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Collective spinon spin wave in a magnetized U(1) spin liquid
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We study the transverse dynamical spin susceptibility of the two-dimensional U(1) spinon Fermi-surface spin
liquid in a small applied Zeeman field. We show that both short-range interactions, present in a generic Fermi
liquid, as well as gauge fluctuations, characteristic of the U(1) spin liquid, qualitatively change the result based
on the frequently assumed noninteracting spinon approximation. The short-range part of the interaction lead to a
collective “spinon spin wave” mode, which splits off from the two-spinon continuum at a small momentum and
disperses downward. Gauge fluctuations renormalize the susceptibility, providing nonzero power-law weight in
the region outside the spinon continuum and giving the spin wave a finite lifetime, which scales as momentum
squared. We also study the effect of Dzyaloshinskii-Moriya anisotropy on the zero momentum susceptibility,
which is measured in electron spin resonance (ESR), and obtain a resonance linewidth linear in temperature and
varying as B2/3 with magnetic field B at low temperatures. Our results form the basis for a theory of inelastic
neutron scattering, ESR, and resonant inelastic x-ray scattering studies of this quantum spin-liquid state.
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The search for the enigmatic spin-liquid state has switched
into high gear in recent years. Dramatic theoretical (the Kitaev
model [1,2] and a spin liquid in a triangular lattice antiferro-
magnet [3]) and experimental (YbMgGaO4 [4,5] and α-RuCl3

[6]) developments leave no doubt as to the eventual success
of this enterprise. To push this to the next stage, it is incum-
bent upon the community to identify specific experimental
signatures that evince the unique aspects of these states. In
this Rapid Communication, we focus on the two-dimensional
U(1) quantum spin liquid (QSL) with a spinon Fermi surface.
This is a priori the most exotic two-dimensional QSL state,
and yet one which has repeatedly been advocated for in
both theory [7–11] and experiment [5,12–14]. Specifically, we
study the dynamical susceptibility of the q component of the
spin operator Sa

q (a = x, y, z),

X±(q, ω) = −i
∫ ∞

0
dt〈[S+

q (t ), S−
−q(0)]〉eiωt , (1)

which is an extremely information-rich quantity, and is
accessible through inelastic neutron scattering [15], electron
spin resonance (ESR) [16,17], and resonant inelastic x-ray
scattering (RIXS) [18]. The fractionalization of triplet
excitations into pairs of spinons is a fundamental aspect of
a QSL, and is expected to manifest in X± as a two-particle
continuum spectral weight [2,19,20], a surprising feature
which appears more characteristic of a weakly correlated
metal than a strongly correlated Mott insulator. In a
mean-field treatment in which the spinons are approximated
as noninteracting fermions, this continuum has a characteristic
shape at small frequency and wave vector in the presence
of an applied Zeeman magnetic field, as discussed in
Ref. [21]. In particular, there is nonzero spectral weight in
a wedge-shaped region which terminates at a single point
along the energy axis at zero momentum. Our analysis
reveals the full structure in this regime beyond the mean-field
approximation. Notably, we find that interactions between

spinons qualitatively modify the result from the mean-field
form, introducing another collective mode—a spinon spin
wave—and modifying the spectral weight significantly.

We recapitulate the derivation of the theory of the spinon
Fermi-surface phase [22,23]. One introduces Abrikosov
fermions by rewriting the spin operator Si = 1

2 c†
iασαβciβ ,

where ciα, c†
iα are canonical fermionic spinors on site i with

a spin-1/2 index α (repeated spin indices are summed). This
is a faithful representation provided the constraint c†

iαciα = 1
is imposed—this constraint induces a gauge symmetry. In
a path integral representation, the constraint is enforced by
a Lagrange multiplier Ai0, which takes the role of the time
component of a gauge field, i.e., scalar potential. Microscopic
exchange interactions, which are quadratic in spins, and are
therefore quartic in fermions, are decoupled to introduce other
link fields whose phases act as the spatial components of the
corresponding gauge fields A, i.e., the vector potential.

To describe the universal low-energy physics, it is appro-
priate to consider “coarse-grained” fields ψα,ψ†

α descending
from the microscopic ones, and include the symmetry-allowed
Maxwell terms for the U(1) gauge field. Furthermore, due to
the finite density of states at the spinon Fermi surface, the lon-
gitudinal scalar potential is screened and the time component
A0 can then be integrated out to mediate a short-range repul-
sive interaction u between like charges. Therefore we consider
the Euclidean action S = Sψ + SA + Su, where [22–24]

Sψ =
∫

d3x ψ†

(
∂τ − μ − 1

2m
(∇r − iA)2 − ωBσ 3

)
ψ,

SA =
∫

d3q

(2π )3

1

2
(γ |ωn|/q + χq2)|A(q)|2,

Su =
∫

d3x u ψ
†
↑ψ↑ψ

†
↓ψ↓. (2)

Here, x = (τ, x) is the space-time coordinate, q = (ωn, q) is
the three-momentum, ψα is a two-component spinor, with spin
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indices α, β =↑,↓ that are suppressed when possible, and
ωB describes static magnetic field B = Bẑ and includes the
g-factor as well as the Bohr magneton. The gauge dynamics
is derived in the Coulomb gauge ∇ · A = 0 with A(q) = iẑ ×
q̂A(q). The gauge action SA is generated by spinons and γ =
2n̄/kF and χ = 1/(24πm) represent Landau damping and
the diamagnetic susceptibility of noninteracting spinon gas,
correspondingly (m is the spinon mass, n̄ is the spinon density,
and kF is the Fermi momentum of a nonmagnetized system).

We proceed with the assumption of SU(2) symmetry, a
good first approximation for many spin-liquid materials, and
address the effect of its violations in the latter part of this
Rapid Communication. Previous investigations focused on
the transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-liquid
physics. For example, one finds a self-energy varying with
frequency as ω2/3, and a singular contribution to the spe-
cific heat cv ∼ T 2/3 [22,23]. However, notably, the transverse
gauge field has negligible effects on the hydrodynamic long-
wavelength collective response [24]. Here, we instead focus
on the short-range repulsion u, which produces an exchange
field that dramatically alters the behavior in the presence of
an external Zeeman magnetic field giving rise to finite mag-
netization. Gauge fluctuations play a subsidiary role which we
also include.

An important constraint follows purely from symmetry.
Provided the Hamiltonian in zero magnetic field has SU(2)
symmetry, a Zeeman magnetic field leads to a fully deter-
mined structure factor at zero momentum. Specifically, the
Larmor/Kohn theorem [25] dictates that the only response
at q = 0, X ′′

± = −2Mδ(ω − 2ωB), where M = (n̄↑ − n̄↓)/2 is
the magnetization and ωB is the spinon Zeeman energy. For
free fermions, the delta function is precisely at the corner of
the spinon particle-hole continuum (also known as the two-
spinon continuum). However, the contact exchange interac-
tion shifts up the particle-hole continuum, at small momentum
q, away from the Zeeman energy 2ωB to 2ωB + 2uM. This is
seen by the trivial Hartree self-energy

Σσ =

−σ

= un̄−σ = −uMσ + un̄/2,
(3)

where we use a zigzag line to diagrammatically represent the
local u interaction, σ =↑= 1 and σ =↓= −1, and n̄σ is the
expectation value of spin-σ spinon density in the presence of
a magnetic field. Consequently, for the Larmor theorem to be
obeyed, there must be a collective transverse spin mode at
small momenta.

This collective spin mode is most conveniently described
by the random phase approximation (RPA), which corre-
sponds to a standard resummation of particle-hole ladder
diagrams [26]. For the particular case of a momentum-
independent contact interaction, one has

X±(q, iωn) =
↑

↓
+

↑

↓
+

↑

↓
+ · · ·

=
χ±(q, iωn)

1 + uχ±(q, iωn)
,

(4)

FIG. 1. Magnetic excitation spectrum of an interacting U(1) spin
liquid with a spinon Fermi surface. The wedge-shaped (blue) region,
bounded by dashed lines, denotes a spinon particle-hole continuum
inside which Im χ 0

±(q, ω) 	= 0. The collective spinon spin wave,
which is promoted by a short-ranged repulsive interaction u, is
shown by the bold black line. The linewidth of this transverse spin
wave is determined by the gauge fluctuations, which produce finite
Im χ 1

±(q, ω) 	= 0 outside the noninteracting spinon continuum [see
(11)].

where the fermion lines correspond to the spinon Green’s
functions including the Hartree shift (3), and in this approx-
imation χ±(q, iωn) = χ0

±(q, iωn) is the bare susceptibility
bubble, calculated using these functions. We will, however,
use the second line in Eq. (4) to later define the RPA approx-
imation even when gauge field corrections (but not the local
interaction u) are included in χ±. For the moment, we simply
evaluate the bare susceptibility,

χ0
±(q, iωn) = 1

βV

∑
kn,k

1

ikn − εk + ωB − un̄↓

× 1

ikn + iωn − εk+q − ωB − un̄↑
. (5)

Here, ωn, kn are bosonic and fermionic Matsubara frequen-
cies, respectively. A simple calculation, followed by analytical
continuation iωn → ω + i0, gives

Re χ0
±(q, ω) = 2M sgn(ω − 2ωB − 2uM )√

(ω − 2ωB − 2uM )2 − v2
F q2

,

Im χ0
±(q, ω) = −2M√

v2
F q2 − (ω − 2ωB − 2uM )2

, (6)

where square roots are defined when their arguments are
positive. The real/imaginary spin susceptibility describes
domains outside/inside two-spinon continuum in the (q, ω)
plane (Fig. 1), correspondingly. At q = 0,

χ0
±(q = 0, ω) = 2M

ω − 2ωB − 2uM + i0
, (7)

and therefore Im χ0
±(q = 0, ω) ∼ δ(ω − 2ωB − 2uM ): The

position of the two-spinon continuum is renormalized by the
interaction shift. However, inserting (7) in the RPA formula
(4), one finds that the RPA successfully recovers the Lar-
mor theorem at zero momentum for the interacting SU(2)-
invariant system,

X±(q = 0, ω) = 2M

ω − 2ωB + i0
. (8)
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Therefore the contribution at q = 0 is solely from the col-
lective mode, with no spectral weight from the continuum
at 2ωB + 2uM. Dispersion of the collective spin mode is
obtained with the help of (6) and Im X± = Im χ0

±/[(1 +
u Re χ0

±)2 + (u Im χ0
±)2],

ωswave(q) = 2ωB + 2uM −
√

4u2M2 + v2
F q2. (9)

For small q � uM/vF the collective mode is dispersing down-
ward quadratically ω ≈ 2ωB − (vF q)2/(4uM ), while in the
opposite limit q  uM/vF it approaches the low boundary
of the spinon continuum, ω ≈ 2ωB + 2uM − vF q. Retaining
quadratic in q terms in (5) will lead to the termination of the
collective mode at some qmax at which the spin wave enters
the two-spinon continuum.

This physics is not unique to spin liquids but applies
to paramagnetic metals. Historically, this spin-wave mode
was predicted by Silin in 1958 for nonferromagnetic metals
within Landau Fermi-liquid theory [27–30], and observed via
conduction electron spin resonance (CESR) in 1967 [31]. At
the time, this observation was considered to be one of the
first proofs of the validity of the Landau theory of Fermi
liquids [32]. Unlike the more well-known zero sound [33],
an external magnetic field is required in order to shift the
particle-hole continuum up along the energy axis to allow
for the undamped collective spin wave to appear outside
the particle-hole continuum, in the triangular-shaped window
below it. Second order in the interaction u corrections (be-
yond the ladder series) do cause damping of this spin mode
[34–36].

However, in the U(1) spin liquid, there is an additional
branch of low-energy excitations due to the gauge field A,
dispersing as ω ∼ q3. The very flat dispersion of the gauge ex-
citations suggests it may act as a momentum sink, so that, for
example, an excitation consisting of a particle-hole pair plus a
gauge quantum may exist in the “forbidden” region where the
bare particle-hole continuum vanishes and the collective spin
mode lives. It is therefore critical to understand the effect of
the gauge interactions upon the dynamical susceptibility. To
this end, we consider the dressing of the particle-hole bubble
χ0 by gauge propagators. Guided by the above thinking, we
expect that it is sufficient to consider all diagrams with a single
gauge propagator (denoted by the wavy line),

χ1
±(q,iωn) =

↑

↓
+

↑

↓
+

↑

↓
(10)

Calculations described in Ref. [37] lead to

Im χ1(q, ω) = −
√

3γ 1/3kF

56π2χ4/3

q2ω7/3

(ω − 2ω̃B)4
. (11)

That is, the dressed susceptibility has a nonzero imaginary
part in the previously kinematically forbidden region out-
side the spinon particle-hole continuum (see Fig. 1). This
is another continuum weight. However, the weight in this
continuum contribution vanishes quadratically in momentum
as q = 0 is approached. This is an important check on the
calculations, since the Larmor theorem still applies to the full
theory (2) with the gauge field, which implies that precisely

at zero momentum, there can be no different contributions.
Similar to Kim et al. [24], who considered diagrams for
the density correlations and optical conductivity, this result
relies on important cancellations between self-energy (first
two diagrams) and vertex corrections (last diagram), which
are needed to obtain this proper behavior of χ1.

Within the RPA approximation of Eq. (4), but now with
χ± = χ0

± + χ1
±, we see that the q2 dependence of Im χ1

± is
sufficient to ensure that the width (in energy) of the collective
spin mode becomes narrow compared to its frequency at small
momentum: This is the standard criteria for sharpness and
observability of a collective excitation. The real part of χ1,
derived in Eq. (S53) in the Supplemental Material, modifies
the dispersion of the collective mode, too, but preserves its
downward q2 character within the 1/N approximation [37].
The final result for the dynamical susceptibility is summarized
in Fig. 1. Away from the zero momentum axis Im X±(q, ω)
is always nonzero, and is the sum of several distinct contri-
butions. Inside this spinon-gauge continuum, the spinon spin
wave appears as a resonance which is asymptotically sharp
at small momentum. We note that, while our calculations are
done in two dimensions, a spinon spin wave with the same
qualitative features is also present in the three-dimensional
U(1) QSL.

For observation of the spinon spin wave via an inelastic
neutron or RIXS experiment, the mode should be present over
a range of momenta which is not too narrow. Because the
extent of the “decay-free” triangular-shaped region in Fig. 1
is determined by 2ωB/vF ∼ √

mωB(ωB/EF ), this requires
that the Zeeman energy should be a substantial fraction of
the exchange integral (effective Fermi energy). This makes
spin-liquid materials with J of order 10 K ideal candidates
for observation, in contrast with the usual metals for which
ωB/EF is vanishingly small.

The above results apply to the case in which SU(2) spin
rotation symmetry is broken only by the applied Zeeman field.
Breaking of the SU(2) invariance by anisotropies invalidates
the Larmor theorem and causes a shift and, more importantly,
a broadening of the spin collective mode even at zero momen-
tum [38]. This is of particular importance for electron spin
resonance, which has a high-energy resolution but measures
directly at zero momentum only [25]. The way in which the
resonance is broadened depends in detail on the nature of
the anisotropy, the orientation of the applied magnetic field,
etc., so it is not possible to give a single general result.
Instead, we provide one example of this physics and consider
the influence of a Dzyaloshinskii-Moriya (DM) interaction,
which is typically the dominant form of anisotropy for weakly
spin-orbit coupled systems, provided it is symmetry allowed
by the lattice. See, for example, Refs. [39,40].

Guided by the arguments of symmetry and simplicity we
next suppose that when projected to the spin-liquid ground
state manifold of the two-dimensional spin model, the DM
interaction appears as a familiar spin-orbit interaction of the
Rashba kind. A momentum-dependent spin splitting, of which
this is the simplest example, is expected to appear in a model
without spatial inversion symmetry because in the spinon
Fermi surface state the spinons transform under lattice point
group symmetries in the same way as the usual electrons
[41]. Then the term in the Hamiltonian breaking SU(2) spin
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invariance H ′ reads

H ′ =
∫

d2x αsoψ
†[( p̂x + Ax )σ y − ( p̂y + Ay)σ x]ψ. (12)

Here, p̂μ is the ith component of the momentum operator, and
αso is the strength of the Rashba coupling. The dependence
on the minimal combination p̂ + A is required by the gauge
invariance of the action in Eq. (2). Note that the magnetic field
continues to couple to σ z.

In the fixed Coulomb gauge, the momentum and gauge
terms within the Rashba anisotropy of Eq. (12) have distinct
effects. The former, momentum term, may be considered at
the mean-field level, as an intrinsic spin splitting in the spinon
dispersion. Taking this into account, the ESR signal arises
from vertical interband transitions [42]. The variation of these
transitions with momentum leads to an intrinsic line shape,
from which useful information about van Hove and other spe-
cial points of the spinon bands may be extracted by a detailed
analysis [43]. In Fermi liquids, this physics is responsible for
chiral spin resonance [44,45]. In one-dimensional spin chains
with a uniform DM interaction, the same basic physics leads
to a splitting of the ESR line into a doublet [46].

The gauge field part of Eq. (12) consists mathematically of
coupling of A to the spin-non-conserving bilinear operators of
spinons,

H ′
A = iαso

2

∑
p,q

[ψ†
p+q,↓ψp,↑A+(q) − ψ

†
p+q,↑ψp,↓A−(q)],

(13)

where A± = Ax ± iAy. This term has no simple mean-field
description, and is responsible for the magnetic field and
temperature dependence of the dynamical spin susceptibility,
and in particular the ESR linewidth η.

Instead of a technically involved diagrammatic calcula-
tion (which is also possible and confirms the results oth-
erwise obtained) we employ an elegant shortcut which is
based on the modern reincarnation [25,47] of the classic
ESR formulation by Mori and Kawasaki [48]. We are in-
terested in the retarded Green’s function of the transverse
spin fluctuations GR

S+S− (q = 0, ω) = 2M/[ω − 2ωB − �(ω)],
which defines the zero momentum self-energy �(ω). The ESR
theory shows (see Ref. [37]) that this self-energy is related
to the correlations of the perturbation operator R = [H ′

A, S+],
according to

η = Im �(ω) = − 1

2M
Im GR

RR† (ω). (14)

Equation (14) directly expresses the ESR linewidth in terms
of the retarded Green’s function of the perturbing operator R.

FIG. 2. Scaling function F (x).

Observe that R ∝ αso and hence to the second order in the
spin-orbit coupling, Eq. (14) may be calculated with respect
to the isotropic Hamiltonian of the ideal spin liquid subject to
the Zeeman magnetic field ωB.

For the Rashba coupling, one obtains R =
−i αso

2

∑
p,q ψ

†
p+qσ

zψpA−(q), so that the calculation of
η reduces to a convolution-type integral over energy
and momentum of the spectral functions of the spinon
magnetization density Sz(q) and the gauge field A(q). This
instructive calculation is described in Ref. [37] and results in
the full scaling function prediction for the ESR linewidth,

η(ωB, T ) = α2
so

2M

[
mT

8πχ
+ const T 5/3F

(
2ωB

T

)]
. (15)

The scaling function F (x) is plotted in Fig. 2 and is char-
acterized by these limits: F (x � 1) = −4.4x and F (x 
1) = 0.75x5/3. Consequently, in the low-temperature limit
the linewidth follows a “fractional” scaling with the mag-
netic field, η → α2

so(2ωB)5/3/M ∼ α2
soB2/3. Also notable is the

nonmonotonic dependence of the scaling function F on its
argument. The full scaling function represents a nontrivial
quantitative prediction for the the present model of magnetic
anisotropy.

However, while all isotropic magnets are alike, all
anisotropic magnets are anisotropic in their own way.
We leave an exhaustive study of different mechanisms of
anisotropy on ESR in spin liquids for future work.
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