2CuCl4 [36], α-CaCr2O4 [37], and NaCrO2 [38].
They also apply to certain iron pnictides where a noncollinear
vortex crystal state has been detected [39].
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