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Kagome model for a Z2 quantum spin liquid
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We present a study of a simple model antiferromagnet consisting of a sum of nearest-neighbor SO(N )
singlet projectors on the kagome lattice. Our model shares some features with the popular S = 1/2 kagome
antiferromagnet but is specifically designed to be free of the sign problem of quantum Monte Carlo. In our
numerical analysis, we find as a function of N a quadrupolar magnetic state and a wide range of a quantum spin
liquid. A solvable large-N generalization suggests that the quantum spin liquid in our original model is a gapped
Z2 topological phase. Supporting this assertion, a numerical study of the entanglement entropy in the sign free
model shows a quantized topological contribution.
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Quantum antiferromagnetism on the kagome lattice is an
important playground in the study of quantum spin liquids
emerging from frustrated magnetism. The most popular model
in this family is the S = 1/2 kagome antiferromagnet H =
J

∑
〈i j〉 �Si · �S j . Despite a quarter of a century of intense re-

search using an array of numerical and analytic methods on
this important model the ground state of the S = 1/2 kagome
antiferromagnet remains hotly contested. While the absence
of magnetic order is uncontroversial [1–5], various nonmag-
netic ground states have been proposed including, e.g., an
array of quantum spin liquids (QSLs) [6–9] and valence
bond solid ordering [1,10,11]. In parallel to the theoretical
work, a number of synthetic quantum materials have been
identified that provide venues where the interplay of quantum
fluctuations and frustration on the kagome lattice give rise to
novel unexplained behavior [12].

Of all the proposed phases of matter on the kagome, the
so-called gapped Z2 quantum spin liquid [13] is the simplest
example of an exotic state with long-range entanglement
[14], a prototypical quantum state that cannot be deformed
into a simple product or mean-field state. In its simplest
incarnation, the excitations above the ground state come in
two basic varieties, an e particle and an m particle which
by themselves are bosons but are mutual semions [15,16].
Remarkably it has been shown that the presence of these
excitations can be detected in the entanglement of the ground-
state wave function itself, giving rise to a contribution called
the “topological entanglement entropy” [17,18]. Although this
state is not yet experimentally accessible, we now have a
few model Hamiltonians that realize this topological order,
including the toric code [19], the honeycomb Kitaev model
[16], nonbipartite quantum dimer models [20,21], and models
of frustrated bosons [22–24]. It is clearly of great interest to
extend this family of models with an eye to finding simple
models that could find realizations in physical systems.

Model. A number of variations on the basic S = 1/2
Heisenberg model have been introduced and studied on the
kagome lattice, including Sp(N ) [13], SU(N ) [25], larger

spin versions of the two spin Heisenberg exchange [26], as
well as certain multispin interactions [27]. In this work we
present and study a variant of the kagome antiferromagnet.
Our model is constructed from generalized “spins” which
commute on different sites and have a local Hilbert space
of N states, denoted for site j as |α〉 j where α = 1, . . . , N .
The Hamiltonian can be written simply as a sum of singlet
projectors on the nearest neighbors of the kagome lattice,

H = −J
∑
〈i j〉

|Si j〉〈Si j |, (1)

|Si j〉 = 1√
N

∑
α

|αα〉i j . (2)

Physically, the Hamiltonian Eq. (1) can be viewed as lower-
ing the energy of singlet formation locally between nearest
neighbors. Since all pairs of neighbors cannot simultaneously
form singlets, quantum fluctuations play an important role
in stabilizing the ground state. We note here that the usual
S = 1/2 Heisenberg model is also a sum of singlet projectors,
of the form Eq. (1) but with |Si j〉 → |↑↓〉−|↓↑〉√

2
, which aside

from the crucial relative minus sign, is identical to our singlet
Eq. (2) at N = 2. It is this discrepancy of sign that allows
us to sidestep the infamous sign problem and carry out large
volume numerical studies that are so far impossible for the
S = 1/2 kagome Heisenberg model. The model, Eqs. (1)
and (2), has a global SO(N ) symmetry in which each site
transforms in the fundamental representation, |α〉 → Oαβ |β〉,
and in the path integral can be interpreted as a statistical
mechanics model of tightly packed unoriented loops [28]. A
previous study [29] on the triangular lattice found a

√
12 ×√

12 valence bond solid order at large values of N . Here by
introducing a solvable large-N limit and a numerical study
of the entanglement entropy at finite N using an adaptation
of a recently developed algorithm [30], we show that the
increased geometric frustration of the kagome lattice realizes
a Z2 topological quantum spin liquid.
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FIG. 1. Finite-size scaling of the quadrupolar order parameter for
the model Eq. (1), shows the presence of long-range order for N � 9
and its absence for N > 9. The upper panel shows the 1/L scaling of
the order parameter Q2

zf . The lower panel shows the correlation ratio
RS as a function of N for different L. In the thermodynamic limit
a value of 1 indicates long-range order, and 0 the absence of order.
All values of N show RS varying monotonically with increasing L
except for N = 9. The inset shows the nonmonotonicity for N = 9,
where for larger system sizes there is a trend of RS to increase with L
indicating quadrupolar long-range order.

We simulate the model Hamiltonian Eqs. (1) and (2), using
the stochastic series expansion [31] with loop updates on
3 × L × L lattices at an inverse temperature β. To characterize
the breaking of SO(N ) symmetry we introduce the operator
Q̂αβ = |α〉〈β| − δαβ

N which because of its tensorial nature we
will call the “quadrupolar” order parameter. We refer to this
state as “magnetic” because it breaks the internal SO(N ) spin
symmetry. The Fourier transformed susceptibility, χQ(k) =

1
βNsite

∫ β

0 dτ
∑

r eik·r〈Qαα (r, τ )Qαα (0, 0)〉, is used to diagnose

quadrupolar order. We define Q2
zf = χQ(0) as the order pa-

rameter, a quantity which scales to a finite value in the
thermodynamic limit in the quadrupolar phase and to zero
otherwise. To facilitate detection of the long-range order, we
also study a correlation ratio RS = 1 − χQ(G/L)

χQ (0) where G is
the shortest reciprocal lattice vector, which scales to 1(0) in
the symmetry broken (unbroken) phase. As shown in Fig. 1,
the quadrupolar order decreases as N is increased. Finite-size
scaling shows that for N � 9 there is quadrupolar order that
breaks the SO(N ) symmetry and for N > 10 the quadrupolar
order vanishes. The N = 9 case is on the verge of transition
but a careful finite-size scaling indicates that it is quadrupolar
ordered. We have searched extensively for translational sym-
metry breaking at the N for which quadrupolar order is absent
(as was found in the triangular lattice [29]), but we find no
evidence for this order, indicating the possibility of a quantum
disordered state. We now present field theoretic arguments

and numerical evidence that this phase is a Z2 quantum spin
liquid.

Large-N limit. To introduce a solvable large-N limit that
can capture both the quadrupolar as well as nonmagnetic
phase, we generalize the spins in our model to transform under
larger representations than the fundamental SO(N ), using
Schwinger bosons in which each local spin state is associated
with one of N flavors of boson biα (with [biα, b†

jβ ] = δi jδαβ).
The generalized spin model is then

Hb = − J

N

∑
〈i j〉;α,β

(b†
iαb†

jα )(b jβbiβ ) (3)

with the constraint
∑

α b†
iαbiα = nb, which fixes the represen-

tation of the spin. Thus the family of models, Eq. (3), has two
parameters nb and N . Clearly nb = 1 corresponds to Eq. (1).
Increasing nb is a generalization of Eq. (1), with different
representations of SO(N ). These are SO(N ) analogs of the
well-known Schwinger boson method of implementing higher
representations of SU(N ) [32,33].

Using boson coherent states we obtain a functional integral
representation of the partition function Z = Tr[e−βHb], with a
field λi(τ ) that enforces the on-site constraint and a Hubbard-
Stratonovich field Qi j (τ ) that decouples the quartic interaction
[32],

Z =
∫

DλDQe− ∫
dτLb, (4)

Lb =
∑
i,α

[b†
iα∂τ biα + λi(b

†
iαbiα − κb)]

+
∑
〈i j〉;α

(
1

J
|Qi j |2 + Q∗

i jbiαb jα + c.c.

)
, (5)

where we have set nb = κN . Integrating out the b fields we
obtain an effective action proportional to N . By fixing κ

a large-N limit can be accessed simply by a saddle-point
evaluation. Assuming space and time independent Q and
λ we find evaluating the trace over bosons, Z = e−βV N f

(where V is the total number of spatial unit cells), where
f = 1

V

∑
kα[ zQ2

2J − λ(κ + 1
2 ) + 1

β
ln2 sinh( βωkα

2 )], and ωkα =√
λ2 − 4Q2γ 2

kα the dispersion of bosons and γkα are the three
modes α = 1, 2, 3 of the adjacency matrix on the kagome,

{1, 1
2 [−1 ±

√
3 + 2cos(�k · �ai )]}, where �ai are the three short-

est lattice vectors on the triangular lattice Bravais lattice. At
the saddle point (obtained by extremizing Q and λ), there are
two phases: one where the bα have a gap and the other where
they are condensed. The condensed phase of the bα breaks the
SO(N ) symmetry and corresponds to the quadrupolar order
for the spin model; the implications of the gapped phase for
the spin model are more subtle (we address them below).
Numerically we find the transition between these two phases
where the gap goes to zero is at κc ≈ 0.148 . . . . This gives a
phase boundary nb = κcN that we show in Fig. 2 as a solid
line. Also shown in solid circles are the phases determined
from quantum Monte Carlo (QMC) for nb = 1. From this
figure it is plausible by continuity that the quadruplar phase
found in QMC corresponds to the condensation of bα (κ >

κc) and the liquidlike phase in the QMC corresponds to the
state in which the bα are gapped (κ < κc). We now ask what
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FIG. 2. The nb-N phase diagram obtained for Eq. (3) from QMC
and large-N limits: Q is for quadrupolar and Z2 is the topological
spin liquid. The solid circles represent the QMC results from Fig. 1
for nb = 1 which is identical to Eq. (1). The large-N Schwinger
boson gives us the phase diagram when both nb, N → ∞, holding
their ratio κ = nb/N fixed. At fixed nb = 1 and large N a quantum
dimer model (QDM) on the kagome lattice is obtained. The dashed
line is a guide to the eye representing the simplest way the QMC and
large-N results could be connected.

nonmagnetic state the original spin model goes into when
the bα acquire a gap. Following previous work [33], the state
is determined by 1/N fluctuations beyond mean field, which
take the structure of a U(1) gauge theory The unique aspect
here is that because of the nonbipartite lattice all the bi carry
the same sign of gauge charge (as opposed to the staggered
signs on bipartite lattices), and thus because of the structure
of the saddle point there is a charge-2 Higgs field coupled
to the U(1) gauge theory. As originally discussed in seminal
work, such a Higgs phase leaves behind a Z2 gauge theory
and a topological phase [34]. This line of argument was
used previously to establish emergent Z2 gauge structures in
large-N expansions [35]. We thus conclude that for κ < κc

the spin model will be in a Z2 quantum spin liquid phase.
This suggests by continuity that the quantum disordered phase
observed in our original model, Eq. (1) [the nb = 1 limit of
Eq. (3)] is also in this interesting phase. We test this conjecture
below.

It is also possible to take a direct large-N limit of Eq. (1)
(i.e., holding nb = 1 fixed). Analogous to work on SU(N )
models on bipartite lattices [36] we obtain as an effective the-
ory, a quantum dimer model on the kagome lattice, where the
spin wave function is obtained by replacing each dimer with
|S〉 of Eq. (2). At N = ∞ all dimer coverings are degenerate
and 1/N corrections introduce dynamics into the quantum
dimer model. In this limit it is clear that quadrupolar order
is absent, consistent with our numerical findings. While the
quantum dimer model so obtained is not generally solvable,
it is plausible that for N � 1, our model Eq. (1) ends up in
the same Z2 spin liquid phase as an exactly solved kagome
quantum dimer model [21], since the topological spin liquid
is expected to be stable to all small deformations of the
Hamiltonian. This limit suggests that at nb = 1 the model
remains in a liquid state for arbitrary large N , as shown in
Fig. 2.

Entanglement. Having presented circumstantial evidence
for a spin liquid in our model Eq. (1) from large-N expansions,
we return to numerical simulations to provide direct evidence
for the Z2 quantum spin liquid phase. We carry out measure-
ments of the topological entanglement entropy (TEE), which
has been a fruitful tool to detect topological order numerically
[37–40]. In phases with topological order the TEE appears as
a universal negative contribution to the entanglement entropy
[17,18]. With L the linear size of a smooth simply connected
subsystem, for large L in a thermodynamic system, SL =
aL − γ + . . ., where the first term is the so-called “area law”
contribution with a nonuniversal and the second term is the
universal TEE piece. For the Z2 state found in our large-N
study and in the kagome quantum dimer model, it is predicted
that γ = ln(2) in the ground state. This expectation has been
extended to finite temperatures as well, where due to two
different excitation gaps associated with e and m particles, γ

is predicted to show two plateaus at ln(2)/2 and ln(2) as a
function of inverse temperature for finite system size [41].

In order to isolate γ we compute the difference in entan-
glement entropy of differently shaped regions [17], written

as , where S(2)
A = − ln(Trρ2

A)

is the second Rényi entanglement entropy and the subscript
A denotes the specific subsystem. Writing the Rényi en-
tanglement entropy in terms of replica partition functions
S(2)

A = − ln(Z (2)
A /Z2) [42], the Levin-Wen measurement can

be expressed as ln ln . To compute

these partition function ratios numerically we have adapted
a recently introduced algorithm [30] to the current problem.
The method introduces a one-parameter family of partition
functions Z (2)

AB (λ) that interpolates between the two partition
functions (Z (2)

A and Z (2)
B ) appearing in the ratio. In this ex-

tended ensemble the log ratio takes the form of a λ integral of
a simple Monte Carlo estimator [43]. We have also tried other
techniques to calculate the EE including the energy integration
method [44] used in [38]; however, we find the current method
to be better suited to our problem.

At large values of N and in the quantum spin liquid phase
at the low temperatures of interest, it is difficult to efficiently
sample our phase space using only traditional QMC loop
updates. To improve the quality of our entanglement data
we have incorporated annealing and replica exchange meth-
ods [43]. With these improvements we are able to measure
γ reliably at moderately low temperatures, after which we
encounter difficulties with equilibration and ergodicity. As
we shall see, this allows us to observe the first plateau at
ln(2)/2 but not the second plateau at ln(2). Figure 3 shows
the TEE as a function of inverse temperature β for the SO(N )
model with N = 8 to N = 11 on an L = 8 lattice. As T is
lowered, we clearly see a pronounced signal in the TEE for
N � 10 near a plateau at ln(2)/2. For N � 9, on the other
hand, γ goes to zero in the low-temperature regime, consistent
with the study of the quadrupolar order parameter shown in
Fig. 1. Interestingly, even though for L = 8 the difference
region in each ratio contains only 3 × 2 × 2 we see reasonable
quantization at the first plateau. To test how γ depends on
system size L (with a corresponding scale up of the subsystem
size) we present the SO(11) TEE data for L = 8, 12, 16 in
Fig. 4. The data shows clear persistence of the ln(2)/2 plateau,
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ln

FIG. 3. The topological entanglement entropy γ of the model
Eq. (1) for various values of N as a function of β for system size
L = 8. A T = 0 quantized value of γ is indicative of topological
order which clearly manifests itself for N � 10. For N � 9, the
vanishing of γ is consistent with the appearance of quadrupolar order
(see Fig. 1).

the onset moving slowly to larger β as expected from the toric
code [41]. We have also performed measurements at lower
temperatures in an effort to see the second quantized plateau at
ln(2) and despite signals that are consistent with this picture,
proper equilibration here is challenging as is expected for a
topological liquid with nonlocal excitations [43].

Outlook. We have unambiguously identified in sign-free
Monte Carlo simulations, a Z2 quantum spin liquid in a
simple two-site interaction model Eq. (1) of magnetism on
a kagome lattice. Our work paves the way to study various
interesting questions, including the nature of phase transitions
out of the QSL, the role of isolated impurities, as well as the
effect of large-scale disorder in QSLs. This simplicity of the
model interaction, the exotic phase it hosts, and the absence of
the sign problem make it a fundamentally interesting model
of interacting quantum condensed matter. Apart from its

ln

FIG. 4. The topological entanglement entropy γ as a function
of β for N = 11 for L = 8, 12, 16. In the thermodynamic limit, we
clearly see convergence to the first plateau of a Z2 spin liquid at
ln(2)/2. Another plateau at ln(2) is expected at still higher β.

theoretical interest, the simplicity of the model suggests it
could be relevant for experiments as well. In cold atoms
experiments, Mott insulating states with local Hilbert spaces
size N as large as 10 have been realized with alkaline-earth-
metal atoms [45], as well as kagome optical lattices [46].
In Mott systems with an N-fold Hilbert space there are two
“most symmetric” interactions: the much studied permutation
operator 
i j = ∑

αβ |αβ〉〈βα| (in the notation used in our
Rapid Communication) and the projection operator Pi j =∑

αβ |αα〉〈ββ| that we discuss in our Rapid Communication,
Eqs. (1) and (2). It is an exciting direction for future work to
understand how these interactions can be controllably engi-
neered with optical methods.
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