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Instabilities of the normal state in current-biased narrow superconducting strips

Yury N. Ovchinnikov,1,2 Andrey A. Varlamov,3 Gregory J. Kimmel,4 and Andreas Glatz 4,5

1Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow District 142432, Russia
2Max-Plank Institute for Physics of Complex Systems, 01187 Dresden, Germany

3Istituto Superconduttori, Materiali Innovativi e Dispositivi (CNR-SPIN), Viale del Politecnico 1, 00133 Rome, Italy
4Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, USA

5Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

(Received 3 May 2019; revised manuscript received 5 November 2019; published 24 January 2020)

We study the current-voltage characteristic of narrow superconducting strips in the gapless regime near the
critical temperature in the framework of the Ginzburg-Landau model. Our focus is on its instabilities occurring
at high current biases. The latter are consequences of dynamical states with periodic phase-slip events in space
and time. We analyze their structure and derive the value of the reentrance current at the onset of the instability
of the normal state. It is expressed in terms of the kinetic coefficient of the time-dependent Ginzburg-Landau
equation and calculated numerically.
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I. INTRODUCTION

Narrow superconducting strips are the subject of great in-
terest for superconducting quantum electronic devices. Their
dissipationless state is very subtle and sensitive to thermal
and quantum fluctuations, which can easily flip the super-
conducting strip into the resistive state, making them ideal
candidates for very sensitive detectors. Various models have
been proposed to explain the appearance of nonzero resistance
in these strips and its temperature dependence in the region of
low temperatures (for a review, see Refs. [1,2]).

The role of thermal fluctuations responsible for energy
dissipation, when current flows through a one-dimensional
superconductor, was considered for the first time in the sem-
inal paper by Langer and Ambegaokar [3] over 50 years ago.
Note that a realistic “one-dimensional superconductor” is,
in fact, a narrow strip with finite width W , much less than
the Ginzburg-Landau coherence length ξ (τ ) ∝ (kBTcτ )−1/2,
where τ = 1 − T/Tc is the reduced temperature and Tc is
the critical temperature. The solution of the Ginzburg-Landau
equation for a superconducting wire with applied current j
shows that a homogeneous superconducting state, i.e., a finite,
but current-dependent, global order parameter, exists up to a
certain critical current jc = 0.0312(W/ξ ) jdp, where jdp is the
depairing current at which superconductivity is completely
suppressed. For currents jc < j < jdp thin superconducting
wires [4–12] or superfluids [13–15] are in the resistive state,
where the mechanism for dissipation is related to phase-slip
processes, i.e., the processes of vortices/flux quanta crossing
the strip [16]. These phase-slip events occur randomly [17].
If j is even larger than jdp, the system is in the normal state,
but fluctuating local superconducting regions can temporally
appear.

In contrast to the case of increasing current, which destroys
superconductivity, here we are investigating the situation
when the applied current is initially so large that the super-
conducting strip is in the normal state despite the temperature

being below the critical temperature. Starting from this initial
state, the current j in the narrow superconducting strip is then
lowered, such that superconductivity is reestablished in the
system. Our goal is to study the corresponding current-voltage
(I-V ) characteristics. In particular, we derive the value of the
reentrance current density jr at the onset of the instability
of the normal state when the applied current decreases. Our
consideration is valid in the gapless region at temperatures
slightly below the critical one, where the time-dependent
Ginzburg-Landau equation holds.

It is important to note that the considered situation is
quite different from the problem of determining the critical
current at which the superconductor becomes normal (see
Refs. [18,19]). The authors of the cited papers, which are
based on the works by Gorkov [20] and Kulik [21], also
remark that the normal state remains stable for any finite value
of E when the applied current is lowered from the normal
state. However, the linear analysis used to study the instability
of the superconducting state is not suitable for analyzing the
instability of the normal state. In the latter case higher-order
stability analysis is required, which we address in this paper.
An important result we obtained is that the exponential growth
of superconducting fluctuations in a time interval determined
by j�t < h̄σ/[eξ (τ )] (σ is the normal conductivity) leads to
an instability of the normal state, which cannot be derived
from linear perturbation theory as fluctuations are captured
only beyond this mean-field approach. As a consequence,
the system enters a dynamical superconducting state at some
finite electric field. We will show below that there is a series
of the electric field values for which the normal state starts to
become unstable even for infinitely small perturbations.

In the following we describe the model and show the
analysis of the time-dependent Ginzburg-Landau equation
near the critical point of the normal state. We derive the
value of the reentrance current and order parameter values by
expanding the current up to second order in the electric field
at the critical points. Details of the calculations can be found
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in the Appendixes. We start with introducing the model in
the following section and then analyze the I-V characteristics
close to the depairing current and near the instability points of
the normal state.

II. MODEL

In this paper we approximate the narrow superconducting
strip of width W smaller than the superconducting coherence
length by a one-dimensional (1D) system, described by the
time-dependent Ginzburg-Landau equation (TDGLE). The
TDGLE can be written in dimensionless variables, without
accounting for thermal fluctuations and magnetic field (the
latter does not appear in the 1D model) in the form

u(∂t + iμ)ψ = ∂2
x ψ + (1 − |ψ |2)ψ, (1)

where ψ is the complex order parameter and μ is the scalar
potential. The reduced relaxation rate u controls the system’s
evolution in time and is given by

u = u0
π4

14ζ (3)

e2νD

σ
, (2)

where ν is the density of states at the Fermi surface, D is the
effective diffusion constant, ζ is the Riemann zeta function,
and u0 is a numerical constant [22,23].

The fixed total bias current consists of the sum of normal
( jn) and superconducting ( js) components and in turn can be
related to the space derivatives of the complex order parameter
and the scalar potential:

j = jn + js = −∂xμ − Im(ψ∗∂xψ ). (3)

Time and distance in Eqs. (1)–(3) are measured in units of t0 =
8πσλ2/c2 and scaled superconducting coherence length, ξ =
( πD

16kBTcτ
)
1/2

, respectively, with λ being the London penetration
depth. The electrical current density j is measured in units
of j0 = c�0/(8π2λ2ξ

√
2) (�0 is the flux quantum). In these

units the depairing current density reads jdp = 2/(3
√

3) j0 ≈
0.385 j0.

In what follows, it is useful to transform the scalar potential
to the form

μ = −Ex + μ̃, (4)

where E is the average electric field, which is equal to the
average normal current in dimensionless units, and μ̃ is the
spatially and temporally fluctuating part of μ.

Phase-slip events generate instabilities in the current-
voltage characteristics, which will be the main subject of
this work. In particular, these processes cause strong changes
in the electric field and order parameter at their space-time
coordinates. We take their effect into account explicitly by
introducing a corresponding effective electric potential μ̃ to
the TDGLE.

A phase-slip process in a strip of finite width is related
to the transfer of a magnetic vortex-antivortex pair across it.
Each such event is accompanied by the suppression of the
order parameter and, consequently, of the supercurrent. Due to
the conservation of the total current, a sharp peak in the
normal current appears at the time and space location of the
phase-slip event.

FIG. 1. Top: Illustration of phase-slip potential μps, Eq. (6), as
a function of time and space and finite-width δ functions (see text).
Bottom: Close-up of region Aps (left) and related jps (right) in the
same region.

In the large-current regime, j > jdp, superconductivity
should be destroyed by the applied current according to the
mean-field approximation, and the system is in the normal
state with Ohmic I-V characteristics. Yet the proximity to the
superconducting transition promotes superconducting fluctu-
ations in the system, which in our case will be realized by
(anti)“phase-slip” events (ps) which are periodic in time and
space. In this regime some domains of the strip will tempo-
rally become superconducting. The corresponding periods in
time and space are denoted as tps and xps, respectively. Outside
a very narrow region in the time-space plane one can rewrite
Eq. (1) in the form

u[∂t + ı(μ̃ + μps − Ex̃)]ψ = ∂2
x ψ + (1 − |ψ |2)ψ. (5)

Here x̃ = x mod (xps/2), and the associated potential

μps = Expstps

∑
k

δ(t − tpsk)
∑

m

m�

×
[

x − xps

(
m − 1

2

)]
�

[
xps

(
m + 1

2

)
− x

]
, (6)

where the quantization condition Expstps = 2π is implied.
The shape of μps is illustrated in Fig. 1 (top) with smoothed
step and δ functions. In the bottom panels μps and jps ∝
∂xμps are shown in the elementary space-time cell Aps ≡
] − xps/2; xps/2[×]0; tps[. The latter illustrates the mentioned
spikes in the normal current at the phase-slip event location.

These additional terms do not contribute to the electric
field inside Aps, only at its corners. The solution for the order
parameter ψ away from the corners of Aps follows from
Eq. (5) with periodic boundary conditions. The size of the
region with strong suppression of ψ is of order W × W tps/xps,
where W is the width of the strip.
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FIG. 2. Illustration of possible I-V (or I-E ) curves for different u. (a) The case of a reversible, nonhysteretic situation for small u below
some value u(1)

c . Actual “trajectories” are indicated by arrowheads and crosses. (b) Some intermediate-u regime where the realized I-V
hysteresis has a reentrance current equal to the critical current jc. Note that the reentrance current cannot be larger than jc since one would be
required to overcome a threshold (see text). (c) Above a value u(2)

c the reentrance current is lower than the critical current jc. The latter is the
realized hysteresis curve.

III. ANALYSIS OF THE I-V CHARACTERISTICS

Let us start with the analysis of Eqs. (1)–(4). Within the
unit cell Aps, one can write the Fourier ansatz for the complex
order parameter

ψ =
∞∑

k=−∞
AkeıQkx, (7)

where Q should be found from the local minimum conditions
of E for a given current density j.

Correspondingly, Eq. (3) acquires the form

j = E + Q
∑

k

k|Ak|2. (8)

Plugging ansatz (7) into Eq. (1) gives

−ıu

⎧⎨⎩Ex + ı

2

∑
k �=0

k−1[A1(2 − k)A∗
1−k + A∗

1(2 + k)Ak+1]eıkQx − ı

2

∑
l �=k �=1

k + l

k − l
A∗

kAle
−ı(k−l )Qx

⎫⎬⎭
∞∑

k=−∞
AkeıkQx

= (1 − |A1|2 − Q2)A1eıQx +
∑
k �=1

⎧⎨⎩(1 − 2|A1|2 − k2Q2)AkeıkQx − A2
1A∗

ke−ı(k−2)Qx

−
∑
l �=1

⎡⎣2A1AkA∗
l eı(k−l+1)Qx + A∗

1AkAle
ı(k+l−1)Qx +

∑
m �=1

AkAlA
∗
meı(k+l−m)Qx

⎤⎦⎫⎬⎭. (9)

Finally, accounting for the charge conservation condition div j = 0 and Eq. (3), one can find the expression for the fluctuating
part of the scalar potential μ̃ in terms of the introduced Fourier coefficients:

μ̃ = − ı

2

⎧⎨⎩∑
k �=0

eıkQx

k
[A1(2 − k)A∗

1−k + A∗
1Ak+1(2 + k)] −

∑
k �=l �=1

(
k + l

k − l

)
e−ı(k−l )QxA∗

kAl

⎫⎬⎭. (10)

In Eqs. (9) and (10) we explicitly separated the quan-
tity A1 since it is the dominant Fourier component in the
vicinity of the critical point j = jdp and plays an important
role throughout the paper. Fourier coefficients with |k| 	 1
quickly decay. All other coefficients in this region can be
found in the framework of perturbation theory.

Equation (9) enables us to obtain the I-V characteristics
in the complete domain of dynamical resistive states. The
above-mentioned minimization with respect to E allows us to
finds the shape of the I-V characteristics, which turns out to
be critically dependent on the value of the dynamic coefficient
u of the TDGLE.

One can expect to find three qualitatively different types of
I-V characteristics, which are illustrated in Fig. 2. The first
one [Fig. 2(a)] is reversible and could be realized when the
dynamic coefficient u is sufficiently small: u < u(1)

c , where

u(1)
c is the first critical value, which will be obtained below.

In the case where u > u(1)
c the I-V characteristics become

irreversible [Figs. 2(b) and 2(c)].
In the case of strong damping, when u exceeds the second

critical value u(2)
c , the transition to a finite value of the order

parameter happens at a smaller Ec value, which is where
we define the reentrance current jr . Calculation of the order
parameter value in the vicinity of the critical point (uE )c (see
below) shows that in practice only the latter scenario of the
I-V characteristics, shown in Fig. 2(c), is realized.

A. Current density close to the depairing current

Next, we consider the case when the bias current density
j is close to jdp. Equation (1) allows us to obtain the above-
mentioned value of jdp, which destroys superconductivity in
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the 1D channel, where the corresponding critical value of the
order parameter is ψc = √

2/3, and the value of the wave
vector (for E = 0) is Qc = 1/

√
3. Close to this point, Eq. (9)

is decomposed into two equations with {k, 2 − k}. A detailed
analysis of the Fourier coefficients and the determination of
the wave vector Q is presented in Appendix A. As a result
of these calculations we obtain the electric field dependence
of the current density to second order, close to its depairing
value, as

j = jdp + E − E2γ (u), (11)

where the calculation of the coefficient γ (u) of the quadratic
term as a function of u is a highly involved task but can be
performed exactly for any value of u and can be expressed as
a full derivative:

γ (u) = −3
√

3u2 ∂

∂u

[
π

2
√

2u

{
coth(π

√
2u) − 1

π
√

2u

}
×
(

1 − 6

u
+ 12

u2

)
+ π2

u

(
1 − 2

u

)
+ 4π4

15u

]
. (12)

The explicit expression of the full derivative is given in
Appendix A, Eq. (A8), and D is defined there in Eqs. (A1b)
and (A2). Note that the difference in braces behaves as
π

√
2u/3 for small u, such that all terms ∝u−2 under the

derivative cancel, and the complete expression is nonsingular
at u = 0. Therefore, in the limit of small u we keep the first
two terms of the sum in (12) and expand the remaining sum to
first order. This gives

γ (u) = 18√
3
u2

(
61

(1 + 2u)2
+ 7

(4 + 2u)2

+ 0.0486531 − 0.0185438u

)
. (13)

For large values of u (u 	 1), we obtain from Eq. (12) (using
the asymptotic expressions of the coth and sinh−2 terms)

γ (u) =
√

3

(
3π2 + 4π4

5
− 3

4
+ 3π

8

√
2u

)

− 27π

2

√
3

2u
− 3[

√
3
(
4π2 − 3

)
]

u

+
√

3

2

45π

u3/2
− 27

√
3

u2
+ O(ue−2π

√
2u). (14)

The u dependence of γ (u) and the domains of validity of its
approximations (13)-(14) are presented in Fig. 3. u ∼ 1 sep-
arates the regions where small-u and large-u approximations
work best; that is, the relative deviations from the exact curve
are both minimum at u = 1.061, less than 10−3.

Note that in Eqs. (11), (12), and (A4) a free structural
parameter Q is present. Its value can be estimated (in higher
orders of the perturbation theory over E ) from the condition
that the mean value of the electric field in the strip should be
extremal for each given value of the current.

 (u)

large-u expansion

small-u
expans.

2.5

2.0

1.5

1.0

0.5

100

0.50.0 1.0 1.5 2.0
lg[u+1]

FIG. 3. Half-exponential plot of the coefficient γ (u) [Eq. (12)]
of the E 2 term in our approximation for the current. Below u ∼
1 (vertical dashed line) the small-u approximation [Eq. (13)] is
indistinguishable from the exact curve, while for u � 1 the large-u
expression [Eq. (14)] is indistinguishable from the exact one.

B. Vicinity of the critical points

We now consider the vicinity of critical points (uE )c,
which are defined by the condition

∂ (uE )

∂Q
= 0. (15)

In this region we search for the solution to the nonlinear prob-
lem (9) by its linear expansion over eigenfunctions. Therefore,
the linearized condition of Eq. (15) can be understood as the
following eigenvalue problem:

L̂f = 0, (16)

where the form of the linear operator L̂ follows from Eq. (9):

L̂k,l =
{

Zk−1δl,1 + Zk−l (1 − δl,1) + (Q2k2 − 1)δk,l , k �= 1,

Z1−l − (1 − Q2)δl,1, k = 1,

(17)
with

Zk =
{

uE
kQ (−1)k, k �= 0,

0, k = 0.
(18)

The eigenvector f of Eq. (16) is related to the Fourier coeffi-
cients at the critical points in the following way:

{ fk} ↔ {Ak�2, A1, Ak�0}, (19)

where f1 ↔ A1.
The above eigenvalue problem has possibly an infinite

number of solutions {(uE )c, Qc}. Note that the quantities u

and E appear in the form of a product only at the critical point
[in contrast to Eqs. (11) and (12)]. The linearized equation
can be solved numerically, and the eight largest critical points
(defined by simultaneous eigenvalues of L̂ and L̂†) are listed in
Table I (the corresponding normalized eigenvectors of L̂ and
L̂† (here L̂† = L̂T �= L̂) are given in the Supplemental Material
[24]). Below we discuss the numerical solution in more detail.
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TABLE I. The eight largest simultaneous eigenvalue pairs
{(uE )c, Qc} of L̂ and L̂† for Nk = 24 Fourier components and cor-
responding solvability coefficients {λ1, λ2, λ3}. Labels ν correspond
to the intersection points shown in Fig. 4. The critical value ν = 3
(bold) corresponds to the transition point to the superconducting state
without a threshold - see text.

ν (uE )c Qc λ1 λ2 λ3

1 0.320 0.486 0.166 −0.503 −0.176
2 0.276 0.537 0.102 −0.230 −0.0787
3 0.21 0.335 −0.0478 0.128 0.030
4 0.189 0.359 0.0265 −0.0671 −0.0169
5 0.156 0.256 0.0133 −0.0345 −0.00570
6 0.144 0.27 0.0074 −0.0183 −0.00258
7 0.124 0.208 0.00348 −0.00922 −0.000833
8 0.116 0.217 0.00199 −0.00528 −0.000436

In order to get further insight into the behavior of the I-V
characteristic near these critical points and to determine the
type of instability point (first- or second-order transition), we
introduce the operator δL̂ as

δL̂k,l = δZk−1δl,1 + δZk−l (1 − δl,1), (20)

with

δZk =
{

u(E−Ec )
kQc

(−1)k, k �= 0,

0, k = 0
(21)

[compare to Eq. (18)].
Near a critical point (uE )c the solution for the Fourier

components in Eq. (9) in our linearized approximation can be
written in the form

λ(u, E ) fk, (22)

with the proper permutation of k indices as defined in Eq. (19)
and where the coefficient λ(u, E ) follows from the solvability
condition

|λ(u, E )|2(uλ1 + λ2) +
∑
k,k1

f̃ ∗
k (δL̂k,k1 ) fk1 = 0, (23a)

λ3u(E − Ec) =
∑
k,k1

f̃ ∗
k (δL̂k,k1 ) fk1 ; (23b)

see Appendix B for explicit expressions for all coefficients λi.
The expression for current density then takes the form

j = E + |λ(u, E )|2λ4Q (24)

(see Appendix B for definition of λ4).
We note that in the critical region only the coefficient of the

zero mode λ(u, E ) is dominant and all other coefficients are
small, scaling with |(uE )c − uE |/(uE )c.

Altogether, we can now analyze the critical point in detail.
Therefore, we calculate the critical points {(uE )c, Qc} numeri-
cally for truncated Fourier series with Nk components (indices
k ∈ {−Nk/2 + 1, . . . , Nk/2}). These are obtained as simulta-
neous solutions of the polynomial equations QNk det(L̂) = 0
and QNk+1∂Q det(L̂) = 0 of order 3Nk − 2 in Q. Figure 4
shows the solutions for Nk = 24 (order Q70), where the solid
lines represent the solutions of the individual equations. Note
that solving the linearized equations for the truncated Fourier
series leaves the largest critical values {(uE )c, Qc} invariant

FIG. 4. Solutions of the EV problem for polynomial equations
of order Q70 and (uE )24 for Nk = 24 Fourier components. Depicted
are the “zero” lines of the polynomials related to det(L̂) (blue)
and ∂Q det(L̂) (orange) and intersection points corresponding to
simultaneous eigenvalue pairs {(uE )c, Qc} of L̂ and L̂†. The eight
largest are marked by circles and labeled.

for sufficiently large Nk . For these solutions we can then
obtain the eigenvectors of L̂ and L̂†, which allows us then to
extract the behavior of the I-V characteristic near these critical
points by evaluation of the parameters λ1, λ2, and λ3. At those
points new branches appear, which can bring the system out
of the normal state. Using Eq. (23b) then defines the slope
of the linearized I-V characteristic. The numerical calculation
reveals that the critical value ν = 3, (uE )(3)

c ≈ 0.21, locally
has a negative slope among the eight largest (uE )c values,
indicating that a reentrance into the superconducting state
can happen without a threshold (second order) at a current
density jr. Figure 5 shows the behavior of the order parameter
� [Fig. 5(a)] and current j [Fig. 5(b)] at the critical points
as a function of uE . The connection of the critical points to
the envelop (defined by the I-V curve for increasing current)
is indicated by dotted lines (these cannot be realized phys-
ically). Practically, one can make a hysteresis “loop” in the
j-(uE ) diagram by starting in the superconducting state at
zero current, following up to jc upon increasing j, where the
system becomes resistive and eventually jumps into to normal
state (indicated by an arrow) following the normal I-V curve
(blue dashed curve). When decreasing j from the normal state,
one follows down the normal I-V line until the critical point
labeled ∗ (ν = 3), where the slope of I-V is negative, such that
fluctuating superconducting regions can grow and one jumps
back into the superconducting state at jr (indicated by an
arrow). Below this point the normal state is always unstable.
At all other (larger) critical points we cannot follow the critical
I-V (without a threshold) as the slope is positive (first order).
We note that the specific picture depends on the actual value of
u for the physical system under consideration; here we assume
a value of u of order 1.
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FIG. 5. Critical behavior of the (a) superconducting order pa-
rameter and (b) the I-V characteristics, where the eight largest
eigenvalues of operators L̂ and L̂† determine the intersection points
of the dynamical state and the linear Ohmic behavior, respectively.
The critical values should be compared to Fig. 4 and Table I and
are indicated by vertical dashed lines and numbered accordingly.
The asterisk (∗) indicates the transition to the superconducting state
without a threshold for critical value 3. The slope of the I-V curves
at the critical points is determined by Eq. (23b), indicated by solid
lines. The connection of the critical points to the envelop is indicated
by dotted lines (cannot be realized physically). Starting in the super-
conducting state at zero current, one follows up to jc upon increasing
j, where the system becomes resistive and eventually jumps into to
the normal state (indicated by an arrow) following the normal I-V
curve (blue dashed curve). When decreasing j from the normal state,
one follows down the normal I-V line until the critical point (∗),
where the slope of I-V is negative, such that fluctuating supercon-
ducting regions can grow, and one jumps back into the supercon-
ducting state at jr (indicated by an arrow). At all other critical points
we cannot follow the critical I-V (without a threshold) as the slope is
positive.

The numerical analysis demonstrates that probably, an
infinite set of solutions of the eigenvalue problem, Eq. (16),
exists.

In analogy to finding the (global) extremum of a function
on a finite support, where the boundary values also need to
be checked, here we should also study the properties of the
system close to the hypothetical “end points,” if they exist [in
addition to the (local) critical points defined by (16)]. By “end

points” we mean points of the surface {L̂ψ = 0} in Hilbert
space, where the value (uE ) reaches its maxima under the
condition

∞∑
k=2

k|Ak|2 + |A1|2 −
∞∑

k=1

k|A−k|2 = 0. (25)

Our numerical evaluation of this condition reveals that such
end points are irrelevant.

IV. CONCLUSIONS

We have investigated the I-V characteristic of a super-
conducting strip in the region near the depairing current jdp

and studied the instability points of the normal state as a
function of the current. Interestingly, one finds a degeneracy
in second-order perturbation theory in the electric field E by
solving the linearized equation at those critical points.

This degeneracy leads to the appearance of additional
branches splitting off from the Ohmic behavior seen in Fig. 5.
Numerically, we calculated the critical points and found that
the largest electric field value, at which the normal state first
becomes unstable upon decreasing the current, i.e., indicating
the possibility of a transition into the superconducting state
with a finite value of the order parameter amplitude [see
Fig. 5(a)], and a branch in the I-V appears, is at uE = 0.3199.
However, the slope of the branch is positive, indicating a first-
order transition, which we can follow only when increasing
the current (and eventually jumping back in the normal state).
Therefore, when increasing the current for fixed uE in the
intervals [0.21,0.275[and]0.275,0.319], a transition into the
superconducting state will happen at uE = 0.275 and uE =
0.319, respectively, before returning to the normal state at
larger currents. Alternatively, one could do a voltage sweep
slightly below these critical points while keeping the current
constant to explore the related instability branches. In fact, the
latter protocol was used on (NbN and Pb) superconducting
nanowires in Refs. [25,26], which further shows the relevance
of our results. For the NbN wires it is actually shown that the
voltage sweep reveals instability points above the reentrance
current (without threshold).

However, most importantly, we also found the smallest
value for uE when the normal state is always unstable to be
equal to 0.2095 (indicated by ∗ in Fig. 5), defining the reen-
trance current into the superconducting state. This hysteretic
I-V curve was measured in NbN nanowires in Ref. [26]. In
contrast to the evaluation of the critical current, the evaluation
of the reentrance current is significantly more involved.
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APPENDIX A: SOLUTION OF TDGLE NEAR THE DEPAIRING CURRENT

Close to the depairing current, Eq. (9) is decomposed into pairwise equations with {k,−k + 2}. For k �= 1⎛⎝[1 − 2|A1|2 − u|A1|2(k+1)
2(k−1) − k2Q2

] −A2
1

(
1 + u(3−k)

2(k−1)

)
−(A∗

1 )2
(
1 − u(k+1)

2(k−1)

) [
1 − 2|A1|2 + u|A1|2(3−k)

2(k−1) − (k − 2)2Q2
]
⎞⎠( Ak

A∗
−k+2

)
= uE (−1)k

(k − 1)Q

(−A1

A∗
1

)
.

Solving this system results in

Ak = − 1

D
uE (−1)kA1

(k − 1)Q
[1 − 3|A1|2 − (k − 2)2Q2], A∗

−k+2 = 1

D
uE (−1)kA∗

1

(k − 1)Q
[1 − 3|A1|2 − k2Q2], (A1a)

where

D =
{

1 − 2|A1|2 − [(k − 1)2 + 1]Q2 − u|A1|2
2

}2

−
[

2(k − 1)Q2 + u|A1|2
k − 1

]2

− |A1|4
[(

1 − u

2

)2

− u2

(k − 1)2

]
. (A1b)

In our approximation, we obtain from Eq. (A1b)

D = 1
9 (k − 1)2[(k − 1)2 + 2u] (A2)

when the electric field E is much smaller than its critical value Ec.
For k = 1, we obtain from Eq. (9) the following equation for the quantity |A1|2 in second-order perturbation theory:

∞∑
k=2

u

k − 1

{
E (−1)k

Q
(Ak − A2−k ) − A1

2
[(k + 1)|Ak|2 − (3 − k)|Ak−2|2] + (k − 1)A∗

1AkA2−k

}

= A1(1 − |A1|2 − Q2) − 2
∞∑

k=2

{A1(|Ak|2 + |A2−k|2) + A∗
1AkA2−k}. (A3)

Using second-order perturbation theory, we can set

|A1| =
√

2

3
+ βE2, Q = 1√

3
+ αE2, (A4)

where {α, β} are constants. Inserting expression (A1a) for the coefficients Ak and expressions (A4) into Eq. (A3), we get the
following relation for those constants:

2√
3

(α +
√

2β ) =
∞∑

k=2

{(
4u3

3D2
− 6u2

(k − 1)2D

)(
1 + (k − 1)2 + 1

3

)
− 4u2

D2

[
1

(k − 1)2

(
1 + (k − 1)2 + 1

3

)2

+ 4

3

]}
. (A5)

One important property of Eqs. (A3) and (A4) should be mentioned: in second-order perturbation theory, defined by Eq. (A5),
α and β appear only in combination, α + √

2β. This implies that corrections to the quantities |A1| and Q appear separately in
perturbation theory only in order O(E4)

In the same approximation we obtain from Eq. (8)

j = 2

3
√

3
+ E + 2

3
E2(α +

√
2β ) + 4u2E2

√
3

∞∑
k=0

1

(k − 1)2D2

[(
1 + (k − 1)2 + 1

3

)2

− 4

3
(k − 1)2 − 4

9
(k − 1)4

]
. (A6)

Inserting Eq. (A5) into expression (A6) yields an expression for the current j in second-order perturbation theory in E :

j = 2

3
√

3
+ E − E2γ (u), (A7a)

γ (u) = 2u2

√
9

∞∑
k=0

1

D2
[(k − 1)4 + 12(k − 1)2 + 48]. (A7b)

The expression for γ (u) in (A7b) can be evaluated explicitly as

γ (u) =
√

3

40u2
(32π4u2 − 30(u − 6)2 + 15π

√
2[(u − 18)u + 60]

√
u coth(π

√
2u)

+ 30π2u{4(u − 4) + [(u − 6)u + 12] sinh−2(π
√

2u)}), (A8)

which can be written as the full derivative equation (12).
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APPENDIX B: SOLVABILITY AND I-V AT THE CRITICAL POINTS

The coefficients in the solvability equations, (23a) and (23b), are given by

λ1 = 1

2

∑
k

f̃ ∗
k

⎡⎣∑
l �=0

1

l

⎧⎨⎩[ f 2
1 (2 − l ) f ∗

−l+1 + | f1|2(2 + l ) fl+1
]
δk,l+1 +

∑
m �=1

[ f1(2 − l ) f ∗
−l+1 fm + f ∗

1 (2 + l ) fl+1 fm]δk,l+m

⎫⎬⎭
− 1

2

∑
l,m �=1
l �=m

l + m

l − m

⎛⎝ f1 f ∗
l fmδk,−l+m+1 +

∑
n �=1

f ∗
l fm fnδk,m+n−l

⎞⎠
⎤⎥⎦, (B1a)

λ2 =
∑

k

f̃ ∗
k

{
f1| f1|2δk,1 + 2| f1|2(1 − δk,1) fk

+
∑
l �=1

⎡⎣2
∑
m �=1

⎛⎝ f1 fl f ∗
mδk,l−m+1 +

∑
n �=1

fl f ∗
m fnδk,l−m+n

⎞⎠+ f 2
1 f ∗

l δk,2−l +
∑
m �=1

f ∗
1 fl fmδk,l+m−1

⎤⎦⎫⎬⎭, (B1b)

λ3 = 1

Qc

⎡⎣∑
k �=k1

(−1)k−k1

k − k1
f̃ ∗
k fk1

⎤⎦, (B1c)

λ4 =
∞∑

k=−∞
k| fk|2. (B1d)

Here f̃k are the components of the normalized eigenvector of the transposed operator L̂† = L̂T.
Next, we define the function

�(uE ) ≡
∑
k,k1

f̃ ∗
k (δL̂k,k1 ) fk1 = −|λ(u, E )|2(uλ1 + λ2),

where fk are the components of the eigenvector of L̂ and f̃k are the components of the normalized eigenvector of the operator
L̂†. The function δL̂k,k1 is defined in Eq. (20). Equation (9) in the vicinity of each critical point {(uE )c, Qc} can then be rewritten
in the form

|λ(u, E )|2(uλ1 + λ2) + λ3u(E − Ec) = 0, (B2)

where the coefficients are given in (B1a)–(B1c). Therefore,

|λ(u, E )|2 = − �(uE )

uλ1 + λ2
.

The functions �(uE ) corresponding to the eight largest critical values (uE )c are given by

�(1)(uE ) = 0.0564 − 0.176uE ,

�(2)(uE ) = 0.0217 − 0.0787uE ,

�(3)(uE) = −0.00629 + 0.03uE,

�(4)(uE ) = 0.00319 − 0.0169uE ,

�(5)(uE ) = 0.000888 − 0.00570uE ,

�(6)(uE ) = 0.000372 − 0.00258uE ,

�(7)(uE ) = 0.000103 − 0.000833uE ,

�(8)(uE ) = 0.0000507 − 0.000436uE .

Note the signs of the coefficients in �(3) at the critical point without threshold (bold). For completeness, we reproduce the
corresponding eigenvectors fk and f̃k in the Supplemental Material [24].
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APPENDIX C: DERIVATION OF FOURIER EQUATIONS

Here we will obtain the equation system for the Fourier coefficients Ak . From Eq. (9) we obtain for k0 �= 1

Zk0−1A1 +
∑
k �=1

Zk0−kAk + u

2(k0 − 1)
[A2

1(3 − k0)A∗
2−k0

+ |A1|2(k0 + 1)Ak0 ]

+
∑

k /∈{0,k0−1}

u

2k
[A1(2 − k)Ak0−kA∗

1−k + (2 + k)A∗
1Ak+1Ak0−k]

+ u

2

∑
k �={1,2−k0}

⎡⎣2k + k0 − 1

k0 − 1
A1A∗

kAk0+k−1 −
∑

q/∈{1,k}

k + q

k − q
A∗

kAqAk0+k−q

⎤⎦
= (

1 − 2|A1|2 − Q2k2
0

)
Ak0 − 2

∑
k /∈{1,k0}

A1AkA∗
k−k0+1

−
∑

k �=1,q/∈{1,k−K0+1}
AkA∗

qAk0+q−k − A2
1A∗

2−k0
− A∗

1

∑
k /∈{0,k0}

AkAk0−k+1. (C1)

From Eq. (9) we obtain a separate equation for k0 = 1:

∑
k �=1

⎡⎣Z1−kAk − u(k + 1)

2(k − 1)
(A1|Ak|2 − A∗

1AkA2−k ) − u

2

∑
q/∈{1,k}

A∗
kAqAk+1−q

⎤⎦
= A1(1 − |A1|2 − Q2) −

∑
k �=1

⎡⎣2A1|Ak|2 + A∗
1AkA2−k +

∑
q/∈{1,k}

AkA∗
qA1+q−k

⎤⎦. (C2)

Next, we introduce the operator M̂k0 for k0 �= 1 as

M̂k0 =
⎛⎝(1 − 2|A1|2 − Q2k2

0

)− u|A1|2(k0+1)
2(k0−1) −A2

1

(
1 + u(3−k0 )

2(k0−1)

)
−(A∗

0 )2
(
1 − u(k0+1)

2(k0−1)

)
1 − 2|A1|2 − Q2(k0 − 2)2 + u|A1|2(3−k0 )

2(k0−1)

⎞⎠. (C3)

With this, Eq. (1) can be written in the form

M̂k0

(
Ak0

A∗
2−k0

)
=
(

Zk0−1A1 +∑
k �=1 Zk0−kAk

Z1−k0 A∗
1 +∑

k �=1 Zk−k0 A∗
2−k

)
+
(

�k0

�∗
2−k0

)
, (C4)

where �k0 is

�k0 = u

2

∑
k /∈{1,k0}

⎡⎣2k + k0 − 1

k0 − 1
A1A∗

kAk0+k−1 −
∑

q/∈{1,k}

k + q

k − q
A∗

kAqAk0+k−q

⎤⎦
+

∑
k /∈{1,k0}

k

2(k − 1)
[A2(3 − k)A∗

2−k + A∗
2(1 + k)Ak]Ak0−k+1

+2
∑

k /∈{1,k0}
A1AkA∗

k−k0+1 +
∑

k �=1,q/∈{1,k−k0+1}
AkA∗

qAk0+q−k + A∗
1

∑
k /∈{0,k0}

AkAk0−k+1. (C5)

Note that a free parameter Q appears in Eqs. (C2) and (C4). The value of this parameter is found with the extremal condition for
the electric field E for a given current density j.
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