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Ising superconductors: Interplay of magnetic field, triplet channels, and disorder
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We study the superconducting instability in disordered noncentrosymmetric monolayers with intrinsic Ising
spin-orbit coupling (SOC) subjected to an in-plane Zeeman magnetic field. The pairing interaction contains the
channels allowed by crystal symmetry, such that, in general, the pairing state is a mixture of singlet and triplet
Cooper pairs. The joint action of the SOC and Zeeman field selects a specific in-plane d-vector triplet component
to couple with the singlets, which gains robustness against disorder through the coupling. The out-of-plane
d-vector component, that in the clean case is immune to both the Zeeman field and SOC, is obliterated by
a very small impurity scattering rate. We formulate the quasiclassical theory of Ising superconductors and
solve the linearized Eilenberger equations to obtain the pair-breaking equations that determine the Zeeman
field: temperature dependence of the continuous superconducting transition. Our discussion emphasizes how
the Zeeman field, SOC, and disorder affect the different superconducting order parameters, and we show how
the spin fields inevitably induce odd-frequency pairing correlations.

DOI: 10.1103/PhysRevB.101.014510

I. INTRODUCTION

During the last decade, two-dimensional (2D) supercon-
ductivity became an active field of research. The renewed
interest in the field is a result of technological advances
in the fabrication of quasi-2D devices fabricated from the
Van der Waals materials [1]. Such systems are comprised
of one-to-several atomically thin monolayers exfoliated on
substrates in a nearly perfect atomic registry [2–9]. Many
of the properties of the bulk persist down to the monolayer
limit. Both bulk and monolayer NbSe2 are charge density
wave metallic superconductors [2,5]. Yet, due to the different
effective dimensionality, monolayers react differently to the
applied fields [9–11]. Besides, monolayers containing atoms
of more than one kind often lack the inversion center, although
the bulk may have such a center [12].

In this paper, we consider noncentrosymmetric supercon-
ducting monolayers having in-plane mirror σh symmetry, re-
ferred to as Ising superconductors. The Bloch states |k↑〉 (|k↓
〉) are labeled by the in-plane momentum k and up (down) out-
of-plane spin polarization. Thanks to the time-reversal sym-
metry T the state |k↑〉 is degenerate with |−k↓〉. The states
|k↓〉 and |−k↑〉 are similarly degenerate. When the lattice
breaks parity, the spin-orbit coupling (SOC) causes the spin
splitting of Bloch states with the typical energy difference
of �SO. Therefore, the probability amplitude of the Cooper
pair to be in a state |k↑; −k↓〉 differs from the corresponding
amplitude for the state |k↓; −k↑〉. Here we denote the anti-
symmetrized two-electron states as |α; β〉 = |α〉|β〉 − |β〉|α〉.
Alternatively, the parity-even singlets and parity-odd triplets
|�s,t〉 ∝ |k ↑; −k ↓〉 ∓ |k ↓; −k ↑〉 coexist [13,14].

Apart from inducing singlet-triplet mixing, the SOC makes
the superconducting state robust against the in-plane Zeeman
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field B. Because of the negligible thickness of the monolayer,
orbital limiting effects do not contribute, and the only way
a magnetic field can affect the electronic states is via the
paramagnetic effect [10]. In many instances, the SOC induced
splitting greatly exceeds the superconducting gap and may
be tuned [9,11]. The large SOC enhances the critical in-
plane field Bc beyond the Pauli limit. This has been studied
theoretically [14–19] and demonstrated experimentally [2–9].

The pair-breaking equation that determines the dependence
of Bc on the temperature T and the disorder in supercon-
ductors with finite SOC was first obtained in Ref. [15]. The
critical field of the superconductor with two spin-polarized
valleys with SOC which is comparable to the Fermi energy
EF, �SO � EF, has been studied in Ref. [20]. Subsequently,
the effect of the intervalley scattering on Bc in the opposite
limit �SO � EF has been discussed [17]. In this case, the
pair-breaking equation is identical to the one in Ref. [15].

Here, we extend the results of Ref. [15] to include the
interaction in the triplet channel. We find that weak disorder
obliterates the |�t〉 triplets that in the clean case are immune to
both SOC and the Zeeman field. We show, however, that the
Zeeman field induces a different triplet component |�tB〉 ∝
|k,↑; −k,↑〉 + |k,↓; −k,↓〉 that couples to the singlets |�s〉.
The properties of |�tB〉 and |�t〉 triplets are drastically dif-
ferent. The latter depends on the difference in the density
of states of spin-split bands and decouples from the singlets
and Zeeman field in the �SO � EF limit [14]. In contrast, the
field-induced triplets |�tB〉 are present regardless of the band
structure details, and survive the moderate disorder scattering.
We show that even weak interaction of electrons comprising
|�tB〉 triplets affect decisively and yet differently the phase
boundary Bc(T ) of clean and dirty Ising superconductors.

We study the combined effect of the triplet correlations,
nonmagnetic disorder, and Fermi-surface topology on Bc. The
|�tB〉 triplets play a much more prominent role than the |�t〉
in the response of the clean or dirty Ising superconductor
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to the in-plane field. Furthermore, Bc is significantly lower
in materials with simply connected Fermi surface hosting
symmetry-protected zeros of SOC compared with materials
with multipocket Fermi surfaces without such zeros. Indeed,
close to the zeros of SOC the superconductivity is not pro-
tected against the Zeeman field. We argue that Fermi-surface
connectivity qualitatively modifies the effect of the disorder
on Bc.

Basic definitions. The lack of inversion symmetry causes a
spin splitting of the bands at a Bloch wave vector k that can be
described by an effective k-dependent SOC vector γ (k). The
normal-state Hamiltonian acquires the form [21]

H0 =
∑
k,σ

ξ (k)c†
kσ ckσ +

∑
k,σ,σ ′

γ (k) · σσσ ′ c†
kσ ckσ ′ . (1)

Here, σ = (σx, σy, σz ) is the vector of Pauli matrices. The
states are spin polarized along γ (k) and the magnitude of
the splitting is 2|γ (k)|. As the spin polarization flips under
the time-reversal operation, the SOC vector is axial γ (k) =
−γ (−k). Also, since the spins remain unaffected by the
inversion operation, the SOC splitting requires the breaking
of parity.

In the superconducting state, the presence of γ (k) in-
evitably leads to parity-mixed pairing correlations [13]. Tra-
ditionally, the resulting superconducting order parameters are
organized in matrix form in spin space as [22–24]

�(k) = [ψ (k)σ0 + d(k) · σ]iσy. (2)

Here, ψ (k) = ψ (−k) parametrizes singlets, and d(k) =
−d(−k) parametrizes triplets. The singlet (triplet) order pa-
rameter ψ (k) [d(k)] is even (odd) in momentum k to comply
with the Pauli principle. The triplet order parameter d(k) has
three components and is usually referred to as the d vector.
According to Eq. (2), the most general superconducting state
vector can be written as

|�(k)〉 = [−dx(k) + idy(k)]|k ↑; −k ↑〉
+ [dx(k) + idy(k)]|k ↓; −k ↓〉
+ [ψ (k) + dz(k)]|k ↑; −k ↓〉
+ [−ψ (k) + dz(k)]|k ↓; −k ↑〉. (3)

In the Ising superconductor, parity-even singlets |�s〉 de-
scribed by finite ψ and zero d-vector coexists with the parity-
odd triplets |�t〉 characterized by ψ (k) = 0 and finite d(k) ∝
γ (k) [13,14,24].

Let us assume for simplicity that �SO � EF so that we
can consider each of the order parameters separately [12,14].
A Zeeman field limits singlet order parameters paramagnet-
ically. In contrast, triplets with d(k) ⊥ B remain immune to
the Zeeman field [24–26]. The s-wave singlets are robust
against the disorder [27]. In purely triplet superconductors, the
d-vector averages over the Fermi surface to zero, 〈d(k)〉 = 0.
This causes the disorder to suppress triplet order parameters
[28]. Table I summarizes how SOC, Zeeman fields, and the
disorder affect singlet and triplet superconductors.

In this work we uncover the prominent role of a different
kind of triplet, namely |�tB〉, discussed in the Introduction.
It is characterized by d(k) ∝ iγ (k) × B. In what follows, we

TABLE I. Effect of SOC, Zeeman field, and disorder on the sin-
glet and triplet superconducting order parameters (OPs) considered
separately. dim(k) denotes the immune triplet component.

OP SOC Zeeman field Disorder

s-wave ψ0 Immune Pauli limited Immune
d(k) dim(k) ‖ γ (k) dim(k) ⊥ B Suppressed

analyze the dramatic modification of Table I brought about by
field-induced triplets |�tB〉 as summarized in Table II.

The paper is outlined as follows. In Sec. II we present the
Hamiltonian and derive the Gor’kov equations; in Sec. III we
introduce the quasiclassical theory and the Eilenberger equa-
tions; in Sec. IV we solve the linearized Eilenberger equations
for the clean case and discuss several technical details that
serve as basis to discuss the disordered case; in Sec. V we
solve the disordered case and analyze the main results of this
paper. The main result is followed by a discussion in Sec. VI
and concluding remarks in Sec. VII. The Appendices provide
further technical details.

II. MODEL

A. The Hamiltonian

Our model Hamiltonian has two parts: H = H0 + Hint ,
where H0 describes the normal state and Hint contains the
interaction channels giving rise to superconductivity. We treat
the scalar impurities via a self-energy approach within the
self-consistent Born approximation. Then, the discussion can
be carried out in momentum space since the role of the
disorder is to essentially broaden the spectral function around
the Fermi level. However, for completeness, we introduce the
Hamiltonian in real space, and in the next section we Fourier
transform to momentum space. The real-space normal-state
Hamiltonian is

H0 =
∑
σ,σ ′

∫
dr

∫
dr′ ψ†

σ (r)hσσ ′ (r − r′)ψσ ′ (r′), (4)

where hσσ ′ (r − r′) contains the single-particle processes

hσσ ′ (r − r′) = K̂δ(r − r′)δσσ ′ + γ (r − r′) · σσσ ′

− B · σσσ ′ δ(r − r′)

+
∑

j

u(r − R j )δ(r − r′)δσσ ′ . (5)

Here, ψ†
σ (r) [ψσ (r)] is the field operator creating (annihilat-

ing) a particle with spin projection σ at position r. The spin
indices {σ, σ ′} run over the values {↑,↓}. The kinetic term
K̂ = [−(2m)−1∇2 − μ], where m is the mass of the electron
and μ is the chemical potential. We use units where the
magnetic Zeeman field B absorbs the usual prefactor with
the g factor and the Bohr magneton gμB/2. Because we are
interested in the case of in-plane Zeeman fields applied to
monolayers, orbital couplings to the charge are absent. The
SOC term γ (r − r′) arises due to the lack of an inversion
center in the unit cell and its Fourier transform

γ (k) =
∫

d (r − r′) e−ik·(r−r′ )γ (r − r′) (6)
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TABLE II. Summary of the effect of Ising SOC, Zeeman field, and the disorder on the superconducting order parameters. The first line
shows the parity-mixed subsystem {ψ0, ηy} displaying robustness against the disorder. See the table’s footnotes for a detailed description. The
last two lines refer to the two independent triplet subsystems {{ηx}, {ηy}}, which are obliterated by the disorder. The last column shows the case
for � → ∞ for which ψ0 decouples from ηy.

Order parameter Ising SOC In-plane B Disorder � � → ∞ (B,�SO �= 0)

{ψ0, ηy} {Immune, limited} {Limited, induced} Suppresseda {Immune, obliterated}
ηx Limited Limited Obliteratedb Obliterated
ηz Immune Immune Obliteratedc Obliterated

aThe disorder energy scale to substantially suppress the critical field is � ∼ �SO for γ̂ (k) = √
2 cos(3ϕk ), and � ∼ Tcs ln(�SO/Tcs ) for γ̂ (k) =

sgn[γ (k)]. In both cases, � � �SO is needed to suppress the critical field down to the Pauli limit BP, below which ψ0 is immune to the disorder.
The ηy triples are coupled to the ψ0 singlets, such that they vanish at the same critical field as ψ0. An infinite scattering rate is necessary to
decouple ηy from ψ0, which then obliterates ηy.
bThe disorder energy scale to obliterate � ∼ {[π/(2eγ )]2T 2

ct − (B2 + �2
so)} 1

2 . This is the most sensitive of all components because it suffers
from all spin fields and the disorder.
cThe disorder energy scale to obliterate ηz is � ∼ Tct < Tcs � �SO.

was introduced in Eq. (1). Without B and u, the Fourier
transform to momentum space of Eq. (4) yields Eq. (1). We
include the effect of disorder by a scalar impurity potential
u(r − R j ), where the impurity positions R j are randomly
distributed. Later, we treat the impurities in the self-consistent
Born approximation [29–31].

The superconducting interaction Hamiltonian in real space
can be written as

Hint = 1

2

∑
σi,σ

′
i

∫
dr

∫
dr′

×V σ1σ2
σ ′

1σ
′
2

(|r − r′|)ψ†
σ1

(r)ψ†
σ2

(r′)ψσ ′
2
(r′)ψσ ′

1
(r), (7)

where V σ1σ2
σ ′

1σ
′
2

(|r − r′|) is a pairing interaction that includes the
singlet and triplet pairing channels allowed by symmetry. It
has the properties

V σ1σ2
σ ′

1σ
′
2

(|r − r′|) = V σ2σ1
σ ′

2σ
′
1

(|r′ − r|) = [
V

σ ′
1σ

′
2

σ1σ2 (|r − r′|)]∗
. (8)

The first equality follows from the Pauli principle, and the
second from Hermiticity.

B. Gor’kov equations

We now present the Heisenberg equations of motion for the
Matsubara Green’s functions, which are called the Gor’kov
equations. For a detailed derivation, see Appendix A. We
wish to determine the normal and superconducting Matsubara
Gor’kov Green’s functions defined as

Gσσ ′ (r, r′; τ, τ ′) = −〈T ψσ (r, τ )ψ†
σ ′ (r′, τ ′)〉, (9)

Fσσ ′ (r, r′; τ, τ ′) = −〈T ψσ (r, τ )ψσ ′ (r′, τ ′)〉, (10)

F ∗
σσ ′ (r, r′; τ, τ ′) = 〈T ψ†

σ (r, τ ′)ψ†
σ ′ (r′, τ )〉. (11)

Here, ψσ (r, τ ) = eHτψσ (r)e−Hτ are the field operators in
the Heisenberg representation, where the real number τ = it
(h̄ = 1) is imaginary time. T is the time-ordering operator and
〈. . .〉 indicate thermal averages. We denote 2×2 matrices in
spin space by omitting the spin indices, such that Eq. (9) can
be expressed as

G =
[

G↑↑ G↑↓
G↓↑ G↓↓

]
, (12)

and similarly for F and F ∗.

We study the clean case first. The effects of the disorder
can then be easily added via a self-energy that is introduced
in Sec. III. We Fourier transform the Green’s functions to
momentum k and Matsubara frequencies ωn = (2n + 1)π/β,
where β = 1/T (kB = 1) as

G(k; ωn) =
∫

V
dR

∫ β

0
dτ e−k·R+iωnτ G(R; τ ), (13)

and similarly for F ∗(k; ωn) and F (k; ωn). These Green’s
functions have the properties (see Appendix A and Ref. [31])

G(k; ωn) = G†(k; −ωn), F (k; ωn) = −F T(−k; −ωn).

(14)

We perform a mean-field decoupling for the superconduct-
ing correlations and using V (k, k′) = ∫

dR e−i(k−k′ )·R V (|R|),
we obtain the self-consistent order parameters given by

�σ1σ2 (k) = T

V

∞∑
n=−∞

∑
k′

∑
σ ′

1σ
′
2

V σ1σ2
σ ′

1σ
′
2

(k, k′)Fσ ′
1σ

′
2
(k′; ωn). (15)

The order parameters (15) can be organized in matrix form as
in Eq. (2). From the equations of motion, we obtain the (left)
Gor’kov equation

Ĝ−1
n (k; ωn)Ĝ(k; ωn) − ÛBdG(k)Ĝ(k; ωn) = σ̂0, (16)

where the hats indicate 4×4 matrices. Each of the 4×4
matrices can be expressed in terms of 2×2 matrices as

Ĝ−1
n (k; ωn) =

[
G−1

n (k; ωn) 0

0 −GT,−1
n (−k; −ωn)

]
, (17)

where G−1
n (k; ωn) = [iωn − ξ (k)]σ0 − [γ (k) − B] · σ. Here,

ξ (k) is the dispersion measured form the chemical potential.
The other matrices are

Ĝ(k; ωn) =
[

G(k; ωn) F (k; ωn)

−F ∗(−k; ωn) −G∗(−k; ωn)

]
, (18)

ÛBdG(k) =
[

0 �(k)

�†(k) 0

]
. (19)
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Note that ÛBdG(k) = Û †
BdG(k), Ĝ(k; ωn) = Ĝ†(k; −ωn), and

[G−1
n (k; ωn)]† = G−1

n (k; −ωn). The latter follows from the
definition given above as well as γ∗(k) = γ (k) ensured by the
Hermiticity of the Hamiltonian (1). These properties allow us
to write the (right) Gor’kov equation

Ĝ(k; ωn)Ĝ−1
n (k; ωn) − Ĝ(k; ωn)ÛBdG(k) = σ̂0. (20)

The left (16) and right (20) Gor’kov equations provide the
starting point to develop the quasiclassical formalism.

III. QUASICLASSICAL THEORY

We investigate the interplay of energy scales related to
superconductivity {ψ (k), |d(k)|}, SOC �SO, Zeeman field B.
and elastic spin-conserving impurity scattering rate �. We
consider the regime

ψ (k), |d(k)|,
√

�2
SO + B2, � � EF, (21)

where EF is the Fermi energy. Based on this regime, we
develop the quasiclassical theory that concentrates on phe-
nomena close to the Fermi surface and eliminates the variables
responsible for physics far away from the Fermi surface such
as ξ (k) [29,32,33].

To obtain the quasiclassical Green’s functions that operate
at the Fermi surface at the Fermi momentum k = kF, we
follow the standard procedure (see Refs. [31,32]). We ma-
nipulate the left (16) and right (20) Gor’kov equations in the
following way: (i) multiply the left Gor’kov equation by σ̂z =
diag(σ0,−σ0) from the left; (ii) multiply the right Gor’kov
equation by σ̂z from the right; (iii) subtract the right Gor’kov
equation from the left Gor’kov equation; (iv) multiply the
result by σ̂z from the left, and identify the commutators. The
procedure yields

[(iωnσ̂0 − Ŝ(k) − ÛBdG(k))σ̂z, σ̂zĜ(k; ωn)] = 0, (22)

which eliminated the variable ξ (k) and the spin fields are
contained in

Ŝ(k) =
[

(γ (k) − B) · σ 0

0 (γ (k) + B) · σT

]
. (23)

We now introduce the dimensionless quasiclassical
Green’s functions

ĝ(kF, ωn) =
∮

dξk

π
iσ̂z Ĝ(k, ωn)

=
[

g(kF, ωn) −i f (kF, ωn)

−i f ∗(−kF, ωn) −g∗(−kF, ωn)

]
. (24)

Here,
∮

only takes contributions from the poles close to the
Fermi surface [29]. Henceforth, we simply write kF = k,
such that it is implicitly understood that ĝ(kF, ωn) only has
an angular dependence. The new 2×2 quasiclassical Green’s
functions have the properties g(k, ωn) = −g†(k,−ωn) and
f (k, ωn) = − f T(−k,−ωn), which are inherited from the
Gor’kov Green’s functions. Using Eqs. (24) and (22), we can

write the clean Eilenberger equation

[(iωnσ̂0 − Ŝ(k) − ÛBdG(k))σ̂z, ĝ(k; ωn)] = 0. (25)

The effect of scalar disorder in the self-consistent Born
approximation can be easily incorporated via the self-energy
[29,31]

[(iωnσ̂0 − �̂(ωn) − Ŝ(k) − ÛBdG(k))σ̂z, ĝ(k; ωn)] = 0, (26)

where

�̂(ωn) = −i�〈ĝ(k; ωn)〉FSσ̂z, � = 1

2τ
. (27)

Here, � is the scattering rate, τ is the scattering time, and
〈. . .〉FS → ∫ dϕk

2π
indicates the average over the Fermi surface,

where ϕk is the polar angle. We henceforth omit the subscript
“FS” for the angular Fermi-surface averages. The Eilenberger
equation needs to be supplied with the normalization condi-
tion ĝ2(k; ωn) = σ̂0, which then allows the determination of
ĝ(k; ωn). We describe the properties and normalization condi-
tion of the quasiclassical Green’s function in Appendix B.

IV. THE CLEAN CASE: LIMITING EFFECTS,
ODD-FREQUENCY PAIRING, AND
SINGLET-TRIPLET CONVERSION

Our objective is to find the critical field Bc(T,�SO, �)
that marks the continuous normal state: superconducting tran-
sition. The equation that determines the transition line is
referred to as a pair-breaking equation. In this section, we
consider the clean case � = 0. For this, we linearize the
Eilenberer equation (25) and solve for { f0(k; ωn), f (k; ωn)}.
We discuss the limiting effects of the spin fields on super-
conductivity, the difference between pairing correlations and
order parameters, and the self-consistency conditions coming
from the interaction channels. The reader familiar with these
concepts and the results of Ref. [19], and interested in the
effect of the disorder, may skip Sec. IV.

A. Linearized Eilenberger equations

We parametrize the Green’s functions in terms of
Pauli matrices as g(k; ωn) = g0(k; ωn)σ0 + g(k; ωn) · σ and
f (k; ωn) = [ f0(k; ωn)σ0 + f (k; ωn) · σ)]iσy. The (1,2) com-
ponent of the Eilenberger equation (26) gives the two coupled
equations

2ωn f0(k; ωn) = ψ (k)[g∗
0(−k; ωn) + g0(k; ωn)]

+ d(k) · [g(k; ωn) − g∗(−k; ωn)]

+ 2if (k; ωn) · B, (28)

2ωnf (k; ωn) = i[g(k; ωn) + g∗(−k; ωn)] × d(k)

+ψ (k)[g(k; ωn) − g∗(−k; ωn)]

+ [g∗
0(−k; ωn) + g0(k; ωn)]d(k)

+ 2i f0(k; ωn)B + 2γ (k) × f (k; ωn). (29)

More components of the Eilenberger matrix equations would
be needed if we went beyond linearization. We now linearize
the problem by retaining only the linear contribution (ν = 1)
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FIG. 1. Limiting effects quantified by the pair-breaking strength α of the joint action of SOC (blue arrow) and Zeeman field (red arrow)
on the singlet ψ (black circle) and triplet components {dx, dy, dz} (black arrows). (a) The singlet component is limited by the Zeeman field.
(b) The dx component is limited by both the Zeeman field and SOC. (c) The Zeeman field induces the dy, but SOC limits it. The singlet to
triplet conversion rate is proportional to the parallelepiped volume B × γ (k) · Imd(k). (d) The dz component is protected (α = 0) from the
spin fields. (e) Plot of the pair-breaking equation (34) with generic pair-breaking strength α. The orange curve with α real is sometimes called
the Abrikosov-Gor’kov pair-breaking equation and appears in the discussion about disorder.

of the expansion series

f0(k; ωn) =
∞∑

ν=1

f (ν)
0 (k; ωn). (30)

To maintain a clean notation, we omit the νth-order super-
script by rewriting f (1)

0 (k; ωn) → f0(k; ωn), f (1)(k; ωn) →
f (k; ωn), g0(k; ωn) = g∗0(−k; ωn) → 0, g(0)(k; ωn) =
g∗(0)(−k; ωn) → sgn(ωn) (see Appendix B), which then
yields

ωn f0(k; ωn) = sgn(ωn)ψ (k) + if (k; ωn) · B, (31)

ωnf (k; ωn) = sgn(ωn)d(k) + i f0(k; ωn)B + γ (k) × f (k; ωn).

(32)

These are the linearized Eilenberger equations that deter-
mine { f0(k; ωn), f (k; ωn)} in the presence of the spin fields
{γ (k), B}. In the next section, we discuss these equations
because they highlight important differences between the
pairing correlations { f0(k; ωn), f (k; ωn)} and the order pa-
rameters {ψ (k), d(k)}, and how the spin fields affect them.

B. Limiting of order parameters by spin fields

To discuss the central pair of equations (31) and (32), we
analyze the following situations: (i) paramagnetic limiting of
singlets; (ii) paramagnetic limiting of triplets; (iii) limiting of
triplets via SOC (see Fig. 1).

In case (i) we set d(k) = γ (k) = 0, which restores the
inversion symmetry to the Hamiltonian. An important point to
notice here is as follows: although the triplet order parameter
d(k) is absent, triplet-pairing correlations f (k; ωn) are neces-
sarily present at finite B. The solutions of Eqs. (31) and (32)
are

f0(ωn) = |ωn|
ω2

n + B2
ψ0, f (ωn) = i sgn(ωn)

ψ0

ω2
n + B2

B. (33)

The triplet correlations are odd in frequency because they are
induced by the Zeeman field and must comply with the Pauli
principle. Although the odd-frequency pairing correlations are
present, there is no interaction in the odd-frequency channel,
which means that there is no self-consistency condition for
f . Therefore, we only feed f0(ωn) to the self-consistency
condition (15), evaluate the Matsubara sum, which leads to

the pair-breaking equation describing paramagnetic limiting
of a singlet order parameter [10]

ln
T

Tc
+ Re ψ

(
1

2
+ α

2πT

)
− ψ

(
1

2

)
= 0, (34)

where Tc is the superconducting transition temperature, α =
i|B|, ψ (z) is the digamma function, ψ ( 1

2 ) = − ln 4eγ , and
γ = 0.577 . . . is the Euler-Mascheroni constant. The param-
eter α is the pair-breaking strength [34]. The transition line
Bc(T ) correspondent to Eq. (34) is plotted in Fig. 1(e). From
Eq. (34) we can extract the zero-temperature Pauli limit

BP =
(

π

2eγ

)
Tc = �0

2
, (35)

where �0 is the familiar zero-temperature BCS gap. BP is the
continuous phase transition Pauli limit that is lower than the
first-order Clogston limit by a factor of 1/

√
2 [35,36].

In case (ii), with ψ (k) = γ (k) = 0, Eq. (32) shows that
only d-vector components that share a parallel component to
B suffer paramagnetic limiting. In case (iii), we have ψ (k) =
B = 0, which shows that d-vector components perpendicular
to γ (k) suffer limiting by SOC. The pair-breaking equation by
SOC of such a perpendicular component is (see Appendix C)
given by Eq. (34) with α = i�SO, where �2

SO = 〈γ2(k)〉FS.
Therefore, SOC limits d-vector components that are perpen-
dicular to γ (k) in the same way a Zeeman field limits singlets.
One special case occurs when the d-vector satisfies d(k) ‖
γ (k) ⊥ B, which then escapes limiting by both B and γ (k)
[12,25,37]. Figure 1 summarizes how the joint effect of SOC
and the Zeeman field affect each superconducting component
when considered separately.

In this work, we consider Ising SOC γ (k) = �SOγ̂ (k)ẑ,
where γ̂ (k) is a basis function that has the symmetries of the
crystal and normalized according to

∫ 2π

0
dϕk
2π

γ̂ 2(k) = 1. Also,
without loss of generality, we fix the in-plane Zeeman field
B = Bx̂. In this case, dz(k) remains immune against both γ (k)
and B. On the other hand, the Zeeman field induces an imag-
inary dy(k), which is limited by SOC. Despite the limiting by
SOC, we will show that in the presence of the disorder, dy(k)
is robust, whereas dx(k) and dz(k) are obliterated.
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C. Solving the Eilenberger equations

With SOC and Zeeman field specified, we cast the lin-
earized Eilenberger equations (31) and (32) into matrix form⎡
⎢⎢⎣

ωn −iB 0 0
−iB ωn γ (k) 0

0 −γ (k) ωn 0
0 0 0 ωn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f0(k; ωn)
fx(k; ωn)
fy(k; ωn)
fz(k; ωn)

⎤
⎥⎥⎦ = sgn(ωn)

⎡
⎢⎢⎣

ψ (k)
dx(k)
dy(k)
dz(k)

⎤
⎥⎥⎦.

(36)

The structure of the linear system (36) reveals interesting
properties of the components { f0, f}. The fz component is
decoupled from all the others and remains unaffected by γ (k)
and B. The decoupling of fz stems from the built-in condition
�SO � EF in the quasiclassical formalism. If this condition
is relaxed, then fz couples to all other components and is in
this way indirectly affected by γ (k) and B. The f0 component
is directly affected by B. In contrast, fy is directly affected
by γ (k). The fx component can be thought of as a mediator
between f0 and fy since it couples them via B and γ (k). The
limiting of f0 by B and fy by γ (k) establishes an interesting
interplay of the { f0, fy} subsystem.

To find the order parameters {ψ (k), d(k)}, we first have
to solve the Eilenberger matrix (36) for the Green’s functions
{ f0, f}, and then supply self-consistency (15). In Appendix E,
we show that while the pairing correlations { f0, f} are com-
posed of two independent sub-systems { f0, fx, fy} and { fz},
the order parameters separate into three subsystems {dx(k)},
{ψ (k), dy(k)}, and {dz(k)}. Since the role of fx is to couple
f0 and fy and dx(k) remains uncoupled from the other order
parameters, we can safely set dx(k) = 0 to solve for { f0, fy}.
In fact, we will soon see that part of fx that mediates between
f0 and dy is an odd-frequency pairing correlation. With this,
we can eliminate fx in favor of f0 and fy in Eq. (36), and
obtain the subsystem[

ω2
n + B2 iBγ (k)

−iBγ (k) ω2
n + γ 2(k)

][
f0(k; ωn)
fy(k; ωn)

]
= |ωn|

[
ψ (k)
dy(k)

]
. (37)

The form of Eq. (37) shows that while B suppresses f0, γ (k)
suppresses fy. The two components convert between each
other through the joint presence of B and γ (k). The system
(37) has solution

f0(k; ωn) = 1

|ωn|
ψ (k)

(
ω2

n + γ 2(k)
) − iBγ (k)dy(k)

ω2
n + B2 + γ 2(k)

, (38)

fy(k; ωn) = 1

|ωn|
dy(k)

(
ω2

n + B2
) + iBγ (k)ψ (k)

ω2
n + B2 + γ 2(k)

. (39)

The singlet component f0(k; ωn) is even in k, while the triplet
component fy(k; ωn) is odd. Both components depend on the
singlet ψ (k) and triplet dy(k) order parameters.

Even if dx(k) = 0, the fx correlations are inevitably
present, with solution

fx(k; ωn) = sgn(ωn)
γ (k)dy(k) − iBψ (k)

ω2
n + B2 + γ 2(k)

. (40)

Note that fx(k; ωn) is even in k and odd in ωn.

D. Symmetry-pairing channels and self-consistency

Once we solved the linearized Eilenberger equations for
{ f0, f}, we use the self-consistent gap equation (15) to deter-
mine the order parameters for which there is a pairing channel.
To do this, we specify the pairing channels and relate Eq. (15)
to { f0, f}.

The pairing interaction can be written in terms of crystal-
symmetry-compatible singlet and triplet channels as

V σ1σ2
σ ′

1σ
′
2

(k, k′) =
∑
�, j

vs,�[τ̂� j (k)]σ1σ2 [τ̂� j (k
′)]∗σ ′

1σ
′
2

+
∑
�, j

vt,�[τ̂� j (k)]σ1σ2 [τ̂� j (k
′)]∗σ ′

1σ
′
2
. (41)

Here, τ̂� j (k) = ψ̂� j (k)iσy and τ̂� j (k) = d̂� j (k) · σ iσy, where
j labels the basis functions of an irreducible representation
(irrep) � of a point-symmetry group, and vs(t ),� < 0 are
attractive interactions in each channel. We address the case
of repulsion in the triplet channel in Appendix F. In prin-
ciple, additional parity-mixed channels that convert between
singlets and triplets are also allowed [38]. We do not include
parity-mixed interaction channels here to show that singlet-
triplet conversion occurs due to the presence of spin fields
alone.

For concreteness, here we discuss the Cooper channels of
the D3h point group lacking the inversion element. Yet, the
pair-breaking equations obtained in this paper are universal
to all point groups lacking inversion. We assume a dominant
singlet (s-wave) channel and write the singlet order parame-
ter in terms of the basis function ψA′

1
(k) = ψ0 ψ̂A′

1
(k) = ψ0.

Generally, ψ0 is a complex number, but here we choose ψ0 to
be real. We denote the superconducting transition temperature
associated to ψ0 as Tcs. For the triplet part, we are inter-
ested in the order parameter that gives a finite contribution
to the triple product B × γ (k) · Im d(k) that only keeps the
imaginary triplet component that is induced by B [19]. If
B = Bx̂, then dE ′′ (k) = iηyγ̂ (k)ŷ = dy(k)ŷ, where ηy is real.
Here, γ̂ (k) is the same basis function used for SOC γ (k) =
�SOγ̂ (k)ẑ. We denote the critical temperature associated to ηy

by Tct < Tcs.
Usually, when the superconductivity does not lower the

symmetry of the lattice, all the Cooper pairs transforming
trivially are simultaneously present in the condensate. In this
standard situation, the broken parity allows for singlets and
certain triplets to belong to the trivial irrep (A′

1). Hence, the
A′

1 singlets and triplets coexist [12,24]. We emphasize that
the in-plane Zeeman field lowers the symmetry, and selects
a specific two-dimensional irrep (E ′′) to mix with the one-
dimensional lattice-symmetric irrep (A′

1). In a previous paper,
we showed that while the singlet-triplet coupling within a
same irrep depends on the difference of the density of states
of the spin-split bands, the mixing of different irreps due to
the magnetic field is always present [19]. In this regard, the
interirrep parity mixing discussed here is more generic than
intrairrep mixing.

With the singlet (triplet) interactions vs(t) < 0 and the
density of states per spin at the Fermi level N0, we define the
singlet (triplet) coupling constants λs(t) = 2N0vs(t)/V . We can
express the dimensionless coupling constants in favor of the
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critical temperatures as (see Appendix D for details)

− 1

λs(t)
= ln

(
T

Tcs(t)

)
+ πT

nc∑
n=−nc−1

1

|ωn| , (42)

where the cutoff nc is determined by the characteristic energy
scale of the pairing interaction εc via (2nc + 1)π = εc/T .

Next, we express the self-consistency condition (15) in
terms of the critical temperatures and the quasiclassical
Green’s functions. To do this, we use the definition of the qua-
siclassical Green’s functions (24) and parametrize it according
to (B2). Also, given the quasiclassical regime, we write the
momentum sum as∑

k

→ N0

∫
dϕk

2π

∫ ∞

−∞
dξk. (43)

This allows us to obtain the self-consistency conditions for the
singlet and triplet order parameters, which are

ψ0 ln
T

Tcs
+ πT

∞∑
n=−∞

(
ψ0

|ωn| − 〈 f0(k; ωn)〉
)

= 0, (44)

dy(k) ln
T

Tct

+πT
∞∑

n=−∞

(
dy(k)

|ωn| − γ̂ (k)〈γ̂ (k′) fy(k′; ωn)〉
)

= 0. (45)

Here, the averages 〈. . . 〉 ≡ ∫ dϕk
2π

(. . .) are taken over the
Fermi surface. The argument of the Matsubara sum is now
convergent so that we can make nc → ∞. Together with the
Eilenberger equations, Eqs. (44) and (45) yield a coupled
system of equations for {ψ0, ηy}.

E. Pair-breaking equation

We now feed the solutions in Eqs. (38) and (39) to the
self-consistency conditions (44) and (45). Writing dy(k) =
iηyγ̂ (k) and γ (k) = �soγ̂ (k), the required Fermi surface
averages are

〈 f0(k; ωn)〉 = ψ0

|ωn|A1 + ηy

|ωn|
(

B

�so

)
A3, (46)

〈γ̂ (k) fy(k; ωn)〉 = iψ0

|ωn|
(

B

�so

)
A3 + iηy

|ωn|
(

ω2
n + B2

�2
so

)
A3,

(47)

where we define the dimensionless angular averages

A1(ωn, B,�SO) =
〈

ω2
n + γ 2(k)

ω2
n + B2 + γ 2(k)

〉
, (48)

A2(ωn, B,�SO) =
〈

ω2
n

ω2
n + B2 + γ 2(k)

〉
, (49)

A3(ωn, B,�SO) =
〈

γ 2(k)

ω2
n + B2 + γ 2(k)

〉
. (50)

The first two averages are related by (B2/ω2
n )A2 = 1 − A1.

We frequently prefer expressing A1 in favor of A2. With these
definitions, the linearized coupled self-consistency conditions

in Eqs. (44) and (45) give[
ln T

Tcs
+ Ss Sst

Sst ln T
Tct

+ St

][
ψ0

ηy

]
= 0, (51)

with the Matsubara sums S = S (T, B,�so) defined as

Ss = πT B2
∞∑

n=−∞

A2

|ωn|3 , (52)

Sst = πT
B

�so

∞∑
n=−∞

A3

|ωn| , (53)

St = πT
∞∑

n=−∞

(
1

|ωn| − ω2
n + B2

�2
so

A3

|ωn|
)

. (54)

It is useful to keep in mind that A3 is only present with SOC.

Structure of SOC

We now show that the specific choice of the SOC basis
function γ̂ (k) affects the shape of the transition line Bc(T ). To
illustrate this, we work with two basis function examples: (i)
γ̂ (k) = sgn[γ (k)], for which γ 2(k) → �2

SO and 〈γ̂ 2(k)〉 = 1.
This toy example is extensively used throughout the litera-
ture and in some situations gives qualitatively correct results
[17,19,39]; (ii) γ̂ (k) = √

2 cos(3ϕk ), which implements a
more realistic SOC for the point group D3h. The case (i) is
frequently used for multipocket Fermi surfaces, while case (ii)
is suitable for simply connected Fermi surfaces. We now solve
for both cases and contrast the solutions.

In case (i), the Matsubara sums can be carried out analyt-
ically. To simplify notations, we define the function involv-
ing the digamma function C(y) = Re ψ ( 1

2 + i y
2 ) − ψ ( 1

2 ) � 0.
With this, the pair-breaking equation is

det

⎡
⎣ln T

Tcs
+ B2

B2+�2
SO

C(y) B�SO

B2+�2
SO

C(y)

B�SO

B2+�2
SO

C(y) ln T
Tct

+ �2
SO

B2+�2
SO

C(y)

⎤
⎦ = 0,

(55)

with y =
√

B2 + �2
SO/(πT ). The Bc(T ) transition lines ob-

tained from Eq. (55) are plotted in Fig. 2(b). At finite SOC,
all curves diverge at low temperatures. Note that the singlet
and triplet components {ψ0, ηy} only couple through the joint
action of SOC and the Zeeman field.

In case (ii), the averages yield

A1 = 1 − B2√(
ω2

n + B2
)(

ω2
n + B2 + 2�2

so

) , (56)

A2 = ω2
n√(

ω2
n + B2

)(
ω2

n + B2 + 2�2
so

) , (57)

A3 = 1 −
√

ω2
n + B2

ω2
n + B2 + 2�2

so

. (58)

The sums are convergent and can be performed numerically.
In Fig. 2 we compare the transition lines Bc(T ) using

�SO/Tcs = 30 with γ̂ (k) = sgn[γ (k)] [dashed black lines in
Figs. 2(a) and 2(b)] and γ̂ (k) = √

2 cos(3ϕk ) [solid black
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FIG. 2. Transition lines Bc(T ) for clean Ising superconductors comparing (b) γ̂ (k) = sgn[γ (k)] and (c) γ̂ (k) = √
2 cos(3ϕk ). The clean

transition lines are very sensitive to Tct . The hexagonal insets show the schematic structure of the basis functions γ̂ (k) in the first Brillouin
zone.

lines in Figs. 2(a) and 2(c)]. The gray dashed-dotted line
indicates the pure Pauli limit [also see black line in Fig. 1(e)].
Figure 2(a) shows that the critical field is lower with γ̂ (k) =√

2 cos(3ϕk ). In Fig. 2(b), we illustrate the effect of an
attractive triplet channel with γ̂ (k) = sgn[γ (k)]. Similarly,
in Fig. 2(c) we show the case with γ̂ (k) = √

2 cos(3ϕk ). In
Sec. V we study how the disorder affects the transition lines
and the triplet channels.

The off-diagonal terms in Eq. (55) show the interplay of
SOC, the Zeeman field, and its role to induce equal-spin
triplets. According to Eq. (3), the Zeeman field converts
singlet Cooper pairs with a state vector

|�s〉 = ψ0(|k ↑; −k ↓〉 − |k ↓; −k ↑〉) (59)

to equal-spin triplet Cooper pairs

|�tB(k)〉 = iηyγ̂ (k)(|k ↑; −k ↑〉+|k ↓; −k ↓〉). (60)

This conversion can be understood by following the spin
realignment caused by B. The imaginary i is the total Berry
phase accumulated by the spins in the course of realignment
(see Ref. [19]).

V. EFFECT OF DISORDER

In this section, we address the effect of scalar impurity
scattering � on the components {ψ0, d(k)}. We show that
while the parity-mixed {ψ0, dy(k)} subsystem displays robust-
ness, the independent triplet dx(k) and dz(k) components are
obliterated.

A. Eilenberger equations

To solve the disordered case, we linearize the Eilen-
berger equation (26) using the same procedure used to obtain
Eqs. (31) and (32). This gives

ω̃n f0(k; ωn) = sgn(ωn)ψ̃ (ωn) + iB · f (k; ωn), (61)

ω̃nf (k; ωn) = sgn(ωn)d̃(k; ωn) + iB f0(k; ωn)

+ γ (k) × f (k; ωn), (62)

with the effective frequencies and order parameters defined as

ω̃n = ωn + sgn(ωn)�, (63)

ψ̃ (ωn) = ψ0 + �〈 f0(k; ωn)〉, (64)

d̃(k; ωn) = d(k) + �〈f (k; ωn)〉. (65)

These equations now also involve the angular Fermi-surface
averages of the pairing correlations {〈 f0(k; ωn)〉, 〈f (k; ωn)〉}.
These averages determine how the disorder affects the super-
conducting state. Larger averages imply more robustness. As
in the clean case, the dz(k) component decouples from all
the others. In the next sections, we obtain the pair-breaking
equation by the disorder for dz(k), and then study the coupled
subsystem ψ (k) + idy(k).

B. Solution for dz(k) and dx(k)

By taking the average of Eq. (62) we see that 〈 fz(k; ωn)〉 =
0. The solution for the fz component is then fz(k; ωn) =
dz(k)(|ωn| + �)−1. Substituting this in the self-consistency
equation for dz(k) analogous to (45), we obtain the pair-
breaking equation by the disorder, which is Eq. (34) with α =
� and Tc = Tct. This result is universal to all superconductors
where the Fermi-surface average of the order parameter van-
ishes [29,40]. An estimate for the critical scattering rate �c at
which the disorder obliterates dz(k) can be obtained from the
asymptotic behavior of the digamma function ψ (z) ≈ ln |z|
(z � 1), for which

�c =
(

π

2eγ

)
Tct. (66)

Therefore, although dz(k) remains immune to both SOC and
Zeeman field [see Fig. 1(d)], if Tct � Tcs and the quasiclassi-
cal regime �SO/EF � 1 is satisfied, dz(k) is obliterated by a
very small scattering rate � ∼ Tct. Beyond the quasiclassical
regime (�SO ∼ EF), dz(k) couples to the other order parame-
ters and is expected to be less sensitive to the disorder through
the coupling.

In Appendix E we show that the dx(k) component is even
more sensitive and has a pair-breaking strength of α = � +
i
√

B2 + �2
SO. This is very different for the ψ (k) + idy(k)

state, which is the subject of the next section.
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C. Solution for ψ(k) + idy(k)

1. Solving for the averages

The remaining three components { f0, fx, fy} are coupled. We rewrite the Eilenberger equations in Eqs. (61) and (62) in matrix
form as ⎡

⎣ ω̃n −iB 0
−iB ω̃n γ (k)

0 −γ (k) ω̃n

⎤
⎦

⎡
⎣ f0(k; ωn)

fx(k; ωn)
fy(k; ωn)

⎤
⎦ = sgn(ωn)

⎡
⎢⎣ ψ̃ (ωn)

d̃x(ωn)

d̃y(k; ωn)

⎤
⎥⎦. (67)

This equation has the same structure as in the clean case in Eq. (36). In Appendix E we solved for the dx(k) component,
and since only the odd-frequency part of fx(k) mediates between f0 and fy, it is safe to set dx(k) = 0. However, because of the
disorder, we have now a finite d̃x(ωn) = �〈 fx(k; ωn)〉. Solving Eq. (67) in terms of the averages, we obtain

f0(k; ωn) = ω̃2
n + γ 2(k)

|ω̃n|
[
ω̃2

n + B2 + γ 2(k)
] ψ̃ (ωn) + i sgn(ωn)B

ω̃2
n + B2 + γ 2(k)

d̃x(ωn) − iBγ (k)

|ω̃n|
[
ω̃2

n + B2 + γ 2(k)
] d̃y(k; ωn), (68)

fx(k; ωn) = i sgn(ωn)B

ω̃2
n + B2 + γ 2(k)

ψ̃ (ωn) + |ω̃n|
ω̃2

n + B2 + γ 2(k)
d̃x(ωn) − sgn(ωn)γ (k)

ω̃2
n + B2 + γ 2(k)

d̃y(k; ωn), (69)

fy(k; ωn) = iBγ (k)

|ω̃n|
[
ω̃2

n + B2 + γ 2(k)
] ψ̃ (ωn) + sgn(ωn)γ (k)

ω̃2
n + B2 + γ 2(k)

d̃x(ωn) +
(
ω̃2

n + B2
)

|ω̃n|
[
ω̃2

n + B2 + γ 2(k)
] d̃y(k; ωn). (70)

By taking the average of Eq. (70), we obtain 〈 fy(k; ωn)〉 = 0. This means that if the fy component were uncoupled from { f0, fx},
it would be affected by the disorder the same way fz is. One can already get a hint which components suffer from the disorder.
The { fy, fz} averages vanish, which shows the tendency of disorder to obliterate them. However, unlike fz, fy couples to ψ0 (via
fx), which provides robustness. By the same token, f0 is expected to lose some of its original robustness due to its coupling to

FIG. 3. The effect of the disorder on the singlet transition lines Bc(T ) with γ̂ (k) = √
2 cos(3ϕk ). (a) Singlets only with �SO/Tcs = 10.

(b) Singlets only with �SO/Tcs = 100. (c) The effect of an increasing triplet channel on disordered curves with �/Tcs = 1 and in (d) �/Tcs = 3.
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fy. We emphasize that all pairing correlations { f0, f} are inevitably present, even in the absence of a pairing interaction in the
triplet channels. Equation (69) shows us that the triplet correlations fx(k; ωn) are odd in frequency.

The finite average that enters the self-consistency for dy(k) is

〈γ̂ (k) fy(k; ωn)〉 = i
B

�SO

ψ0+�〈 f0〉
|ω̃n| Ã3 + sgn(ωn)

�

�SO
〈 fx〉Ã3 + iηy

ω̃2
n + B2

|ω̃n|�2
SO

Ã3. (71)

Here, all the averages Ã = A(ω̃n, B,�SO) are taken at the disorder-affected frequencies ω̃n. The average 〈γ̂ (k) fy(k; ωn)〉 is
determined once we know {〈 f0〉, 〈 fx〉}. Using the averages defined in Eqs. (48), (49), and (50), and taking the averages of
Eqs. (68), (69), and (70), we obtain the system of equations for the averages of {〈 f0〉, 〈 fx〉}, which reads as[

ω̃2
n − �|ω̃n|Ã1 −i sgn(ωn)�BÃ2

−i sgn(ωn)�BÃ2 ω̃2
n − �|ω̃n|Ã2

][〈 f0(k; ωn)〉
〈 fx(k; ωn)〉

]
=

[ |ω̃n|Ã1ψ0 + |ω̃n|Ã3
B

�so
ηy

i sgn(ωn)
(
Ã2Bψ0 − Ã3

ω̃2
n

�so
ηy

)
]
. (72)

We define the recurrent occurring quantity C′
l = Ãl�(B2 − |ωn||ω̃n|). For conciseness, we now eliminate Ã1 in favor of Ã2, such

that the solutions are

〈 f0(k; ωn)〉 = ω̃2
n − Ã2(�|ω̃n| + B2)

|ωn|ω̃2
n + C′

2

ψ0 + Ã3(B/�SO)ω̃2
n

|ωn|ω̃2
n + C′

2

ηy, (73)

〈 fx(k; ωn)〉 = i sgn(ωn)|ω̃n|BÃ2

|ωn|ω̃2
n + C′

2

ψ0 − i sgn(ωn)ω̃2
n(|ωn|/�SO)Ã3

|ωn|ω̃2
n + C′

2

ηy, (74)

〈γ̂ (k) fy(k; ωn)〉 = iÃ3(B/�SO)ω̃2
n

|ωn|ω̃2
n + C′

2

ψ0 + Ã3

�2
SO|ω̃n|

C′
2

(
ω̃2

n + B2
) + ω̃2

n

[
C′

3 + |ωn|
(
ω̃2

n + B2
)]

|ωn|ω̃2
n + C′

2

iηy. (75)

2. Self-consistency

We now use Eqs. (73) and (75) for the self-consistency equations (44) and (45). To maintain the same form as in Eq. (51), we
define the Matsubara sums S = S (T, B,�SO, �):

Ss = πT
∞∑

n=−∞

|ω̃n|
|ωn|

Ã2B2

|ωn|ω̃2
n + C′

2

, (76)

Sst = πT
∞∑

n=−∞

Ã3(B/�SO)ω̃2
n

|ωn|ω̃2
n + C′

2

, (77)

St = πT
∞∑

n=−∞

[
1

|ωn| − Ã3

�2
SO|ω̃n|

C′
2

(
ω̃2

n + B2
) + ω̃2

n

[
C′

3 + |ωn|
(
ω̃2

n + B2
)]

|ωn|ω̃2
n + C′

2

]
. (78)

These are the most general Matsubara sums in this paper. In the suitable limit, they allow us to obtain all pair-breaking equations
studied here. The values of the averages {Ã2, Ã3} change depending on the choice γ̂ (k) = sgn[γ (k)] or γ̂ (k) = √

2 cos(3ϕk ).
Both cases contain the relevant interplay of the different energy scales. However, the precise value of Bc(T,�SO, �) and the way
it is affected by the disorder depends on the specific choice of γ̂ (k). In the following, we choose the simpler γ̂ (k) = sgn[γ (k)]
case for the sake of discussion, and present the plots for the γ̂ (k) = √

2 cos(3ϕk ) case in Fig. 3.

D. Main results for the case γ̂ (k) = sgn[γ (k)]

Using γ̂ 2(k) = 1 in the averages (49) and (50), we rewrite
the Matsubara sums in Eqs. (76), (77), and (78) as

Ss = πT
∞∑

n=−∞

[
1

|ωn| − |ωn||ω̃n| + �2
SO

|ω̃n|
(
ω2

n + B2 + �2
SO

) − ��2
so

]
,

(79)

Sst = πT
∞∑

n=−∞

B�SO

|ω̃n|
(
ω2

n + B2 + �2
SO

) − ��2
SO

, (80)

St = πT
∞∑

n=−∞

[
1

|ωn| − ω2
n + B2

|ω̃n|
(
ω2

n + B2 + �2
SO

) − ��2
SO

]
.

(81)

Equation (79) is identical to the main result of Ref. [17]. The
three sums converge, but cannot be expressed in terms of the
digamma functions like in the clean case. Nonetheless, one
can easily implement these sums using Wolfram Mathematica
that can express these sums as a sum of roots of digamma
functions. Together with the self-consistency conditions (44)
and (45), the pair-breaking equation including the effect of
disorder is

det

[
ln T

Tcs
+ Ss Sst

Sst ln T
Tct

+ St

]
= 0. (82)

This equation generalizes Eq. (55) to the disordered case. The
special case of γ (k) = 0 is a good sanity test for which f0

decouples from fy and the resulting pair-breaking equation for
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FIG. 4. Effect of the disorder on the singlet transition lines Bc(T ) with γ̂ (k) = sgn[γ (k)]. The scattering rate undoes the enhancement
caused by SOC. In Fig. 3 we show the case for γ̂ (k) = √

2 cos(3ϕk ).

ψ0 reduces to Eq. (34), which is independent of the scattering
rate �.

Note that in the clean situation � = 0, Eqs. (79) and (81)
tell us that B limits singlet superconductivity in the same
functional way �SO limits the equal-spin triplet component.
The presence of a finite � changes this since the triplets
suffer more from the disorder than the singlets. Nonetheless,
the triplets gain robustness against the disorder through the
coupling with the singlets, which are favored by the SOC.

In the opposite limit with � → ∞, the conversion term
vanishes Sst = 0, so that the singlets decouple from the
triplets. Then, the disorder obliterates the triplets and the pair-
breaking equation for the singlets reduces to Eq. (34). This
shows that the role of spin-conserving impurity scattering �

is to undo the enhancement caused by SOC.
In Fig. 4 we show the case considering singlets only

with the pair-breaking equation given by ln(T/Tcs) + Ss = 0.
The plots are given for �SO/Tcs = 10 and �SO/Tcs = 100.
The same scattering rate color legend applies to both plots.
These plots illustrate that the disorder works against the
enhancement caused by SOC. For � � �SO, the transition
line saturates at the Pauli limit, at which the enhancement

effect due to SOC has been undone by the disorder. The latter
strongly affects the transition line when the scattering rate
becomes comparable to SOC.

The effect of an increasing attraction in the triplet channel
for �SO/Tcs = 100 is shown in Fig. 5. The left panel shows
the case when the scattering rate compares to the singlet
critical temperature. Usually, the signature of any triplets
would be obliterated in this regime [see Eq. (66)]. However,
the magnetic field induced triplet channel still yields a stark
enhancement of the critical field. Still, the more disordered
the system, the less relevant the triplet channel becomes. This
is illustrated in the right panel with �/Tcs = 3. Also, see the
Supplemental Material to see an animated version showing a
wider range of scattering rates [41].

E. Expansion close to Tcs

We can estimate the behavior of Bc(T ) close to Tcs by
considering Tcs � �SO and Tcs� � �2

SO. The expansion can
be written as

B2
c (T )

�2
SO

= C1(2)

(
1 − T

Tcs

)
, (83)

FIG. 5. Effect of the triplet channel on the disordered transition lines Bc(T ) with γ̂ (k) = sgn[γ (k)]. The cleaner the system, the greater
the enhancement of the critical field caused by the triplets. In Fig. 3 we show the case for γ̂ (k) = √

2 cos(3ϕk ). See the Supplemental Material
[41] for an animated version.
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where C1 is the coefficient for the case with γ̂ (k) =
sgn[γ (k)], and C2 corresponds to γ̂ (k) = √

2 cos(3ϕk ). Up to
logarithmic accuracy, the coefficients are

C1 =
[

ln
Tcs

Tct

ln �SO
Tcs

ln �SO
Tct

+ π�

4Tcs

]−1

, (84)

C2 =
⎛
⎝ π�2

SO

4Tcs
(√

�2 + 2�2
SO − �

) − 2 ln �SO
Tcs

ln �SO
Tct

⎞
⎠−1

. (85)

In both C1 and C2, the triplet critical temperature Tct only
occurs in the argument of logarithms, whereas the scattering
rate � does not. This implies that the larger �, the more
insensitive Bc(T ) becomes to Tct. This is illustrated in Fig. 5.
In the purely singlet case we can take the limit Tct → 0 to
obtain

C1 =
(

ln
�SO

Tcs
+ π�

4Tcs

)−1

, (86)

C2 = 4

π

Tcs

�2
SO

(√
�2 + 2�2

SO − �
)
. (87)

For the nodeless SOC, γ̂ (k) = sgn[γ (k)], Eq. (84) shows
that the characteristic scattering rate affecting the critical field
is � ∼ Tcs ln(�SO/Tcs). This model of SOC is appropriate
to the multipocket Fermi surfaces not crossing the high-
symmetry lines where SOC vanishes, such as considered in
Ref. [17]. In the systems with Fermi surfaces crossing the
high-symmetry lines, the SOC has nodes and can be modeled
in general as a series of odd Fourier harmonics consistent
with a particular lattice symmetry. The essential point is that
the typical scattering rates affecting the critical field in this
case � ∼ �SO is much larger than the corresponding scale
for the nodeless case. This scaling is evident from Eq. (87),
which was first obtained in Ref. [15] for the model γ̂ (k) =√

2 cos(3ϕk ). Indeed, at the nodes of SOC, the disorder has
no effect on the Cooper pairs. For a nodal SOC, the critical
field is lower, but more robust to the disorder as compared to
the nodeless SOC.

VI. DISCUSSION

We now relate our results to the wider context of the
field. We discuss the applicability of our results to monolayer
transition metal dichalcogenides (TMDs) and epitaxial het-
erostructures, comment on the nature of the phase transition
at low temperatures, and point out the ubiquitous presence of
odd-frequency pairing correlations.

A. Large SOC limit

The theory presented so far applies in the regime specified
by (21). It holds for any ratio �SO/Tcs(t). We now discuss
the applicability of our results to the case �SO � EF. In
this case, the band basis formulation is more appropriate
[16,21,42–44]. The necessity for a band basis formulation
arises when the densities of states of the spin-split bands differ
significantly [38]. In the extreme situation of strong SOC,
one of the spin-split electron (hole) bands may be pushed
above (below) EF resulting in valley-polarized bands. The

FIG. 6. Schematic illustration of the reorientation (conversion)
of the Cooper pairs by the in-plane Zeeman field. The size of the
arrows reflects the amplitude of the order parameters taking into
account the difference in densities of states of the bands. The Cooper
spin partners ↗ and ↘ are related by the symmetry σhT , which
ensures their degeneracy at opposite momenta in 2D. Schematically,
σhT ↗= σh ↙=↘. (a) Cooper partners are paired at the same
energy located at K and K ′ = T K . (b) At B = 0, Cooper pairs respect
time-reversal symmetry. (c) A finite B induces equal-spin triplets.

difference between the regime of weak and strong SOC is
the amount of admixture of the opposite spin, ηz triplets to
singlets in the ground state at B = 0. While at �SO � EF

the ground-state Cooper pairs are singlets, in the limiting
case of valley-polarized bands the ground-state correlations
are approximately half singlets and half ηz, i.e., opposite-spin
triplets.

We argue that despite this difference, the condition �SO �
EF may be relaxed without affecting our results qualitatively.
The reason for this is the independence of the singlet to
triplet conversion on any of the details of the band structure.
This point is illustrated in Fig. 6.1 At finite in-plane B, the
electron spins tilt yet the states with opposite momenta that
are paired remain degenerate thanks to the combined mirror
and time-reversal symmetry T σh [45]. As a result, the paired
states at finite field are combinations of singlets and ηy triplets.
In contrast, the ηz triplets do not participate in the conversion
process. Therefore, the ψ0 singlets to ηy triplets conversion
and the gained robustness of the Bc associated with it do not
depend on the amount of ηz triplets admixture in the ground
state. Alternatively, the reorientation of the spins in the upper
hole band shown in Fig. 6 occurs regardless of the occupation
of the lower bands. This in turn means that our results apply
qualitatively to the regime of valley-polarized bands, and even
more so to the intermediate regime �SO � EF.

B. Role of the orbital content in monolayer TMDs

Perhaps the most well-known Ising superconductors are
the monolayer TMDs such as NbSe2, gated MoS2, and all their
cousins [3,5,46,47]. In these materials, the critical in-plane
magnetic field exceeds the Pauli limit in Eq. (35) by several
times, which is associated with the enhancement caused by
Ising SOC.

An additional ingredient in these systems is that the effect
of the disorder on thermodynamic properties depends on the

1The illustration is a corrected version of a similar figure in
Ref. [18].
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orbital content of the Bloch bands. Specifically, the orthogo-
nality of the orbital wave functions of the bands reduces the
amount of the interband scattering. This is argued to be the
cause of insensitivity of the zero-field transition temperature
Tc in MgB2 to the disorder [48]. In the two-band supercon-
ductor such as MgB2, the interband scattering is expected
to suppress the critical temperature [49]. Yet, only a slight
decrease of Tc for dirtier systems has been reported. A similar
phenomenon has been recently reported in for NbSe2 [50].

Although we disregard the orbital structure of the elec-
tronic bands in this work, we now show how our results give
insight to the TMDs. For illustration purposes, we focus on
the situation in monolayer NbSe2. The conduction bands are
derived from the dxy, dx2−y2 , and dz2 Nb orbitals. The hole
pocket at � has the dz2 orbital character while the hole pockets
at K and K ′ are approximately made of orbital states dx2−y2 ±
idxy, respectively, with some admixture of dz2 states. The
amount of orbital admixture at the Fermi level scales with the
ratio of the band splitting at K (K ′) to EF [39]. The situation
with the large orbital admixture and �SO � EF pertinent to
MoS2 has been analyzed in [17]. In this case, the admixture
of dz2 orbitals to the conduction band makes the scattering
between the K and K ′ an allowed process. Naturally, such an
intervalley scattering results in the pair-breaking equation that
was obtained previously for the systems with trivial orbital
content [15].

For the case of valence bands in MoS2, or correspondingly
the conduction bands in NbSe2, the spin splitting is substantial
�SO � EF . The intervalley scattering still leads to the sup-
pression of Bc [20]. Realistically, however, the short-range
disorder needed for the large-momentum intervalley scatter-
ing is provided by scatterers normally found at high-symmetry
lattice positions. As the admixture of the symmetric dz2 orbital
at valence bands is negligible [39], the C3-symmetric scatter-
ing potential blocks the intervalley scattering [18]. In result,
in multiorbital systems, the actual Bc is higher than in the
systems with the trivial orbital content. Moreover, the only
effect on Bc comes from the intravalley scattering within the �

band. In this case, the amount of disorder needed to suppress
the Bc down to the Pauli limit is quite large, � ≈ �SO ∼ EF

[see (87) in agreement with numerical results of Ref. [18]].

C. Epitaxial heterostructures

Aside from the TMDs, another class of Ising superconduc-
tors are the epitaxial heterostructures, such as the interface
between a Pb film and a Si substrate [51–55]. In these systems,
the interface generates an Ising SOC component that satisfies
�SO � EF [6]. Depending on the interface, a Rashba compo-
nent can also occur that will tend to counteract the critical field
enhancement caused by the Ising component. The Eilenberger
equations (61) and (62) provide the suitable starting point to
study a general structure of SOC γ (k).

D. Nature of the phase transition at low temperatures

In the clean limit, it is known that in Pauli-limited su-
perconductors the continuous phase transition changes to
a first-order phase transition for temperatures T † � 0.56Tc

[56,57]. Below T † at high Zeeman fields, the superconducting
phase enters the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)

state, which is characterized by Cooper pairs with finite total
momentum. At finite SOC, the spin susceptibility of the super-
conducting state remains close to that of the normal state, such
that the normal to superconducting state transition remains
continuous for all temperatures and no FFLO phase stabilizes
[7,37,58,59]. Moreover, the residual spin susceptibility is even
more enhanced by scalar impurities [59], which also sup-
presses the FFLO state [60]. One might ask if the first-order
phase transition with the FFLO state reappears at sufficiently
low SOC and impurity scattering rates. Such an analysis
was carried out in Ref. [17] which found a small window
of reappearance for the SOC energy scale smaller than the
superconducting energy scales. This shows that it is generally
reasonable to assume continuous superconducting phase tran-
sitions in noncentrosymmetric Ising superconductors.

E. Ubiquitous odd-frequency pairing correlations

It is important to differentiate between pairing correlations
{ f0(k; ωn), f (k; ωn)} and order parameters {ψ (k), d(k)}. Or-
der parameters are part of the Hamiltonian, while pairing
correlations are not. Nonetheless, triplet-pairing correlations
f (k; ωn) are in general finite in the presence of spin fields and
affect response functions [24,61]. Even in BCS theory, a Zee-
man field populates f (k; ωn) [see Eq. (33)]. In noncentrosym-
metric superconductors, f (k; ωn) is inevitably populated by
SOC.

Moreover, odd-frequency pairing correlations that are his-
torically viewed as exotic pairing states are in fact ubiquitous
[62]. Any spin field, either SOC [Eqs. (C5) and (C6)] or
magnetic field [Eq. (33)] generates them [63]. While odd-
frequency pairing interactions possibly exist [62], they are
excluded from the pairing interaction (41) considered here.
This allowed us to set dx(k) = 0 because this would have to
be an odd-frequency order parameter.

While the conditions to realize odd-frequency pairing cor-
relations are usually related to multiband systems, layered
heterostructures, double quantum dots, double nanowires,
Josephson junctions, etc. [62,64–67], here we showed that the
spin fields also generate odd-frequency pairing correlations.

VII. CONCLUSION

In this paper, we first described the magnetic field induced
singlet Cooper pair to triplet conversion phenomena in the
clean case and then studied the effect of scalar impurities on
the superconducting transition at a finite magnetic field.

For the clean situation, we showed that any spin field gen-
erates odd-frequency pairing correlations. These correlations
mediate the coupling between pairing-correlation components
and strongly affect the response of the superconducting state
to external perturbations. This does not depend on whether
the odd-frequency correlations have corresponding supercon-
ducting order parameters. Furthermore, the magnetic field
couples the singlets from the lattice-symmetric irrep to triplets
transforming as a two-dimensional or, more generally, vector
irreps. It is this field-induced coupling that leads to the singlet-
triplet conversion.

As for the effects of the scalar impurities when �SO � EF,
for the zero-field (intrairrep) parity mixing, the triplets (ηz)
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are obliterated once the disorder scattering rate reaches the
energy scale of the triplet order parameters. In contrast, the
field-induced triplets (ηy) cannot be obliterated due to their
coupling with singlets at finite magnetic fields. The super-
conducting state is substantially suppressed by the disorder
once the disorder scattering rate becomes comparable to SOC.
The field-induced triplets have a strong effect on the critical
magnetic field for disorder scattering rate comparable to the
singlet (and not the triplet) critical temperature. Therefore, the
properties and potentially topology of converted triplets are
expected to be experimentally accessible even in moderately
disordered systems.

In the large SOC limit, the ηz triplets are also expected to
couple to the ψ0 singlets and in this way gain some robustness
against impurities. This coupling originates from the possible
difference of the densities of states of the spin-split bands, and
is not directly related to the Zeeman field.

We finally argue that the field-induced singlet-triplet
conversion occurs whenever the intrinsic antisymmetric
SOC has a component perpendicular to the applied field.
This phenomenon is therefore generic to a large class of
noncentrosymmetric materials including but not limited to
Ising superconductors.
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APPENDIX A: DERIVING THE GOR’KOV EQUATIONS

In this Appendix, we derive the real-space Gor’kov equations. For a didactic introduction to the procedure followed here in
similar notations, see Ref. [31].

1. Matsubara Green’s functions

We use a compact notation for the Matsubara Green’s functions in particle-particle (i = j) and particle-hole (i �= j) space

Gi j (rσ , τ ; r′
σ ′ , τ

′) = −〈
T ψ i

σ (r, τ )ψ3− j
σ ′ (r′, τ ′)

〉
, (A1)

where ψ1 ≡ ψ are annihilation operators, and ψ2 ≡ ψ† are creation operators. The Green’s functions only depend on the time
difference τ − τ ′ → τ . One can verify that the Green’s function has the general properties

Gi j (rσ , r′
σ ′ ; τ ) = G∗

ji(r
′
σ ′, rσ ; τ ) = −G3− j,3−i(r′

σ ′ , rσ ; −τ ). (A2)

We can write a Fourier transform to Matsubara frequencies ωn = (2n + 1)π/β as

Gi j (rσ , r′
σ ′ ; τ ) = 1

β

∞∑
n=−∞

Gi j (rσ , r′
σ ′ ; ωn)e−iωnτ ; Gi j (rσ , r′

σ ′ ; ωn) =
∫ β

0
dτ Gi j (rσ , r′

σ ′ ; τ )eiωnτ . (A3)

Note that Gi j (rσ , r′
σ ′ ; 0+) = −〈ψ i

σ (r)ψ3− j
σ ′ (r′)〉 and Gi j (rσ , r′

σ ′ ; 0−) = 〈ψ3− j
σ ′ (r′)ψ i

σ (r)〉. In frequency space, the symmetries in
Eq. (A2) translate to

Gi j (rσ , r′
σ ′ ; ωn) = G∗

ji(r
′
σ ′ , rσ ; −ωn) = −G3− j,3−i(r′

σ ′, rσ ; −ωn). (A4)

These general properties are extensively used throughout the paper.

2. Equations of motion of the field operators

With the normal-state Hamiltonian given by Eq. (5) and the superconducting interaction in Eq. (7), the full clean Hamiltonian
can be written as

H =
∫

dr ψ†
σ (r)K̂ψσ (r) +

∑
σ,σ ′

∫
dr

∫
dr′ ψ†

σ (r)g(r − r′) · σσσ ′ ψσ ′ (r′)

+ 1

2

∑
σi,σ

′
i

∫
dr

∫
dr′ V σ1σ2

σ ′
1σ

′
2

(|r − r′|)ψ†
σ1

(r)ψ†
σ2

(r′)ψσ ′
2
(r′)ψσ ′

1
(r), (A5)

where g(r − r′) = γ (r − r′) − Bδ(r − r′) is the effective spin field. The Heisenberg equation of motion for the field operators
is

∂ψ (†)
σ (r, τ )

∂τ
= ∂

∂τ
(eτHψ (†)

σ (r)e−τH ) = eτH [H, ψ (†)
σ (r)]e−τH , (A6)
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for which the commutators with H must be evaluated. We obtain
∂ψσ (r, τ )

∂τ
= −K̂ψσ (r, τ ) −

∫
dr′ ∑

σ ′
g(r − r′) · σσσ ′ψσ ′ (r′, τ ) −

∫
dr′ ∑

σ1,σ
′
1,σ

′
2

V σ1σ

σ ′
1σ

′
2
(|r − r′|)ψ†

σ1
(r′, τ )ψσ ′

1
(r′, τ )ψσ ′

2
(r, τ ),

(A7)

∂ψ†
σ (r, τ )

∂τ
= K̂∗ψ†

σ (r, τ ) +
∫

dr′ ∑
σ ′

g(r′ − r) · σσ ′σ ψ
†
σ ′ (r′, τ ) +

∑
σ1σ2,σ

′
1

∫
dr′ V σ1σ2

σ ′
1σ

(|r − r′|)ψ†
σ2

(r, τ )ψ†
σ1

(r′, τ )ψσ ′
1
(r′, τ ),

(A8)

where K̂ is defined below Eq. (5). To arrive at Eqs. (A7) and (A8), we used the symmetries of the pairing interaction in Eq. (8),
[K̂, H] = 0, and inserted 1 → e−τH eτH where suitable.

3. Equations of motion of the Green’s functions: Gor’kov equations

We now compute the equations of motion for the Matsubara Green’s function:

Gi j (rσ , τ ; r′
σ ′ , τ

′)
∂τ

= −δ(τ − τ ′)
(〈
ψ i

σ (r, τ )ψ3− j
σ ′ (r′, τ ′)

〉 + 〈
ψ

3− j
σ ′ (r′, τ ′)ψ i

σ (r, τ )
〉) −

〈
T ∂ψ i

σ (r, τ )

∂τ
ψ

3− j
σ ′ (r′, τ ′)

〉
. (A9)

Using the equations of motion for the field operators in Eqs. (A7) and (A8), we see that the last term in Eq. (A9) is quartic in the
field operators. We use the Wick decomposition 〈ABCD〉 = 〈AD〉〈BC〉 − 〈AC〉〈BD〉 + 〈AB〉〈CD〉 for these terms and only retain
the pairing correlations. We define the real-space mean-field order parameter as

�σ1σ2 (r′, r) = −
∑
σ ′

1,σ
′
2

V σ1σ2
σ ′

1σ
′
2

(|r − r′|)〈ψσ ′
1
(r′)ψσ ′

2
(r)〉 =

∑
σ ′

1,σ
′
2

V σ1σ2
σ ′

1σ
′
2

(|r − r′|) 1

β

∞∑
n=−∞

Fσ ′
1σ

′
2
(r′, r; ωn). (A10)

The Fourier transform of Eq. (A10) leads to Eq. (15). The mean-field decoupled equations of motion then read as(
− ∂

∂τ
− K̂

)
G1 j (rσ , τ ; r′

σ ′ , τ
′) −

∑
s

∫
dr′′ g(r − r′′) · σσ s G1 j (r′′

s , τ ; r′
σ ′ , τ

′) +
∑
σ1

∫
dr′′�σ1σ (r′′, r)G2 j

(
r′′
σ1

, τ ; r′
σ ′ , τ

′)
= δ(τ − τ ′)δ(r − r′)δσσ ′δ1 j, (A11)(

− ∂

∂τ
+ K̂∗

)
G2 j (rσ , τ ; r′

σ ′ , τ
′) +

∑
s

∫
dr′′ g(r′′ − r) · σsσ G2 j (r′′

s , τ ; r′
σ ′ , τ

′) −
∑
σ1

∫
dr′′�∗

σ1σ
(r′′, r)G1 j

(
r′′
σ1

, τ ; r′
σ ′ , τ

′)
= δ(τ − τ ′)δ(r − r′)δσσ ′δ2 j . (A12)

Using Eq. (A3), we now Fourier transform from imaginary time to Matsubara frequencies, which gives

(iωn − K̂ )G1 j (rσ , r′
σ ′ ; ωn) −

∑
s

∫
dr′′g(r − r′′) · σσ s G1 j (r′′

s , r′
σ ′ ; ωn) +

∑
σ1

∫
dr′′�σ1σ (r′′, r)G2 j

(
r′′
σ1

, r′
σ ′ ; ωn

)
= δ(r − r′)δσσ ′δ1 j, (A13)

(iωn + K̂∗)G2 j (rσ , r′
σ ′ ; ωn) +

∑
s

∫
dr′′g(r′′ − r) · σsσ G2 j (r′′

s , r′
σ ′ ; ωn) −

∑
σ1

∫
dr′′�∗

σ1σ
(r′′, r)G1 j

(
r′′
σ1

, r′
σ ′ ; ωn

)
= δ(r − r′)δσσ ′δ2 j . (A14)

Next, we relabel the Green’s functions to a more familiar form, and introduce matrix notations for conciseness.

4. Matrix representation

Because of symmetries (A4) of the four Green’s functions Gi j , one can reduce the amount of different Green’s functions
to two. We redefine the normal and anomalous functions explicitly as G11(rσ , r′

σ ′ ; ωn) = Gσσ ′ (r, r′; ωn), G12(rσ , r′
σ ′ ; ωn) =

Fσσ ′ (r, r′; ωn), G22(rσ , r′
σ ′ ; ωn) = −G∗

σσ ′ (r, r′; ωn), and, as a detailed demonstration of the properties (A4)

G21(rσ , rσ ′ ; ωn) = −G21(r′
σ ′, rσ ; −ωn) = −G∗

12(rσ , r′
σ ′ ; ωn) = −F ∗

σσ ′ (r, r′; ωn). (A15)

From the relabeling of the Green’s functions, the properties in Eq. (A4), and a Fourier transform to momentum space yields
Eq. (14). In the following notation, Gσσ ′ is the matrix element of the 2×2 matrix in spin space G. We can, therefore, construct a
4×4 Nambu matrix

Ĝ(r, r′; ωn) =
[

G(r, r′; ωn) F (r, r′; ωn)

−F ∗(r, r′; ωn) −G∗(r, r′; ωn)

]
. (A16)

014510-15



DAVID MÖCKLI AND MAXIM KHODAS PHYSICAL REVIEW B 101, 014510 (2020)

We perform the Fourier transformation of Eqs. (A11) and (A12) to the frequency domain and use the relation �αβ (r, r′) =
−�βα (r′, r) which gives

(iωn − K̂ )Gσσ ′ (r, r′; ωn) −
∑

s

∫
dr′′g(r − r′′) · σσ s Gsσ ′ (r′′, r′; ωn) +

∑
s

∫
dr′′�σ s(r, r′′)F ∗

sσ ′ (r′′, r′; ωn) = δ(r − r′)δσσ ′,

(A17)

(iωn − K̂ )Fσσ ′ (r, r′; ωn) −
∑

s

∫
dr′′g(r − r′′) · σσ s Fsσ ′ (r′′, r′; ωn) +

∑
s

∫
dr′′�σ s(r, r′′)G∗

sσ ′ (r′′, r′; ωn) = 0, (A18)

−(iωn + K̂∗)F ∗
σσ ′ (r, r′; ωn) −

∑
s

∫
dr′′ g(r′′ − r) · σsσ F ∗

sσ ′ (r′′, r′; ωn) +
∑

s

∫
dr′′�∗

σ s(r, r′′)Gsσ ′ (r′′, r′; ωn) = 0, (A19)

−(iωn + K̂∗)G∗
σσ ′ (r, r′; ωn) −

∑
s

∫
dr′′ g(r′′ − r) · σsσ G∗

sσ ′ (r′′, r′; ωn) +
∑

s

∫
dr′′�∗

σ s(r, r′′)Fsσ ′ (r′′, r′; ωn) = δ(r − r′)δσσ ′ .

(A20)

We now Fourier transform to momentum space using

Ĝ(r − r′; ωn) = 1

V

∑
k

eik·(r−r′ )Ĝ(k; ωn), δk,k′ = 1

V

∫
dR e−i(k−k′ )·R, (A21)

and similarly for the other terms, which yields

[iωn − ξ (k)]Gσσ ′ (k; ωn) −
∑

s

g̃(k) · σσ s Gsσ ′ (k; ωn) −
∑

s

�sσ (−k)F ∗
sσ ′ (−k; ωn) = δσσ ′, (A22)

[iωn − ξ (k)]Fσσ ′ (k; ωn) −
∑

s

g̃(k) · σσ s Fsσ ′ (k; ωn) −
∑

s

�sσ (−k)G∗
sσ ′ (−k; ωn) = 0, (A23)

−[iωn + ξ (k)]F ∗
σσ ′ (−k; ωn) −

∑
s

g̃(−k) · σT
σ s F ∗

sσ ′ (−k; ωn) −
∑

s

�∗
sσ (k)Gsσ ′ (k; ωn) = 0, (A24)

−[iωn + ξ (k)]G∗
σσ ′ (−k; ωn) −

∑
s

g̃(−k) · σT
σ s G∗

sσ ′ (−k; ωn) −
∑

s

�∗
sσ (k)Fsσ ′ (k; ωn) = δσσ ′ . (A25)

The Pauli principle ensures �sσ (k) = −�σ s(−k). Here, g̃(k) is the Fourier transform of g(r − r′):

g̃(k) =
∫

d (r − r′) e−ik·(r−r′ ) g(r − r′) = γ (k) − B, (A26)

where we used Eq. (6). Reorganizing the set of the four Gor’kov equations in k space given above in matrix form gives the left
Gor’kov equation (16).

APPENDIX B: PROPERTIES AND NORMALIZATION
CONDITION OF THE QUASICLASSICAL

GREEN’S FUNCTIONS

It is convenient to parametrize the quasiclassical Green’s
functions in terms of Pauli matrices as

g(k; ωn) = g0(k; ωn)σ0 + g(k; ωn) · σ, (B1)

f (k; ωn) = [ f0(k; ωn)σ0 + f (k; ωn) · σ )]iσy. (B2)

The properties g(k; ωn) = −g†(k,−ωn) and f (k, ωn) =
− f T(−k; −ωn) translate to

g0(k; ωn) = −g∗
0(k; −ωn), f0(k; ωn) = f0(−k; −ωn),

g(k; ωn) = −g∗(k; −ωn), f (k; ωn) = −f (−k; −ωn). (B3)

Using Eq. (24), the normalization condition ĝ2(k; ωn) = σ̂0

reads as[
g2 − f f ∗ −ig f + i f g∗

−i f ∗g + ig∗ f ∗ − f ∗ f + g∗2

]
=

[
σ0 0

0 σ0

]
, (B4)

where g ≡ g(k; ωn) and g∗ ≡ g∗(−k; ωn) and similarly for f
( f ∗). In general, the Eilenberger equation (26) together with
the normalization (B4) yields a system of 32 equations to
be solved. Here, we are interested in studying the supercon-
ducting instabilities at which the order parameters are small.
Therefore, we can study the linearized version of Eqs. (26)
and (B4), which simplifies the problem considerably. Using
the parametrizations (B1) and (B2), the (1,1) component of
Eq. (B4) gives the two conditions

g2
0(k; ωn) + g2(k; ωn) = 1 − f0(k; ωn) f ∗

0 (−k; ωn)

+ f (k; ωn) · f∗(−k; ωn), (B5)

2g0(k; ωn)g(k; ωn) = if (k; ωn) × f∗(−k; ωn)

+ f0(k; ωn)f∗(−k; ωn) − f ∗
0 (−k; ωn)f (k; ωn). (B6)

In the normal state (the zeroth-order terms), one must have
g2

0(k; ωn) + g2(k; ωn) = 1 and 2g0(k; ωn)g(k; ωn) = 0, such
that g0(k; ωn) = sgn(ωn) and g(k; ωn) = 0. These normal-
state zeroth-order terms together with the linearized f0(k; ωn)
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and f (k; ωn) are all we need to study the superconducting
instability conditions.

APPENDIX C: LIMITING OF TRIPLETS BY SOC

In the purely triplet case with SOC, the linearized Eilen-
berger equation (32) reads as

ωnf (k; ωn) = sgn(ωn)d(k) + γ (k) × f (k; ωn). (C1)

For Ising SOC, γ (k) = �SOγ̂ (k)ẑ we have componentwise

ωn fx(k; ωn) = sgn(ωn) dx(k) − �soγ̂ (k) fy(k; ωn), (C2)

ωn fy(k; ωn) = sgn(ωn) dy(k) + �soγ̂ (k) fx(k; ωn), (C3)

ωn fz(k; ωn) = sgn(ωn) dz(k). (C4)

The z-component pairing correlation and order parameter
{ fz, dz} remain unaffected by SOC. We can solve for { fx, fy},
which gives

fx(k; ωn) = sgn(ωn)

ω2
n + �2

SOγ̂ 2(k)
[ωndx(k) − �SOγ̂ (k)dy(k)],

(C5)

fy(k; ωn) = sgn(ωn)

ω2
n + �2

SOγ̂ 2(k)
[�SOγ̂ (k)dx(k) + ωndy(k)].

(C6)

Note that the terms with �SO are odd in frequency ωn.
However, they do not contribute to the self-consistency condi-
tions because they vanish in the averages [see Eq. (C8)]. For
each component di(k) (i = x, y), we have the self-consistency
condition as in Eq. (45):

di(k) ln
T

Tct
+ π

β

∞∑
n=−∞

(
di(k)

|ωn| − γ̂ (k)〈γ̂ (k′) fi(k′; ωn)〉
)

= 0,

(C7)

and we must evaluate the average

γ̂ (k)〈γ̂ (k′) fi(k′; ωn)〉 = |ωn|
ω2

n + �2
SO

di(k), (C8)

where we approximated γ̂ 2(k) ≈ 1 and the odd-frequency
term vanished. Therefore, the components decouple in the

self-consistency. Performing the Matsubara sum in Eq. (C7)
leads to the pair-breaking equation (34) with Tc = Tct and
α = i�SO.

APPENDIX D: EXPRESSING λs(t) IN FAVOR OF Tcs(t)

With the self-consistency condition given by Eq. (15) and
the pairing interaction specified in Eq. (41), we obtain one
self-consistency condition for each order-parameter compo-
nent. Below, we discuss the singlet and triplet components
separately.

1. Singlet part

For the singlet order parameter, assuming a constant s
wave, Eq. (15) gives

ψ0 = λs

2β

∞∑
n=−∞

∫ ∞

−∞
dξk[F↑↓(k; ωn) − F↓↑(k; ωn)], (D1)

where the dimensionless coupling constant λs = 2N0vs/V .
To establish the unperturbed critical temperature Tcs at
B = γ (k) = 0, we can solve the Gor’kov equation (16) to find

F↑↓(↓↑)(k; ωn) = ∓ ψ0

ω2
n + ξ 2

k + |ψ0|2 . (D2)

Using Eq. (D2) in Eq. (D1), and performing the Matsubara
sum, we obtain the gap equation

1 = −λs

∫ ∞

−∞
dξk

tanh
(

β

2

√
ξ 2

k + |ψ0|2
)

2
√

ξ 2
k + |ψ0|2

. (D3)

If the interaction is attractive vc < 0 ⇒ λs < 0, then Eq. (D3)
admits a solution. At the singlet critical transition temperature
Tcs, ψ0 = 0, such that

1 = −λs

∫ εc

−εc

dξk

tanh
( |ξk|

2Tcs

)
2|ξk| , (D4)

where we introduced the characteristic cutoff of the pairing
interaction εc. Equation (D4) relates λs to Tcs. We can further
manipulate the gap equation in the following way [31]:

− 1

λs
=

∫ εc

−εc

dξk
1

2|ξk| tanh
|ξk|
2Tcs

=
∫ εc

−εc

dξk

[
1

2|ξk| tanh
|ξk|
2Tc

− 1

2|ξk| tanh
|ξk|
2T

]
+ 1

β

∫ εc

−εc

dξk

nc∑
n=−nc−1

1

ω2
n + ξ 2

k

≈ ln
T

Tcs
+ 1

β

nc∑
n=−nc−1

dξk
1

ω2
n + ξk

= ln
T

Tcs
+ 1

β

nc∑
n=−nc−1

π

|ωn| . (D5)

To do the analytical integration, we performed an integration by parts and extended εc → ∞. This demonstrates Eq. (42).

2. Triplet

For the triplets, since dz(k) decouples from {dx(k), dy(k)}, we only write the pairing channel for the in-plane d-vector
components. In the example of D3h, this corresponds to the channel of the irreducible representation E ′′. In this case,
Eq. (41) is

V σ1σ2
σ ′

1σ
′
2

(k, k′) = vt[γ̂ (k)σx iσy]σ1σ2 [γ̂ (k′)σx iσy]∗σ ′
1σ

′
2
+ vt[γ̂ (k)σy iσy]σ1σ2 [γ̂ (k′)σy iσy]∗σ ′

1σ
′
2
. (D6)
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With this interaction, we rewrite Eq. (15) as

[−dx(k)σz + idy(k)σ0]σ1σ2 = 1

βV

∑
n,k′

∑
σ ′

1σ
′
2

vtγ̂ (k)γ̂ (k′)
(
[σz]σ1σ2 [σz]σ ′

1σ
′
2
+ [σ0]σ1σ2 [σ0]σ ′

1σ
′
2

)
Fσ ′

1σ
′
2
(k′; ωn). (D7)

For the dy(k) component, we have [and similarly for dx(k)]

idy(k) = 1

βV

∑
n,k′

vtγ̂ (k)γ̂ (k′)[F↑↑(k′; ωn) + F↓↓(k′; ωn)]. (D8)

For the unperturbed case, the Gor’kov equation (16) yields

F↑↑(↓↓)(k; ωn) = ±dx(k) − idy(k)

ω2
n + ξ 2

k + |d(k)|2 . (D9)

Defining the triplet coupling constant λt = 2N0vt/V and using Eq. (43), we have (for dx = 0)

dy(k) = −γ̂ (k)
λt

β

∞∑
n=−∞

∫
dξk′

∫
dϕk′

2π

γ̂ (k′)dy(k′)
ω2

n + ξ 2
k′ + |dy(k′)|2 . (D10)

Instead of performing the angular integral exactly, we write the order parameter in terms of its basis function as dy(k) = η̃yγ̂ (k)
and approximate γ̂ 2(k) → 1. This yields

1 = −λt

β

∞∑
n=−∞

∫
dξk′

1

ω2
n + ξ 2

k′ + |η̃y|2 = −λt

∫ ∞

−∞
dξk

tanh
(

β

2

√
ξ 2

k + |η̃y|2
)

2
√

ξ 2
k + |η̃y|2

. (D11)

In analogy to the singlet case (D5), we can write

− 1

λt
= ln

T

Tct
+ 1

β

nc∑
n=−nc−1

π

|ωn| . (D12)

This result does not rely on the approximation γ̂ 2(k) → 1.

APPENDIX E: SOLUTION AND DECOUPLING OF THE dx(k) COMPONENT

Here, we show that the dx(k) component is independent of the other components. In the case of the dz(k) component, which
is also independent, the fz(k; ωn) pairing correlations from which the order parameter dz(k) is formed are decoupled from
{ f0, fx, fy}. The issue is more subtle for the dx(k) component, which is discussed below.

1. Clean case

Solving the Eilenberger matrix (36) for { f0, fx, fy}, we obtain

f0(k; ωn) =

odd frequency︷ ︸︸ ︷
1

|ωn|
iBωndx(k)

ω2
n + B2 + γ 2(k)

+

even frequency︷ ︸︸ ︷
1

|ωn|

[
ω2

n + γ 2(k)
]
ψ (k) − iBγ (k)dy(k)

ω2
n + B2 + γ 2(k)

, (E1)

fx(k; ωn) =

even frequency︷ ︸︸ ︷
|ωn|dx(k)

ω2
n + B2 + γ 2(k)

+

odd frequency︷ ︸︸ ︷
sgn(ωn)

iBψ (k) − γ (k)dy(k)

ω2
n + B2 + γ 2(k)

, (E2)

fy(k; ωn) =

odd frequency︷ ︸︸ ︷
1

|ωn|
ωnγ (k)dx(k)

ω2
n + B2 + γ 2(k)

+

even frequency︷ ︸︸ ︷
1

|ωn|
iBγ (k)ψ (k) + (

ω2
n + B2

)
dy(k)

ω2
n + B2 + γ 2(k)

. (E3)

Here, we explicitly separate the even- from the odd-frequency parts of the pairing correlations. When feeding Eqs. (E1)–(E3)
to the self-consistency conditions (C7), only the even-frequency terms contribute since the odd-frequency terms vanish in the
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FIG. 7. The effect of repulsion in the triplet channel on the transition Bc(T ) with �SO/Tcs = 100. The same color legend for different
coupling constants applies to both plots. We used a cutoff energy of εc/Tcs = 500. The blue lines show the case with maximum repulsion
(saturation). The larger the scattering rate �, the smaller the effect of the triplet channel.

averages. Using γ̂ (k) = sgn[γ (k)], the relevant averages for the self-consistency equations are

〈 f0(k; ωn)〉 = 1

|ωn|

(
ω2

n + �2
SO

)
ψ0 − iB�SOη̃y

ω2
n + B2 + �2

SO

, (E4)

γ̂ (k)〈γ̂ (k′) fx(k′; ωn)〉 = |ωn|dx(k)

ω2
n + B2 + �2

so

, (E5)

γ̂ (k)〈γ̂ (k′) fy(k′; ωn)〉 = 1

|ωn|
iBγ (k)ψ0 + (

ω2
n + B2

)
dy(k)

ω2
n + B2 + �2

SO

. (E6)

This yields a subsystem for {ψ0, dy(k)} with pair-breaking equation (55), and an independent behavior for dx(k) with the pair-

breaking equation given by Eq. (34) with α = i
√

B2 + �2
SO and Tc = Tct. It is immaterial to keep dx(k) explicitly for the analysis

of the more interesting {ψ0, dy(k)} subsystem.

2. Disordered case

The decoupling of the dx(k) components also occurs in the presence of impurities. To check this explicitly, the solution of the
Eilenberger matrix (67) in the case dx(k) �= 0 is

fx(k; ωn) = i sgn(ωn)B

ω̃2
n + B2 + γ 2(k)

ψ̃ (ωn) + |ω̃n|
ω̃2

n + B2 + γ 2(k)
d̃x(k; ωn) − sgn(ωn)γ (k)

ω̃2
n + B2 + γ 2(k)

d̃y(k; ωn), (E7)

with

γ̂ (k)〈γ̂ (k) fx(k′; ωn)〉 = |ω̃n|
|ω̃n|2 + B2 + �2

dx(k). (E8)

This yields a pair-breaking strength α = � + i
√

B2 + �2. The dx(k) component is the most sensitive order parameter.

APPENDIX F: REPULSION IN THE TRIPLET CHANNEL

In Ref. [19], we showed that in the clean case, repulsion in the triplet channel suppresses the critical field. For completeness,
here we include the effect of impurities (see Fig. 7). The pair-breaking equation is given by Eq. (82) with the replacement

ln

(
T

Tct

)
→ − 1

λt
− πT

nc∑
n=−nc−1

1

|ωn| = − 1

λt
− ln

(
2eγ

π

εc

T

)
, (F1)

where the dimensionless triplet coupling constant is positive (repulsive) λt > 0.
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