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Topological damping Rashba spin-orbit torque in ballistic magnetic domain walls
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Rashba spin-orbit torque derived from the broken inversion symmetry at ferromagnet/heavy metal interfaces
has potential application in spintronic devices. In the conventional description of the precessional and damping
components of the Rashba spin-orbit torque in magnetization textures, the decomposition coefficients are
assumed to be independent of the topology of the underlying structure. Contrary to this common wisdom, for
Schrödinger electrons trespassing ballistically across a magnetic domain wall, we found that the decomposition
coefficient of the damping component is determined by the topology of the domain wall. The resultant damping
Rashba spin-orbit torque is protected by the topology of the underlying magnetic domain wall and robust
against small deviations from the ideal domain-wall profile. Our identification of a topological damping Rashba
spin-orbit torque component in magnetic domain walls will help one to understand experiments on current-driven
domain-wall motion in ferromagnet/heavy metal systems with broken inversion symmetry and to facilitate its
utilization in innovative device designs.
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One main theme in the field of nanomagnetism is to search
for new approaches to realize fast and energy-efficient manip-
ulation of magnetic state, rather than using the conventional
magnetic field. In the past three decades, several promising
candidates, such as electric field [1], laser pulses [2], and spin
current through the spin transfer torque (STT) [3–6], were
proposed. A recent development along this line is the emer-
gence of the Rashba spin-orbit torque (RSOT) in magnetic
systems without inversion symmetry. In a simple picture [7],
the electric field along the symmetry breaking direction is
equivalent to a magnetic field, dubbed the Rashba field, in
the rest reference frame of an electron in motion. Due to the
s-d exchange between the local and itinerant spin degrees of
freedom, the Rashba field is transformed into the RSOT acting
on the local magnetization.

When it was first proposed, only the precessional compo-
nent [8–11] of the RSOT, corresponding to the torque caused
by an effective Rashba field acting on the local magnetization,
was considered. Upon considering the impurity and spin-flip
scattering, an additional damping torque in accordance with
the effective Rashba field can arise [12]. Subsequent theoret-
ical investigations were devoted to exposition of the physics
of the RSOT, adopting different approaches and considering
sample geometries with finite extension [13–20]. However,
most of the previous theoretical investigations focus on the
case of uniform magnetization distribution or slowly varying
magnetization textures; the more important case of magnetic
domain walls (DWs), which will be the focus of the current
work, is almost not touched upon.

The topological description of electron transport in peri-
odic potentials appears naturally by considering the geometric
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Berry phase [21] of itinerant electrons. In the simplest case
of one-dimensional (1D) motion of electrons, it leads to the
Zak phase [22], and the Thouless–Kohmoto–Nightingale–den
Nijs (TKNN) invariant [23] for two-dimensional (2D) motion.
The Berry phase is generically caused by the existence of
a gauge field [24], which is given by the spatial variation
of the periodic modulation wave function in the case of
Bloch electrons. In the presence of spin-orbit interaction and a
background magnetic field, which is generated by a magnetic
DW, the itinerant electrons will also experience a spatially
varying, emergent gauge field. By analogy with the TKNN
invariant and the Zak phase, we speculate that topological
phase factors should arise for electrons traversing a DW.
Actually, the effect of spatially varying magnetization on the
motion of electrons was already discussed theoretically by
Bruno et al. [25]. Whether a similar topological effect will
emerge in RSOT remains a question.

For a simple demonstration of the physics, we will use the
following minimal model Hamiltonian to study the magneti-
zation dynamics of itinerant electrons confined to the interface
between a ferromagnet and a heavy metal [8–11]:

H = p2

2me
+ μBσ · M + αR

h̄
σ · (p × ẑ). (1)

p = −ih̄∇ is the momentum operator, me is the electron mass,
h̄ is the Planck constant divided by 2π , and μB is the Bohr
magneton. αR is the Rashba constant, which measures the
degree of the inversion symmetry breaking [26]. We consider
only the motion of the electrons in the interface, which
is a 2D xy plane in our coordinate system, since previous
density functional theory investigation found that the RSOT
is primarily an interface effect [13]. The third term in the
Hamiltonian (1) is the Rashba spin-orbit interaction term,
showing that the main effect of the broken inversion symmetry
is to introduce an effective in-plane magnetic field, which is
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everywhere tangential to the in-plane linear momentum p.
σ = x̂σx + ŷσy + ẑσz is a vector in the spinor space where
σx, σy, and σz are the Pauli matrices, and x̂, ŷ, and ẑ are
unit vectors along the x, y, and z directions, respectively.
The Hamiltonian (1) gives the energy of conduction electrons
interacting through the s-d exchange interaction with the local
magnetization M. In our model treatment, we consider only
the itinerant Hamiltonian as given in Eq. (1), while the local
magnetic moments are assumed to be static, as described
by M. The variation of the vector M inside magnetization
textures is used to provide an effective “exchange” field for
the itinerant magnetization.

The Walker DW profile [27] considered for the study of
the RSOT is characterized by an angle θ through the expres-
sion M = M(x̂ sin θ + ẑ cos θ ) with cos θ = −q tanh(x/λ)
and sin θ = χ sech (x/λ), where λ = √

A/K is the DW width.
A is the exchange constant and K the anisotropy constant
of the ferromagnet. For a general description, we consider
explicitly the charge q and chirality χ of a DW [28]. Using
the time-dependent Pauli-Schrödinger equation ih̄∂ψ/∂t =
Hψ for the spinor wave function ψ , the equation of motion
for the spin density s = ψ†σψ of conduction electrons is
given by

2me

h̄

∂s
∂t

= ∇ · Q + 2k2
BM̂ × s + τ, (2)

where the spin current density is defined as

Q = i(ψ†∇σψ − ∇ψ†σψ ) + kαεi j3 î ĵψ†ψ. (3)

εi jk is the antisymmetric Levi-Civita symbol and a summation
over repeated indices is implied in the expression for Q. A
substitution of x, y, and z by numbers 1, 2, and 3 is made to
compactify the expression. The parameter kB is related to the
Zeeman energy splitting h̄2k2

B/2me = μBM, and the constant
kα = 2meαR/h̄2 is an effective wave number characterizing
the strength of the Rashba interaction. M̂ is a unit direction
vector for the local magnetization, M̂ = M/M. The preces-
sional term τ follows directly from the Rashba term in Eq. (1),
and is given by

τ(k, ρ) = 2kαIm(ẑψ†σ · ∇ψ − ψ†σz∇ψ ). (4)

For later convenience, the momentum and position depen-
dence of τ is explicitly written out in Eq. (4). Our equation of
motion for the spin density is identical in form to a previous
result [29], if the angular momentum operator is replaced
by the Rashba field operator considered here. However, this
connection is superficial, as the dynamics for the angular
momentum are not considered here.

With Eq. (2), it is obvious that the itinerant magnetization
dynamics is governed by three torques. The first term on the
right-hand side of Eq. (2) corresponds to the spin current
torque acting on the itinerant magnetization, which is just the
divergence of the spin current density. In the ground state,
the spin current torque reduces to the exchange torque for
magnetization textures, which is proportional to m̂ × ∇2m̂,
with m̂ a unit vector for the itinerant magnetization. The
second term describes the torque originating from the static
local magnetization, whose net effect can be viewed as an
effective s-d exchange field acting on the itinerant magnetiza-
tion. The Rashba term in the Hamiltonian H gives rise to the

last torque on the right-hand side of Eq. (2). In equilibrium,
this Rashba torque has a form identical to the Dzyaloshinskii-
Moriya torque [30–34]. If a steady-state electronic current is
allowed to flow, the spin current torque and the Rashba torque
transform into the conventional STT and RSOT, respectively.
In the current carrying steady state, there is no time variation
of the itinerant magnetization. Hence the various torques on
the right-hand side must sum to zero. Due to this torque
balance, the torque induced by the spin accumulation, which
corresponds to the second term on the right-hand side of
Eq. (2), contains both the STT and RSOT contributions.

Equation (4) gives only the RSOT for a single Bloch state
in the momentum space. Using the relaxation-time approxi-
mation [35], the physical RSOT induced in the presence of an
electric field E along the x direction can be obtained through
an integration in the momentum space as

τ(ρ) = − eEτ0

(2π )2h̄

∮
dϕ kxτ(k, ρ), (5)

where τ0 is the relaxation-time constant, e the electron charge,
and ϕ the angle of the wave vector relative to the x axis. As
the temperature is assumed to be absolute zero, the integration
is confined to the 2D Fermi surface, which is a circle.

We adopt a scattering matrix method [36,37] to numeri-
cally solve the eigenvalue problem

Hψ = εk ψ (6)

for the Pauli-Schrödinger equation with energy εk. The idea
behind this scattering matrix method is intuitively simple. In
order to construct the eigenfunctions of Eq. (6), we first solve
it at infinity to obtain the asymptotic wave functions with
specific momentum and spin. Then we evolve the obtained
asymptotic wave functions towards the DW center, according
to Eq. (6). Generally, the evolved wave functions are not
continuous at the DW center, and are thus not eigenfunctions
in the whole space. This problem can be overcome by forming
linear combinations of the evolved wave functions with the
same energy but different momenta and spin projections along
the z direction, requiring that the continuity condition is satis-
fied at the DW center. The resultant wave functions are eigen-
functions over the whole space. Previously, the same method
was successfully applied to the discussion of STT in DWs
[38]. In the actual numerical implementation, we can employ a
particle-hole or charge–parity–time-reversal symmetry of the
Hamiltonian (1), H = σxPT HT Pσx, to reduce the number
of the wave functions to be computed. Wave functions related
to each other by the particle-hole symmetry, ψ and σxPψ ,
are conjugate pairs with opposite momenta but identical spin
projections along the z direction, injecting from opposite ends
of the DW. It is interesting to note that a similar particle-hole
symmetry was found for magnons inside DWs [39]. Further
numerical details of the calculation are given in Ref. [40].

With the numerical wave functions thus obtained, the
RSOT can be computed using Eqs. (4) and (5). The resultant
RSOT for the DW width λkF = 2 and λkF = 70 with kB/kF =
0.4 and kα/kF = 0.1 is shown in Fig. 1, where we have mea-
sured the DW width in terms of the inverse Fermi wave vector
k−1

F for the free-electron system that is described by only the
kinetic energy term in the Hamiltonian (1). For the shorter DW
width λkF = 2, the RSOT has both sizable precessional and
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FIG. 1. RSOT with q = 1 and χ = 1. The DW widths correspond to λkF = 2 (a) and λkF = 70 (b). For the small DW width λkF = 2 (a),
both the precessional (x and z) and the damping (y) components are comparable in magnitude. As the DW width increases to λkF = 70 (b),
the damping component decreases in comparison to the precessional one. For the long DW width λkF = 70, although the damping component
is negligibly small at the DW center, its magnitude is sizable far away from the DW center.

damping components. The precessional component is caused
by the effective Rashba field, which has the form m̂ × ŷ, while
the corresponding damping component is m̂ × (m̂ × ŷ) [9].
The total RSOT is a sum of both components,

τ = αm̂ × ŷ + βm̂ × (m̂ × ŷ). (7)

The corresponding decomposition coefficients α and β are
displayed in Fig. 2. Due to the confinement of electrons
caused by such short DWs, quantum interference of wave
functions shows up as the observable spatial variation of the
RSOT and decomposition coefficients far away from the DW

-20 -10 0 10 20

1.2

1.6

2.0

2.4

 &
 

 (
a.

 u
.)

FIG. 2. Precessional (α) and damping (β) RSOT coefficients
with q = 1 and χ = 1. The DW width is λkF = 2. The quantum
confinement induced oscillation around the DW center (xkF = 0) and
far away from the DW center (xkF = ±20), which is obvious for the
displayed DW width, is smoothed out as the DW width is increased
to λkF = 70, as shown in Fig. 3. Unspecified parameters are the same
as those used to generate Fig. 1.

center. This spatial variation decays out as the DW width is
increased [cf. Figs. 1, 2, and 3].

As the DW width increases, the magnitude of the pre-
cessional component increases while the magnitude of the
damping component decreases, as can be expected from a
previous investigation on STT [38]. However, the scaling of
the nonadiabaticity for the RSOT, which is defined as β/α,
is algebraic instead of exponential [40]. At the DW center,
the residue damping component is negligible, but it is sizable
far away from the DW center, as evident from Fig. 3(b) for
the longer DW width λkF = 70. This finite residue damping
component of the RSOT will demonstrate itself in the current-
driven magnetization dynamics of magnetization textures, and
warrants further attention in considering its effects in spin-
tronic devices. Furthermore, our numerical result shows that
the coefficient β depends on the topology of the underlying
DW. As shown in Fig. 3, for the four possible combinations
of the DW charge and chirality, we have only two traces for
β, reversed to each other, for the longer DW width λkF = 70:
The product of the DW charge and chirality, qχ , determines
the sign of β.

The physical origin of the damping RSOT can be deter-
mined through a perturbation analysis of the same Pauli-
Schrödinger equation (6) which is used for our numerical
simulation. Using the first-order wave function, the damping
RSOT component at x = ±∞ can be calculated. It has the
form as given in Eq. (7) with the coefficient [40]

β ∝ qχk2
α

(
c + a

λ2
+ be−γ λ

)
(8)

to the lowest order in kα , where a, b, c, and γ are all
constants. The constant c is of the order of unity, hence as
the DW width increases to a very large value, λ � λc, the
damping RSOT will approach to a constant value c at ±∞.
The critical length λc = kF /k2

B, which is λckF = 6.25 using
our parameters, determines the DW width where transition
from nonadiabatic to adiabatic behavior occurs for STT in
DWs without spin-orbit interaction [38].
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FIG. 3. Topological behavior of the precessional (α) and damping (β) RSOT coefficients for all four combinations of q and χ . The DW
width is λkF = 70. Other parameters are the same as those used to generate Fig. 1.

The appearance of the factor qχ in the expression of β

indicates that the damping RSOT is a topological quantity.
The factor k2

α signifies that the damping RSOT is a higher-
order effect, as kα is proportional to αR. In the perturbation
calculation, the adiabatic or zeroth-order wave functions give
rise to only the precessional RSOT. Due to this origin from
the zeroth-order wave functions, the adiabatic coefficient
α is almost independent of the topological features of the
underlying DW, whether in the adiabatic limit or not: For
α, the dominant contribution does not sense the topology
of the DW, and the topological contribution only enters as
a higher-order correction [cf. Fig. 3(a)]. Inclusion of the
first-order wave functions brings about the damping RSOT.
The first-order wave functions at infinity are determined by
the scattering of the incident, zeroth-order waves under the
influence of the perturbation potential. To the first order of kα ,
the explicit form of the perturbation potential in momentum
space V (k f , ki ) for incident and scattered momenta ki and k f

is given by

V (k f , ki ) = p cschp

4πλ
− χ

kα

4

ky

k2
B

π2 + 4p2

2π2λ
sechp+ qχ

kα

4
sechp

− qχ
ks

4

(
sechp − 2χ

kαky

πk2
B

p cschp

)
σy

+χ
λkα

2
kyσzsechp, (9)

with p = Qλπ/2 and ks = k f + ki. Q = k f − ki is the mo-
mentum transfer. In comparison to the original potential in
(1), the potential (9) corresponds to a magnetic field with
only y and z components and a scalar electric potential,
while the Rashba interaction is absorbed into the magnetic
field and electric potential. When the momentum transfer is
zero, the scaling of V (ki, ki ) with respect to the DW width
λ is algebraic. For finite momentum transfer Q = k f − ki,
V (k f , ki ) brings about the exponential decay of the physical
quantities on the DW width through the hyperbolic secant and
cosecant functions [41].

Not all of the topological terms in potential (9) contribute
to the expression for the damping RSOT. In the case of zero-
momentum transfer, Q = 0, the y component of the effective
magnetic field in (9), which is the coefficient of σy, does
not contribute at all; while the z effective field, which is the
coefficient of σz, and the scalar potential contribute partly: The
product of the first and second terms in the scalar potential
gives rise to the term proportional to λ−2 in (8), while the
product of the z component of the effective magnetic field with
the first term of the scalar potential contributes the constant
term in β. Both contributions are proportional to the chirality
χ . The dependence of q in the final expression for β is derived
from its dependence on the z component of the magnetization,
mz. Hence the topological feature of β is characterized by
the relation β ∝ χmz, far away from the DW center. This
behavior is similar to that of Bloch wave functions in periodic
potentials, as demonstrated by the Zak phase [22]. The mz

is a dynamical contribution, and χ is a manifestation of the
existence of a topological phase with the value of 0 or π .
The topological dependence of β obtained using the potential
(9), Eq. (8), is actually borne out by the numerical results, as
shown in Fig. 3.

The topological nature of β explains mathematically why
the damping RSOT remains finite even when the DW width is
large, λ � λc. Due to the different topologies of the DW and
a uniformly magnetized state, a continuous transition between
the two states is prohibited. Thus β cannot be reduced to zero,
which is the value for β in a uniform state. Physically, the
topological protection of the damping RSOT can be traced
back to the nonlocal character of quantum particles, which
means that the wave functions are not determined locally by
the potential. In particular, the damping RSOT at x = ±∞ is
determined by V (ki, ki ) in the adiabatic limit (λ � λc), which
is an integration of the perturbation potential over the whole
space and gives rise to the topological characteristics of the
damping RSOT. Therefore, the damping RSOT at x = ±∞ is
finite due to the pure existence of the DW, even though the
magnetization variation there is infinitesimal, approaching the
value for a uniform magnetization distribution.
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To see how the newly identified damping RSOT influences
the current-driven DW motion (CDWM), we consider the
expression for the normalized DW velocity v,

nαGv = qhz cos θh − nξu + qχβ�θ0, (10)

obtained using a simple 1D model description of CDWM
[42]. A detailed derivation of the velocity (10) is given in
the Supplemental Material [43–45]. αG is the Gilbert damping
constant, and n, θh, and �θ0 are constants related to the equi-
librium DW configuration. ξ is the nonadiabaticity and u is an
equivalent speed for the STT. hz is a perpendicularly applied
magnetic field, normalized to the anisotropy field. In obtaining
Eq. (10), we have assumed that the current density is small,
and the RSOT only causes infinitesimal deviation from the
equilibrium DW configuration. Even with this rather simple
assumption, Eq. (10) shows that the CDWM can exhibit very
complicated behavior: For short DWs, β is not completely
determined by the product qχ , then the RSOT contribution
to the DW velocity has both qχ -dependent and -independent
components. In the adiabatic limit, the qχ -independent com-
ponent of β fades out, and the RSOT contribution to the DW
velocity is qχ independent, resembling the behavior of the
STT contribution.

In systems with a sizable Rashba interaction, the sign of
the product qχ for a stable Néel wall is determined by the
sign of the Dzyaloshinskii-Moriya interaction constant D, as
qχD < 0 gives a lower energy. Additional control over the
DW chirality can be realized by applying an in-plane magnetic
field hx [46], with the DW charge fixed. With this freedom in
manipulating the DW chirality, the velocity of CDWM can
be tuned by the application of an in-plane magnetic field, for
DW width in the nonadiabatic limit. Further complication can
arise from the chirality dependence of the Gilbert damping
constant and gyromagnetic factor [47–49], as well as the STT
nonadiabaticity [50]. Before turning to our conclusion, it is

appropriate to mention that our above discussion is based
on a simple 1D treatment of the CDWM, which is a very
rough approximation based on the assumption that the ground
state of the DW is a Néel configuration. The applicability
of this assumption is dubious in the presence of an electric
current, since the current-induced effective Rashba field tends
to stabilize a Bloch wall. Our discussion is only to illustrate
the complication of the CDWM in the presence of the RSOT.
Further detailed investigation is needed for a thorough un-
derstanding of the CDWM in systems with sizable Rashba
spin-orbit interaction.

In conclusion, we have studied the RSOT in magnetic
DWs, which is derived from the broken inversion symmetry
at ferromagnet/heavy metal interfaces. By numerically solv-
ing the Pauli-Schrödinger equation for 2D electrons moving
inside a Néel DW, a topological damping RSOT component
is identified. Even in the adiabatic limit, the magnitude of the
topological damping component is sizable, in stark contrast to
the negligible nonadiabatic STT in the same limit. This finite
damping RSOT is a manifestation of the nontrivial topology of
the underlying DW. The identification of a topological damp-
ing RSOT component in magnetization textures will promote
the application of RSOT in spintronic devices and facilitate a
thorough understanding of the experimental data in current-
driven motion of magnetic DWs in ferromagnet/heavy metal
bilayer systems.
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