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By using the momentum-space Lanczos recursive method which considers rigorously all multiple-scattering
events, we unveil that the nonperturbative disorder effect has a dramatic impact on the charge transport of a
two-dimensional electron system with Rashba spin-orbit coupling in the low-density region. Our simulations
find a power-law dependence of the dc longitudinal conductivity on the carrier density, with the exponent linearly
dependent on the Rashba spin-orbit strength but independent of the disorder strength. Therefore, the classical
charge transport influenced by complicated multiple-scattering processes also shows the characteristic feature
of the spin-orbit coupling. This highly unconventional behavior is argued to be observable in systems with
tunable carrier density and Rashba splitting, such as the LaAlO3/SrTiO3 interface, the heterostructure of Rashba
semiconductors bismuth tellurohalides, and the surface alloy BixPbySb1−x−y/Ag(111).
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Introduction. Spin-orbit coupling underlies numerous fas-
cinating phenomena in the field of spintronics [1], such as the
spin and anomalous Hall effects [2,3], current-induced spin
polarization [4,5], and spin-orbit torque [6]. Recent studies
concerning the interplay between spin-orbit coupling and
disorder scattering have successfully described the spin and
anomalous Hall effect [2,3] in the high carrier density regime.
In contrast, how the spin-orbit coupling affects the classical
charge transport properties of materials especially in the low
charge density regime, such as longitudinal conductivity and
Lorentz-force-induced Hall effect, is still fuzzy.

Recently, unconventional behaviors of classical charge
transport in the two-dimensional electronic systems (2DES)
with linear Rashba spin-orbit coupling [7–9] have begun to be
uncovered [10–17]. For instance, the Hall coefficient deviates
considerably from 1/ne in the low-density region (n < n0)
[13,14]. Here n is the electron density, and n0 = m2α2

R/(π h̄4)
is the electron density when the Fermi level locates at the
Dirac point of the Rashba system, with αR the Rashba spin-
orbit coefficient and m the effective mass. In addition, the
longitudinal diffusive conductivities as a function of n dif-
fer significantly between the high-density (n � n0) and low-
density regions, as shown in the Boltzmann transport theory
[10,11]:

σ

σ0
=

{
1, n � n0;
1
2

(
n2

n2
0
+ n4

n4
0

)
, n < n0.

(1)

Here σ0 = n0e2τ0/m denotes the conductivity at the Dirac
point and τ0 = h̄3/(mniṼ 2

0 ) is the elastic scattering time,
where Ṽ0 and ni denote, respectively, the scattering strength
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and the impurity concentration of Gaussian white-noise dis-
order. This formula shows that the diffusive conductivity of
classical charge transport is highly sensitive to the spin-orbit
coupling strength in the low-density region.

When the Fermi energy is close to the band edge, however,
due to long-wavelength potential fluctuation, previous inten-
sive studies in the absence of spin-orbit coupling confirmed
that multiple scatterings off many impurity centers play a
dominated role to determine the localized density of states and
invalidate the coherent-potential approximation [18–23]. As is
well known, the presence of spin-orbit coupling which breaks
the spin rotational invariance, can transform the orthogonal
universality classes into symplectic universality classes and
makes the two-dimensional electronic states resilient to the
localization [24–27]. The mobility edge even locates below
the unperturbed band edge in the weak disorder regime.
Therefore, how is the diffusive conductivity in spin-orbit
coupled systems influenced by the multiple scattering is still
an open question. In particular, it is of much interest whether
the conductivity in this case still shows unconventional char-
acteristic features of the spin-orbit coupling.

A recent work by using the T -matrix approximation pre-
dicted plateaus of the conductivity in the ultra-low-density
case of the Rashba system [12]. The T -matrix approximation
only takes into account multiple scatterings off every single
impurity center, but neglects those off a set of impurities.
As a result, it cannot reproduce [12,28] the disorder-induced
smooth tail of the density of states near the band edges, which
is, however, a basic experimental fact [29,30]. Therefore,
a more reasonable nonperturbative method is necessary to
inspect the novel transport behavior resulting from multiple-
scattering events.

In this work, we simulate the diffusive conductivity of a
Rashba 2DES based on the Kubo formula combined with the
Green’s function obtained from the Lanczos recursive method
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in momentum space. For this purpose, our study focuses on
the strong spin-orbit coupling system in the presence of weak-
potential disorder, so that even the states a little below the
band edge are guaranteed to be extended [27]. Our numerical
method takes into account rigorously all multiple-scattering
events [31–33]. We find that in the low-density region the
multiple-scattering events lead to an unconventional power-
law dependence of the conductivity σ on the electron density:

σ

σ0
= A

(
n

n0

)ν

, (2)

with A a coefficient independent of the electron density. Our
simulation displays that the exponent can be fitted as

ν = −1.56α/t + 1.66, (3)

which does not depend on the electron density or disorder
strength, but is linearly related to the spin-orbit strength α.

Preliminaries. In the calculation, we simulate the real ma-
terial by a nearest-neighbor tight-binding (TB) Hamiltonian
on a square lattice,

H = 2t
∑

i

c†
iσ ′ciσ ′ −

∑
〈i, j〉σ ′σ ′′

Viσ ′, jσ ′′c†
iσ ′c jσ ′′ + H.c. (4)

Here

Vi,i+x̂ = 1

2

(
t α

−α t

)
, Vi,i+ŷ = 1

2

(
t −iα

−iα t

)
, (5)

c†
iσ ′ (ciσ ′ ) denotes the creation (annihilation) operator of an

electron on site i with spin σ ′, t stands for the nearest-neighbor
hopping energy, and α is the spin-orbit strength. As we have
noted, the existence of metallic phase in the low-density 2DES
demands a strong spin-orbit coupling [24–27]. Therefore,
this study focuses on the regime 0.1 � α/t � 0.4. The upper
boundary α/t = 0.4 in fact represents a very strong spin-orbit
coupling in real materials [34–36] (see below).

Since in a number of systems, such as semiconductor het-
erostructures [15,37,38], LaAlO3/SrTiO3 interface [34,39],
surface of Rashba semiconductors bismuth tellurohalides
[35,36,40,41], and surface alloys [42–44], both the carrier
density (Fermi energy) and the Rashba spin-orbit coupling
can be tuned, experimental verification of Eqs. (2) and (3) is
feasible.

In order to simplify the calculation of the conductivity
in the Kubo formula, in particular the vertex correction to
the conductivity bubble diagram, and to compare with the
previous results Eq. (1), we map the TB model into the
effective continuum Hamiltonian in the low-energy regime as

H (k) = h̄2k2

2m
+ αR(σ × k) · ẑ, (6)

with t = h̄2/ma2 and α = αR/a. Here a denotes the lattice
constant, k = (kx, ky) is the two-dimensional (2D) wave vec-
tor, ẑ is a unit vector perpendicular to the 2D plane, and σ is
the vector of Pauli matrices. The details of the transformation
between the TB model and continuum model are presented
in the Supplemental Material [45] (see also Refs. [46–48]
therein). Such a mapping also results in the equality α/t =
kRa, where kR = mαR/h̄2 corresponds to the Rashba wave
vector which measures the momentum splitting of the two

Rashba subbands. To give a specific example, we consider
the surfaces of bismuth tellurohalides [35,49], where kR ≈
0.05 Å−1, a ≈ 4.3 Å and hence α ≈ 0.22t . The two models
match well in the low-density regime when the spin-orbit
coupling α � 0.4t . Beyond this value, the mapping from
the TB model to the continuum one gradually fails to work
because one can no longer obtain the same dispersions even at
very low energies [45].

The eigenfunctions and eigenvalues of H (k) [Eq. (6)] are
given respectively by |ks〉 = 1√

2
(i, seiθk )T and Eks = h̄2k2

2m +
sαR|k|, where s = ±1 denotes the helicity and θk is defined
by θk = arctan(ky/kx ). The two Rashba bands Eks are approx-
imately linear in the vicinity of the Dirac point k = 0, where
they touch each other. The matrix

Uk = 1√
2

(
i i

eiθk −eiθk

)
(7)

implements the rotation from the spin to the eigenstate basis.
In addition, the disorder is modeled by the Gaussian white
noise, V (r)V (r′) = nimpṼ 2

0 δ(r − r′ ), where · · · stands for
averaging over disorder realizations.

Within the linear response the longitudinal diffusive con-
ductivity at zero temperature is given by the Kubo formula
[50,51]

σ (E ) = σ RA(E ) − σ RR(E ), (8)

where

σ RA(E ) = e2h̄

2π

∫
d2k

(2π )2
Tr[GR(k, E )vxGA(k, E )ṽx], (9)

σ RR(E ) = e2h̄

2π

∫
d2k

(2π )2
ReTr[GR(k, E )vxGR(k, E )ṽx]. (10)

Here Tr represents the trace over helicity s, and

G(k, E ) =
(

g(k+, E ) 0
0 g(k−, E )

)
(11)

denotes the Green’s function of the disordered system
in the band-eigenstate basis with g(ks, E ) = (E − Eks −
	[ks, E )]−1 and 	(ks, E ) the self-energy. A, R indicate ad-
vanced or retarded Green’s functions. The x component of the
velocity operator in the band-eigenstate basis is given by vx =
1
h̄ ( h̄2kx

m + αR cos θσz + αR sin θσy), and the vertex function ṽx

can be obtained from the Bethe-Salpeter equation ṽx(k) =
vx(k) + nimpṼ 2

0

∫ d2p
4π2 U †

k UpG(p, E )ṽx(p)G(p, E )U †
p Uk.

Based on symmetry arguments, it is verified that ṽx has
the same matrix structure as vx, so that the vertex function
can be solved as

ṽx = 1

h̄

(
h̄2kx

m
+ α̃R cos θσz + α̃R sin θσy

)
, (12)

where

α̃R = αR + nimpṼ 2
0 I1

1 − nimpṼ 2
0 I2

,

I1 =
∫

d2k
4π2

h̄2k

4m
(g+g+ − g−g−),

I2 =
∫

d2k
4π2

1

4
(g+g+ + g−g− + g+g− + g−g−) (13)
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with g± = g(k±, E ). Thus the conductivity can be calculated
by Eqs. (8)–(13) with exactly calculated Green’s functions.

Numerical methods. In our numerical simulation, the
Green’s functions g(ks, E ) of the disordered systems are cal-
culated using the well-developed Lanczos recursive method
[31–33] with the TB model. We generate the disor-
der by random on-site energies with zero mean and V 2

0
variance, where V0 = Ṽ0/a2, without loss of generality.
The impurity concentration is ni = 1/a2 in the following
calculation.

The numerical evaluation requires a nonzero broadening
(resolution) parameter η � δE , where δE is the mean level
spacing [52]. In order to obtain a high-energy resolution
and also be free from the finite-size errors, we consider a
large enough square lattice of size Lx × Ly = 8000 × 8000
[53] with periodic boundary conditions in both the x and y
directions. Thus, a small artificial parameter η = 0.001t is
used to simulate the infinitesimal imaginary energy in our sim-
ulations. Remarkably, based on the standard Dyson equation
	(ks, E ) = g−1

0 (ks, E ) − g−1(ks, E ), we find the self-energy
function is independent of both k and s.

Before addressing the transport behaviors, here we show
the advantage of our exact simulation to the self-energy
over other methods employed in previous studies on the
Rashba system, including the Born approximation [10,11],
self-consistent Born approximation (SCBA) [11], and the
T -matrix approximation [12,28]. The self-energy produced
by the latter two methods are qualitatively similar [12,28],
so we do not show the result of the T -matrix approximation.
In Fig. 1 we plot the numerical real and imaginary parts of
self-energy as functions of the Fermi energy for different
disorder strengths, and compare them with the results of
Born approximation and SCBA. As expected, the Born and
SCBA results both work well in the high-density regime,
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FIG. 1. The self-energy function versus energy of the system
with the spin-orbit strength α/t = 0.2 and the disorder strength:
(a) �0 = ER/32, (b) �0 = ER/16, (c) �0 = ER/8, and (d) �0 = ER/4.
The results calculated from the exact numerical simulation (blue),
the SCBA (red), and the Born approximation (green) are displayed
for comparison. Gray lines locate at the Dirac point E = 0t and band
edge of the pure system E = −ER = −0.02t . Here �0 = h̄/2τ0 =
V 2

0 /2t denotes the disorder-induced band broadening.

where the perturbation approaches are successful due to the
presence of a small parameter expansion in terms of 1/kF l .
Here kF and l denote the Fermi momentum and mean free
path, respectively. On the contrary, as E approaches the band
edge, kF l � 1 brings the system into a totally different regime
where the contribution from multiple scattering events plays
an important role and the conventional perturbative methods
are invalid [51,54]. The effects of multiple scattering involv-
ing many impurity centers on the self-energy, for instance
the crossing wigwam self-energy diagrams sketched in the
Supplemental Material [45], are out of the regime of previous
perturbation theories. However, they become important in
the strong-scattering case (kF l � 1). Thus, the results of the
Born approximation and SCBA gradually deviate from our
nonperturbative results including all the multiple-scattering
contributions. Specifically, the tail of the imaginary part of the
SCBA self-energy vanishes sharply, contrary to the smooth
tail in our numerical simulation. Such a sharp reduction
behavior may lead to some unphysical behaviors, for example,
the upturn of mobility near the band edge in the previous
SCBA calculation [55].

It is worthwhile to note that the character of the imaginary
part of the self-energy obtained by our simulation is consistent
with the smooth tail of the experimental density of states of
the Rashba-type spin-split states near the conduction band
bottom, such as the surface state of Bi/Ag(111) [29,30].
This agreement indicates that our simulation indeed gives a
reasonable account for the multiple-scattering effects in the
low-density region of Rashba systems.

Spin-orbit related power-law conductivity. The qualitative
difference between the self-energies produced by our sim-
ulation and by the SCBA or the T -matrix approximation
suggests that our method may demonstrate some transport
behaviors unprecedented in previous theoretical researches of
2D Rashba systems [10–12]. Our simulation supports this
speculation by finding an emergent power-law dependence
of the diffusive conductivity on the carrier density [Eq. (2)]
in the low-density region. The curves of the conductivity
versus the carrier density n for different spin-orbit strengths
(α/t = 0.2, 0.3, and 0.4) are displayed in the log-log plots in
Figs. 2(a)–2(c), compared with the Boltzmann analytical for-
mula [Eq. (1)]. In the low-density regime our results deviate
significantly from the analytical solution [55].

In the multiple-scattering dominated regime the curves of
ln(σ/σ0) vs ln(n/n0) in Figs. 2(a)–2(c) are mostly linear.
This observation inspires us to use the power-law formula
[Eq. (2)] to fit the results, where the exponent ν is inde-
pendent of the carrier density. As shown in Figs. 2(a)–2(c),
the curves corresponding to different disorder strengths
�0/ER = 1/4, 1/8, 1/16, and 1/32 (defined in the caption
of Fig. 1) for a fixed spin-orbit strength are parallel to each
other in the linear regime. This means that the exponent
ν in Eq. (2) is also independent of the random disorder
strength.

When presenting the values of ν for different spin-orbit
strengths in the same plot, Fig. 2(d), we find that the exponent
ν is linearly dependent on the spin-orbit strength α. Fitting
the data, we obtain the linear scaling Eq. (3). This equation
indicates that the charge transport influenced by complicated
multiple-scattering processes also shows the characteristic
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FIG. 2. ln(σ/σ0) vs ln(n/n0) for spin-orbit strength (a) α = 0.2t ,
(b) α = 0.3t , and (c) α = 0.4t . In the low-density regime, the numer-
ical results are described by Eq. (2) with ν independent of both the
carrier density and random disorder strength. The Boltzmann analyt-
ical result is plotted for comparison. (d) The slope ν of ln(σ/σ0)
vs ln(n/n0) in the low-density region as a function of spin-orbit
strength α/t .

feature of the spin-orbit coupling. The deep understanding for
the underlying physical mechanism leading to this unconven-
tional relation is not clear at the present stage and is beyond
the scope of our numerical study. More theoretical efforts are
called for in the future. Here we just numerically find this
relation, which can be experimentally tested as a transport
indicator of multiple scattering.

Another remark here is that the factor A in Eq. (2) is
dependent on both the disorder and spin-orbit strengths. The
A-V0 curves for different spin-orbit strengths are shown in the
Supplemental Material [45]. In the considered regime 0.1t �
α � 0.4t we can approximately fit A as A(α/t,V0/t ) =
0.47(α/t )−1.43V0/t + 0.03(α/t )−1.1.

Conclusion and discussion. In conclusion, we showed
that the multiple-scattering events play an important role
in determining both the quasiparticle and transport proper-
ties of the low-density Rashba 2DES. Our simulations un-
cover a power-law dependence of the dc conductivity on
the electron density with the exponent linearly dependent
on the spin-orbit strength but independent of the disorder
strength.

To provide some clues in understanding the unconventional
transport behavior described by Eqs. (2) and (3), we stress
here the relevance of the σ RR term [Eq. (10)]. Theoretically,
this term can be neglected in the Boltzmann regime where
the σ RA term yields a quantitatively similar result to Eq. (1).
Hence, when the non-Boltzmann power-law conductivity
emerges instead of the Boltzmann formula, the σ RR term is
anticipated to be important. In Fig. 3, the contributions from
the σ RR and σ RA terms are shown separately for the case of
α/t = 0.2. In combination with Fig. 2(a), we find that the
power law [Eq. (2)] holds perfectly when σ RR � σ RA/3.

So far we have assumed scalar (spin-independent)
short-range scatterers. Here we note that the short-range
disorder can be classified into three types according to the spin
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σ 0

n/n0

Γ0=ER/4

n/n0

FIG. 3. Different contributions to the conductivity as a function
of the charge density for systems with α/t = 0.2 and disorder
strengths (a) �0 = ER/32, (b) �0 = ER/16, (c) �0 = ER/8, and
(d) �0 = ER/4.

dependence: Spin independent, spin conserved and spin
flipped. In the Supplemental Material [45] we display
ln(σ/σ0) versus ln(n/n0) in the cases of the other two types
of disorder: The spin-conserved disorder V1 = V1(r)σz and
the spin-flipped disorder V2 = V 2(r) · σ. Here V 2(r) is an in-
plane vector, and both V1(r) and V 2(r) are random with zero
mean and V 2

0 variance. In these two cases the exponent of the
conductivity power law can be fitted respectively by the linear
relations ν = −1.36α/t + 1.41 and ν = −2.42α/t + 1.83.
Therefore, we find that the linear relation in Eq. (3) holds for
each type of short-range disorder, with the slope and intercept
constants depending on the type of disorder. We also find
that Eq. (3) is independent of the impurity concentration
[45].

Lastly, we suggest some experimental systems where our
simulation results can be potentially observed. First, attention
can be paid to the Rashba 2DESs in heterostructures, due
to the tunability of the Rashba effect by an external electric
field, such as the one formed at the LaAlO3/SrTiO3 inter-
face [34,39] where kR ≈ 0.08 Å−1 (a ≈ 2.5 Å, α/t ≈ 0.2) in
the absence of the external electric field. In addition, the
Rashba 2DESs in the heterostructures formed by n-type polar
semiconductors bismuth tellurohalides are also compelling
candidates [38]. Meanwhile, the Rashba 2DESs appearing
near the surface of bismuth tellurohalides [35,36,40,41] can
be considered for experiment as well, such as that in the
surface states of bismuth tellurohalides [35,49] which arises
in the bulk-gap region with kR ≈ 0.05 Å−1 (a ≈ 4.3 Å, α/t ≈
0.22). Furthermore, it has been reported that in the surface
alloy BixPbySb1−x−y/Ag(111) [42–44] the Fermi energy and
Rashba splitting can be independently tuned through the con-
centrations x and y. This system may be another good platform
to verify our finding.
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