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We show that infrared radiation impinging onto a one-dimensional array of grooves drilled in the superconduc-
tor electrode of a long overlap junction can improve matching between fluxon oscillations at THz frequencies
and a spoof plasmon of comparable wavelength. This example proves that metamaterials can be very helpful
in integrating superconductive and subwavelength optical circuits with optimized matching, bridging the gap
between infrared and microwave radiation.
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I. INTRODUCTION

Integrating superconductive and optical circuits in the
infrared-microwave frequency range would boost solid state
design of quantum information processing in a tremendous
way [1–3]. By engineering the optical absorption, single
flux quanta in long Josephson junctions can be manipulated
[4]. Connecting optical fibers or optical quantum memories
[5] with superconducting circuits [6] would increase perfor-
mances and operating speed as well as reduce power losses
[7]. While integrated optics devices usually operate at the
single-photon level [8–10], detection of surface plasmon or
surface plasmon-polariton (SPP) resonances induced by an
evanescent field from a waveguide into a metal film appears
as a different promising method to keep the power delivered
at the interaction with the solid state device low and con-
trolled [11]. Off-resonance, the evanescent nonpropagating
field penetrating into the metal film is reflected back to
the photodetector with minimal loss. At resonance, instead,
energy is transferred to the metal film generating the surface
plasmon mode that can be used to control a superconducting
device. At present, detection of surface plasmon or SPP reso-
nances is mostly being developed for biosensors and surface
enhanced Raman scattering substrates at visible and near in-
frared wavelength [12]. Plasmonic photon sorters can be used
for spectral and polarimetric imaging [13]. Surface plasmons
are already successfully used at very long wavelengths (60–
160 μm wavelength) as a guiding solution for THz quantum
cascade (QC) lasers [14]. Dielectric-based integrated optics
is always limited in scaling by diffraction. Instead, optical
generation of plasmon excitations uniquely offers a larger
degree of confinement and therefore allows for the creation
of structures smaller than the diffraction limit [15,16]. SPPs
propagate in metamaterials (MMs) obtained by etching metal
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surfaces with periodic subwavelength grooves or holes, at
infrared frequencies [17–19]. Highly localized plasmon fields
can be generated using ordered arrays of nanoparticles or
nanohole arrays, instead of thin metal films [20]. Changes in
the environmental dielectric will change the plasmon mode
and shift the resonance to lower frequencies [21,22].

A large majority of existing MM designs rely on the use
of metallic structures sitting on a dielectric substrate [23,24].
However, as the frequency of operation is pushed higher
toward the terahertz (THz), infrared, and visible, the Ohmic
losses quickly render the current MM approaches impractical.
Thus, a top priority is to reduce the absorption losses to
levels suitable for device applications. This would require
MM designs that do not depend solely on metallic structures
and low temperature environment to prevent strong inherent
vibrational absorption bands and the high skin-depth losses
of the conductors [23,24]. One approach would be to use
low power Josephson devices as the MM constituent media
which allow dissipationless flow of electrical current [25–28].
Metamaterials with rf SQUID meta-atoms have already been
implemented to provide electromagnetically induced trans-
parency (EIT) [29–31].

However, while plasmons belong to the high frequency
optical band, Josephson junctions are usually controlled by
shaped free space microwaves tones (λ ∼ 3 cm) at a fre-
quency: ν = 1011 Hz, appropriate for fluxon oscillations in
long Josephson junctions, which occur at a velocity which
is about 1/20th of that of light [32]. This disparity in wave
velocities makes it difficult to couple electromagnetic energy
in and out of the junction region [33].

In this paper we propose to exploit subwavelength optics
to integrate infrared radiation with fluxon oscillations in a
long Josephson junction [34]. One of the superconducting
electrodes of a long Josephson junction can be modulated in
shape, thus inducing periodic variation of the local critical
current density which, in turn, is the source of radiative
losses in the fluxon dynamics. Infrared radiation impinging
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FIG. 1. Layout of the proposed device based on a tunnel Joseph-
son junction. The zooming of the junction shows that the top contact
is drilled with a regular array of grooves (in light turquoise) on top
of a superconducting sheet (dark turquoise), which is deposited onto
the barrier (yellow sheet). The parameters involved are: d , the period
of the 1D groove lattice, di, the insulating layer thickness (yellow
part), and a and h, the distance between the pillars and their height,
respectively. W , L, and λJ represent width, length of the whole array
of junctions, and Josephson length, respectively.

on the MM electrode can generate a SPP and appropriate
choice of the MM geometry can trigger resonance between
fluxon radiation in the insulating junction barrier and the spoof
plasmon in the infrared band [35,36]. Such a trick would
bridge the gap between infrared and microwave radiation in
controlled Josephson systems. The actual realization of the
interface between the infrared optical source and the MM,
with the desired phase matching conditions for the radiation,
is certainly challenging, but it is within present capabilities
[37]. However, the matter is not discussed in this paper which
is focused on the SPP-fluxon interaction.

It is important to stress that, in the case of application
of similar ideas in the quantum information technology, the
resulting devices can only take part in the ancillary electronics
required to control the qubit array by operating on single
fluxon motion, or of the connection between optical memories
and the solid state qubit platform, but not directly as coherent
devices because they are intrinsically dissipative, although at
a very low power level.

In Sec. II we briefly review the theory about how the
infrared radiation can generate a SPP in the THz range by
irradiating a one-dimensional (1D) subwavelength structure
formed by an array of grooves drilled on the top of a normal
conductor electrode (see Fig. 1 for a sketch of the structure).
We argue that there are limited consequences of the fact that

FIG. 2. Sketch of the periodic structure with grooves dug in the
topmost electrode of the overlap JJ.

the MM is fabricated in the superconducting electrode of
the JJ. In Sec. III we discuss how a fluxon, independently
generated in a long overlap Josephson junction, radiates in
the junction as a consequence of the periodic modulation
of its critical current density. We show that it is possible to
design the structure and the active circuit element in such
a way that the energy dispersions of the fluxon and of the
plasmon cross in the THz range. In Sec. IV we provide a
simple model for the interaction between the radiation mode
of the fluxon and the SPP mode. The interaction produces
an anticrossing of the two mode dispersions and resonant
mixture of the two modes provides strong absorption. In
Sec. V the motion equation for the fluxon ϕ(x, t ) is extended
by including the effects due to the presence of the MM
modulation and of the SPP interaction. The latter generates a
dissipative term which can be recognized as the third order
derivative ϕxxt , dissipative β term. Additionally, a forcing
term arises, which strongly influences the fluxon dynamics,
by increasing or decreasing its momentum, according to the
phase of the applied perturbation. A simulation of the fluxon
dynamics is reported and discussed in Sec. VI in the absence
of dissipation. The pendulum motion of the fluxon between
the junction edges can be highly perturbed, and the fluxon
can be backscattered by a perturbation pulse. Increasing the
forcing perturbation, multiple scattered waves are produced
which interfere and produce beatings depending on the initial
velocity of the fluxon. However, the shape of the principal
kink is rather robust with the increase of the perturbation up
to some critical velocity. Section VII collects the conclusions.
Appendixes A, B, and C report some details on the derivation
of the dissipative and forcing terms.

II. SPOOF SURFACE PLASMON DISPERSION

Infrared radiation impinging from vacuum on the surface
of a semi-infinite normal metal, on the top of which an array
of grooves has been drilled with periodicity �d ‖ x̂, in the ŷ
direction, of the kind shown in Fig. 2, generates a SPP bound
at the surface array and decaying in the inside of the film. Its
energy dispersion may saturate in the THz range. The plasma
frequency of the SPP dispersion is dictated by the size of
the grooves and array geometry. In this section we recall the
simplest theoretical derivation of the spoof plasmon bound
state generation [18] in an idealized MM structure addressing
what are the desired fabrication parameters.
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FIG. 3. Dispersion of the spoof plasmon polariton, and of the
fluxon radiating energy reported vs kx on the same plot in unit
(π/d, ωg = πc/2h). The parameters used are d = 0.45 μm, h =
13 μm, λJ = 100 μm, c̄ = 0.05c, and ωJ = 1 × 1011 s−1.

Let the top surface be at z = 0 and the bottom of the
grooves be at z = h, so that the depth of the grooves is h and
their width is a. The TE mode of the field Ex, Hy, propagating
in the vacuum, can be expressed as the sum of an incident
wave and of reflected waves with reflection coefficients ρn,
where n is the diffraction order. The subwavelength modu-
lation, which provides diffraction by the periodic structure,
is unable to resolve the fine structure, so that the radiation
can be averaged in space and continuously matched at z = 0.
The Ex field is evanescent in ẑ (kz = i

√
k2

x − (ω/c)2, with
|kx| > ω/c), but in the limits λ � d � a we can neglect the
penetration of Ex into the semi-infinite bulk of the normal
metal and impose its vanishing at z = h. As the wavelength of
the radiation is much larger than the width of the grooves (λ >

2 ng a, where ng is the refraction index inside the groove),
just the fundamental mode can be considered in the region
−h < z < 0. Within these approximations, a very simple re-
lation arises from the matching conditions, which provides
the dispersion relation when reflectivity ρ0 is taken to diverge
[18]: √

k2
x − k2

0

k0
= S2

0 tan(k0h), (1)

where ω = c k0 and S2
0 = a/d . At large kx, ω saturates at

ωspp = c π
2 h , as if the groove acted as a cavity waveguide (vac-

uum is assumed in the grooves). By choosing d = 0.45 μm,
h = 13 μm, and S2

0 ∼ 0.2, we find ωspp ≈ 0.33 × 1014 Hz.
The plot of the SPP, obtained by solving Eq. (1), is reported
in Fig. 3 [18]. The units chosen in the plots for kx and
ω are (π/d, πc/2h). The additional quasilinear dispersion
appearing in Fig. 3 is the radiation field due to the fluxon given
by Eq. (8) and discussed in the next section.

III. FLUXON RADIATING IN A MODULATED
SUPERCONDUCTING JOSEPHSON JUNCTION

As discussed in the Introduction, an infrared radiation
impinging in free space on the top electrode of an overlap JJ
of frequency ω couples weakly to the fluxon dynamics due
to the mismatch between the radiation wavelength λ and the
typical length scale—Josephson length—λJ of the fluxon. By
modulating the top electrode of an overlap JJ in the form of

a metamaterial (MM), sketched in Fig. 1, we find that the
interaction between radiation coming from the vacuum and
the fluxon can be enhanced.

We consider a SMM/I/S long overlap Josephson junction of
length L ‖ x̂. Here SMM stands for one of the superconducting
banks, let us say the top one, in which an array of grooves
has been drilled in the ŷ direction, as the one sketched in
Fig. 2 and presented in Sec. II. S denotes the bottom uniform
and homogeneous superconductor electrode, while I stands
for insulator of thickness di and width w. The SPP device
based on the proposed layout (see Fig. 1) could be built using
top-down nanofab techniques that include steps of electron
beam lithography, dry and wet etching [38–40] for writing,
and then drilling the array of junctions, for example, inside a
Nb/NbOx/Nb or Al/AlOx/Al trilayer sample. We expect that
the most relevant effect of the added periodic modulation of
the electrode is a corresponding modulation of the Josephson
critical current density jc. The inhomogeneities introduced
by the diffractive grating attract or repel the fluxon in its
propagation. The dips in the modulation tend to attract and
localize the fluxon, while the mesas tend to delocalize it.

The problem was studied long ago both theoretically and
experimentally [35] in junctions of millimeter size. They
prove that a fluxon shuttling to and from in a periodically
inhomogeneous overlap junction radiates. As the derivation
of the energy dispersion of the radiating fluxon is based on
perturbation of the fluxon propagating in a homogeneous
junction, we start here recalling the usual approach to the
homogeneous problem.

The gauge invariant form of the supercurrent, written in
terms of the phase of the order parameter of the top and
bottom electrodes ϑ± and of the vector potential �A, is

�Js = − 2e

2m
|ψ0|2

(
h̄ �∇ϑ + 2e

c
�A
)

. (2)

Here m and −e, with e > 0, are the electron mass and charge,
respectively, and |ψ0|2 = ns is the superfluid density. ϑ is
the phase of the superconducting order parameter. The usual
approach to the equation of motion for the phase difference
ϕ = ϑ+ − ϑ− in a 1D overlap junction of length L, along the x̂
axis, is to consider the z component of the Maxwell equation:

∇ × B|z − εr

c

∂Ez

∂t
= 4π

c

{
JJ − 1

λ2
J

V

R

}
, (3)

where JJ = Jc sin ϕ is the Josephson current of critical current
Jc, V is the voltage difference across the barrier, and R is
the quasiparticle resistance in the insulating layer. The length
scale characterizing the spacial variation of ϕ is the Josephson
length λJ . To be concrete, estimates will be presented for
a junction with Nb superconducting contacts with L � λJ ,
where λJ is of the order of various tens of μm. The width di of
the insulating barrier, along the ẑ axis, is of few nanometers.

In the case of bulky superconducting banks one recognizes
that the phase difference ϕ, at points where the superconduct-
ing screening currents �Js of Eq. (2) have vanished, takes the
value dictated by unperturbed superconductors. This allows us
to relate the Laplacian of ϕ to the z component of the curl B
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of Eq. (3), obtaining

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
− 1

c2

∂2ϕ

∂t2
= 1

λ2
J

{
sin ϕ − α′ ∂ϕ

∂t

}
, (4)

which is the celebrated Sine-Gordon (S-G) equation for the
superconducting phase difference at the overlap junction.
Here

c2 = 1

1 + 2λL/di

c2

εr
, λ2

J = cφo

8π2Jc(di + 2λL )
,

ωJ = c

λJ
=

(
2 e

h̄

Ic

C

)1/2

, α′ = h̄

2eRIc
. (5)

λL is the London penetration length, λ−2
L = 4π |ψ0|2e2/(mc2)

(∼50 nm for Nb). Dimensionally the Josephson critical cur-
rent density is Jc ∼ e/(tA), where A is a cross sectional
area pierced by the supercurrent J in the ẑ direction of the
overlap junction and t represents the time. We have estimated
a JC ∼ 100 A/cm2 (at temperature of 300 mK) for a device
that has a = d ∼ 200 nm and w = 1 μm.

The capacitance of the junction, expressed in terms of the
thickness of the barrier di, C = εrA/(4π di ), is rather large,
so that charging effects are assumed to be absent. α′ is a
parameter accounting for the ohmic (zero frequency) dissipa-
tion. In the presence of an incoming radiation of wavelength
λ ∼ 700 nm, we have λJ � λ.

In the absence of dissipation (α′ = 0), the kink solution for
the 1D approximation to Sine-Gordon equation [Eq. (4)] is

ϕ0(x ± ut ) = 4 arctan exp

[
x ± ut√

1 − u2/c2

]
, (6)

where u < c̄ is the velocity of the fluxon.
In the presence of the perturbation induced by the incoming

radiation, an additional field �B(2) will be considered in Sec. V,
to be added to the one of Eq. (3). For the time being we
consider in this section only the perturbation induced on the
fluxon by the groove array at the top contact. We assume
that the effect induced by this modulation is to cause a
modulation of Jc: Jc = Jc0 + Jc1 cos 2π

d x in the nondissipative
case as follows. If Jc1 < Jc0, to lowest order, a solution of the
motion equation for the fluxon can be searched by adding a
correction to the unperturbed fluxon of Eq. (6), as follows:
ϕ(x, t ) = ϕ0(x, t ) + ϕ1(x, t ). It has been shown [35,41] that
the perturbation ϕ1(x, t ) can take the form of a plane wave:

ϕ1(x, t ) =
∑
n 	=0

An exp
[
i
(
ωplt − kn

plx
)]

, (7)

generating a transverse radiation field ϕt ∝ Ez, ϕx ∝ Hy cor-
responding to the plasma frequency ωn

pJ/2π and wave vector

kn
pJ given by (here ν =

√
1 − u2/c̄2 and n integer)

ωn
pJ

2 − c̄2kn
pJ

2 = ω2
J , (8)

ωn
pJ = 2π n

d

u

ν2
± u

λJν

√(
u

c̄

2π λJ n

d ν

)2

− 1,

kn
pJ = 2π n

d

u2

c̄2

1

ν2
± 1

λJν

√(
u

c̄

2π λJ n

d ν

)2

− 1. (9)

FIG. 4. Anticrossing at the mode interaction vs kx ≡ k. The
parameters are the same as in Fig. 3.

The accelerated fluxon radiates in the MM and Eq. (8) is
the dispersion law of the radiation. The approximated form is
valid for the far field away from the soliton, with emissions
ahead of the fluxon (+), or far away behind the fluxon (−). It
can be shown that the amplitudes An of the plasma oscillations
decrease exponentially as n increases, so that we will concen-
trate only on the term n = 1. Increasing u/c̄, both kpJ and ωpJ

increase. An estimate of kpJ for d = 0.45 μm, h = 13 μm,
λJ = 100 μm, c̄ = 0.05c, ωJ = 1 × 1011 s−1, and u/c̄ ∼ 0.8
gives kn=1

pJ [−] : d/π ∼ −0.89. The corresponding radiation
frequency is, from Eq. (8), ωn=1

pJ ∼ 0.93 × 1014 Hz, which
is comparable with the plasma frequency of the SPP. These
parameters are used in the plot of Fig. 3. Note that ωJ is
about three orders of magnitude smaller than ωpJ , so that the
dispersion of Eq. (8) is practically linear. The dependence
of kpJ on the fluxon velocity is first order in u/c̄. In the
next section we discuss a simplified model for the interaction
between the fluxon radiating field and the SPP originated
by the MM, which leads to absorption of energy from the
radiation source.

IV. MODES INTERACTION AND ANTICROSSING

As shown in Fig. 3, the SPP dispersion and the radiation
mode of the fluxon cross at kx ∼ 0.6 π/d for d = 0.45 μm
and h = 13 μm. The presence or absence of the crossing
strongly depends on the choice of ratio d/h. The fluxon
extends over a length λJ much larger than the period of the
modulation in the MM d , so that it is reasonable to assume
that it moves at an average velocity prior to interaction with
a SPP pulse. The initial velocity should be also determined
by accounting for the dissipation mechanisms acting in the
dynamics [tuned by the parameters α′ appearing in Eq. (4)
and β, to be introduced in the following]. These mechanisms
also determine the dynamics of the fluxon and, in turn, its
radiative power. We address this point in Sec. V and Ap-
pendixes A and B. On average, we assume that the fluxon
keeps an average stationary velocity during its motion so that
we are in the presence of steady state radiation, except when
under the action of a short perturbing pulse. This is a very
crude approximation, of course, which, however, allows us
to modelize the interaction between the SPP and the fluxon
radiation mode with a very simple approach. The crossing in
Fig. 3 turns into an anticrossing as shown in Fig. 4.
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The model rests on a few simplified assumptions. An elec-
tric field from the MM in the nondissipative superconductor
boundary generates a time derivative of the current density
according to the London equation:

∂

∂t
J = nse2

m
E , (10)

where nse2/m = c2/(4π λ2
L ). The motion equation (in the x̂

direction along the boundary) for the current in time Fourier
transform is [ωpJ ≡ ωpJ (kpJ )]

−ω2 J + ω2
pJ J = −i ω

c2

4π λ2
L

E . (11)

This is the first equation relating the current density at the
boundary with the insulating barrier and the electric field of
the radiating fields.

An additional equation is provided by the relation between
the dissipative flow of the added J current and the electric
field. In a normal metal, the resistivity ρ(ω) can be related to
the dielectric function ε(ω) as

(−i ωρ)−1 = ε(ω) − 1. (12)

The AC electrodynamics of a superconductor for ω < 2�/h̄
(� is the superconducting gap) is dominated by the imagi-
nary part of the conductivity, which, at finite temperature, is
much greater than the real part in magnitude and is strongly
frequency dependent (σ = σ1 − i σ2, σ2 ∼ 1/ω). However, at
THz frequencies (>2�/h̄), the real part of the conductivity
plays also a role even at distances from the boundary larger
than λL. Here we replace ε with the effective εxx given by the
MM SPP:

εxx(ω) = π2d2 εg

8a2

(
1 − π2c2

ω2a2 n2
g

)
,

ω2
spp = π2c2

a2 n2
g

, (13)

where εg and ng are the dielectric constant and refraction
index of the material in the holes [17]. ωspp is assumed to be
rather independent of kx in the range where the dispersion has
reached saturation. In this approximation, the motion equation
for the electric field at the boundary is

−ω2E + ω2
sppE = −ω2 ρ(ω) J (kx, ω). (14)

The system of Eqs. (11) and (14) provides the eigenvalues
which are solution of

ω4 − ω2

(
ω2

spp + ω2
pJ + i

ω c2

4π λ2
L

ρ(ω)

)
+ ω2

sppω
2
pJ = 0.

The anticrossing which arises from this very crude approach
appears in Fig. 4. The dissipated power can be extracted by
squaring Eq. (14) and by using ρ(ω) = {−iω[εxx(ω) − 1]}−1:

−i ω|E |2 ∝ 1(
1 − ω2

spp(kx )
ω2

)2

1

[εxx(ω) − 1]2 ρ(ω)|J|2 (15)

and has been plotted in Fig. 5 as a function of ω. It is peaked
at the crossing point kxd/π ∼ 0.6. Equations (11) and (14)
are coupled to the equation of motion of the fluxon [Eq. (4)]

FIG. 5. Dissipated power at the anticrossing at the mode interac-
tion vs ω, from Eq. (15). The parameters are the same as in Fig. 3.

because the propagation velocity u is required to define the
dispersion of the radiating field generated by the fluxon
[Eq. (8)]. Forcing terms acting in the superconducting phase
dynamics arising from Bsource

y , the magnetic field generated by
the TEM incoming wave, are derived in the next section.

V. THE FLUXON MOTION EQUATION
IN THE PRESENCE OF RADIATION

The goal of this section is to extend the S-G equation
[Eq. (4)] to include the presence of the SPP perturbation and
the induced radiating fields. Indeed, the modulation in the top
contact due to the presence of the grooves is responsible for
extra radiation by the fluxon during its dynamics. Special con-
cern, in the presence of radiating fields, is for the dissipation
mechanisms in the junction. Both effects generate a current
imbalance at the interface J+ − J−, and an added extra field
B(2). Extension of Eq. (3) implies that two extra terms have to
appear in Eq. (3): curl B(2) in the first term on the left-hand
side (l.h.s.) of Eq. (3) and the imbalance current J+ − J− on
the right-hand side (r.h.s.) of Eq. (3). They will account both
for the SPP generated by the incoming radiation and for the
radiating fluxon itself. As discussed in Appendix C, Eq. (2)
has to be rewritten as [Eq. (C6)]

φ0

2π

∂ϕ

∂x
= 4πλ2

L

c
[J+ − J−] − (2λL + di ) By − λp B(2)

y .

(16)

The penetration length λp is discussed here below.
In Appendix C we derive an expression for curl B(2) which

contributes to the motion equation of Eq. (4) with a dissipative
term, the usually called β term [see Eq. (21) given here
below]. Finally, using the London equation [see Appendix C,
Eq. (C7)] we obtain [42]

∇ × ∇ × �B(2)
∣∣∣
y
+ 1

λ2
ω

B(2)
y = −4π

c

h̄

2e d
σqp

∂2ϕ

∂t∂x
, (17)

with
1

λ2
ω

≡ 1

λ2
L

+ εb(ω)
ω2

c2
(18)

and εb(ω) = εb + 4π i σb

c2 ω
.
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Equation (18) can be interpreted as follows. 2π/λω plays
the role of kx. By choosing εb ∼ 41.4 (Nb in the THz range
ω ∼ π × 1013 Hz), we get λ−1

ω ∼ 2.1 × 106 m−1 = kx/2π

(λL ∼ 50 nm). On the other hand,

−ikz =
√

k2
x − ω2/c2 ∼ π

d

√
(0.63)2 −

(
0.8

2

d

h

)2

∼ 4.4 × 106 m−1. (19)

kz is purely imaginary and provides the decay of the B(2) field
within the top superconducting contact. We define the inverse
of |kz| as the penetration depth λp of the field ∼230 nm.

Equation (17) with the definition of λω of Eq. (18) are the
starting point of our analysis. With an exponentially decaying
dependence on the z coordinate, e−z/λp of all the fields in-
volved within the overlap junction region we can introduce an
effective 1D Green function G(x, x′, ω), with zero boundary
conditions at x = 0 and x = L. G(x, x′, ω) inverts the differen-
tial operator in Eq. (17) with ik = [1/λ2

ω − 1/λ2
p]1/2 (k real):

[ �∇2 − k2] G(x, x′, ω) = −δ(x − x′). (20)

Hence, ∇xB(2)
y (x, t ) = ∇ × �B(2)|z solves the integral equation

∇xB(2)
y (x, t ) = ∇xBsource

y (x, t )

− 1

λ2
L

∫
dx′ dt ′ ∇x G(x, x′, t− t ′) F[ϕ(x′, t ′)],

(21)

where

F[ϕ(x, t )] = 2 φo λ2
L

d c2
σqp

∂2ϕ

∂t∂x
(22)

and we have also added the contribution of Bsource
y as an inho-

mogeneous term to be included in Eq. (3). Deriving Eq. (16)
with respect to x, we insert ∇xB(2)

y (x, t ) from Eq. (21) in it and
divide the resulting equation by Jc/c. The extended form of
Eq. (4), which includes a β-dissipative term, is obtained:

λ2
J

∂2ϕ

∂x2
− 1

ω2
J

∂2ϕ

∂t2
− α

1

ωJ

∂ϕ

∂t
+ β

∫
dt ′

∫
dx′dz′ G(x, x′, t − t ′)

∂3ϕ

∂t∂x∂x
− sin[ϕ(x, t )] + γ

= 8π2λ2
L

φ0c
∇x[J+ − J−] + λp

di + 2λL

c

Jc
∇xBsource

y (x, t ),

α = h̄ωJ

2eRIC
, β = σqp

2φ0 ωJ

Jc c di
, φ0 = hc/2e, γ = Jext

Jc
. (23)

We have integrated the integral of Eq. (21) by parts. The
term at the boundary vanishes due to the chosen boundary
conditions, so that the β term displays the third order deriva-
tive of the field ϕ. A current source term γ has also been
included.

Usually no retardation is assumed in Eq. (23), so that
G(x, x′, ω) ∼ Gk (x, x′). The Green’s function could account
for the periodicity of the grooves potential following the lines
of Ref. [35] but, as λJ � d , we can expect that the modulation
of the potential is on a much smaller scale than the scale
characterizing the fluxon dissipation so that we can treat the
superconductor MM as an effective homogeneous medium.
This is consistent with a similar approximation which gives
rise to the SPP dispersion. Moreover, it is customary to turn
to a local approximation for the kernel, so that the integral in
Eq. (23) disappears. Then, the motion equation for the phase
driven by the plasmonic magnetic field Bsource

y , in dimension-
less coordinates t → ωJt and x → x/λJ , takes the usual form
(see below):

ϕxx − ϕtt − sin ϕ = α ϕt − β ϕxxt − γ − g(t, x), (24)

where g(t, x) includes the forcing terms, on the r.h.s. of
Eq. (23).

We concentrate now on the two added terms included in
g(t, x), produced by the SPP. From Eq. (11), the Fourier

transform of the current difference term gives

−4πλ2
L

c
[J+ − J−] = i

ω

ω2 − ω2
pJ

c δEx, (25)

where δEx is the difference in electric field component be-
tween the upper and lower boundary of the junction. Similarly,
from �k × �E = �B ω/c, the last term reads

−λp Bsource
y = −i

c|kz|λp

ω
δEx, (26)

where −i kz = √
k2

x − (ω/c)2 > 0 (here ω is the frequency of
the source radiation). We get

g(ω, x) = −i
2eλ2

J

h̄ωJ

[
ω

ω2 − ω2
pJ

− |kz|λp
4π

ω

]
∇xδEx(x). (27)

At ω ≈ ωspp the charge density modulation induced by the
SPP, ρspp, appears as ∂

∂x δE spp
x (x) = 4πρspp(x). Here Qspp ≡

λpwL ρspp is defined as the charge imbalance induced by
the oscillating SPP. We average over the length λJ in the
x̂ direction, assuming an oscillating dependence eikx and in
the transverse directions of cross-section λpw. We rewrite
Eq. (27) in terms of the amount of charge Qspp, singling out
just one frequency ω ≈ ωspp:

g(ω, x, t ) ∼ 4π

h̄ωJ

ω

ω2 − ω2
pJ

λJ

w

sin kλJ

kL

e Qspp

λp
cos ωt . (28)
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FIG. 6. 3D plot of the fluxon amplitude φ vs x and t . The initial
velocity is u/c̄ = 0.1, far from resonance. A square pulse of small
amplitude (A = −0.1, see text) acts between times 187 and 220
(duration 0.1 T), marked by the black slashes. The fluxon is sped
up by the pulse. The inset shows the impulse of the field P(t ) vs t
according to Eq. (29). The pulse acts in the time interval marked by
the black lines.

The largest contribution to the perturbation comes from the
first term of Eq. (27), at frequency ω ≈ ωspp ≈ ωpJ . When
the fluxon velocity provides a kpJ close to the point at which
the two dispersions cross [see Eq. (9)], the perturbation enters
a resonance with the excitation modes of the combined system
and its effect is largest. According to our parameters and to
Fig. 3, this occurs at velocity u = 0.6c̄ which corresponds to
kpJd/π ∼ 0.7.

VI. DISSIPATIONLESS SIMULATED DYNAMICS
OF THE PERTURBED FLUXON

Let us now consider a dissipationless dynamics of the
fluxon perturbed at some given time t0 > 0 by a short square
pulse, acting for a restricted time interval ∼0.1 T. The ef-
fect of the perturbation depends on the incoming velocity
of the fluxon, and, of course, on the perturbation strength.
Depending on its sign, the perturbation can increase or de-
crease the propagation velocity of the traveling fluxon, and
can even scatter back the fluxon. The sequence of figures
(Figs. 6–14) shows the three-dimensional (3D) plots of the
simulated dynamics of the fluxon ϕ(x, t ) vs x and t , in units
λJ and ωJ . The maximum displayed time in these plots is
T = 450ω−1

J , while the length of the junction is L ∼ 25 λJ .
In the time interval �t ∈ (187, 220) ∼ 0.1 T a square pulse
of the form A cos ωpJt , of amplitude A, is turned on, with
ωpJ/ωJ = 0.33 × 103. The first sequence of plots (Figs. 6–9)
monitors the propagation of a fluxon of incoming velocity
u/c̄ = 0.1. For A = ±0.1 the fluxon is just sped up (Fig. 6)
or slowed down till to velocity inversion (Fig. 7), respectively.
The insets show the change in impulse P(t, A) as a function
of time:

P(t ; A) ∝
∫ L

0
dx ϕt (x, t ; A)ϕx (x, t ; A), (29)

FIG. 7. 3D plot of the fluxon amplitude φ vs x and t . The initial
velocity is u/c̄ = 0.1, same as Fig. 6. The amplitude of the square
pulse is A = 0.1. The fluxon is scattered backward by the pulse. The
inset shows the impulse of the field P(t ) vs t .

with a flip of the sign when the fluxon hits the junction edge
and is reflected. During the time of the pulse the impulse
increases approximately linearly and stabilizes at a higher
value, when the perturbation is turned off. From the pulse
switch off time, onward, some beating can be seen in the
fluxon amplitude time dependence, which is left over by the
perturbation. The fluxon is reflected when it reaches x = L =
160, as seen from the change of slope of the field and from the
sudden change of sign of the impulse in the inset. Since then,
the motion is again at constant impulse, but backwards. At the
reflection, the amplitude of the fluxon jumps by 2π .

It is noticeable that the various scatterings induced by the
pulse, with coexistence of forward and backward propagating
waves, end up in an impulse which is strictly periodic with
the dwelling of the superconducting phase excitation inside
the Josephson junction. This is due to the fact that dissipative
terms have not been included in the dynamics. The overshoot-
ing at each reflection is clearly seen.

By increasing the amplitude A of the forcing term, there is
no qualitative change in the time evolution of the fluxon, till A
reaches the value A ∼ 0.6 (Fig. 8). Subharmonic oscillations
and beating markedly increase but the amplitude of the kink
is still limited to the 2π flux jump. Beatings appear as a con-
sequence of screening of the incoming kink by the collection
of scattered antikinks as it happens when an electric charged
particle is screened by a bath of opposite charges. This is the
classical analog of Friedel oscillations appearing in quantum
scattering.

Figure 9 shows the ϕ evolution for A = 0.62. The pulse
acts as a strong scattering potential, so that there are scattered
components of the original fluxon which move backward and
forward with different velocities, generated by the pulse itself
which are reflected at the boundary x = 0, L. The various
components of the field interfere heavily and the fluxon kink
is fully lost. Even when the effect of the pulse is over, such
an interference generates an overshooting in the impulse at
the reflection at the boundary, which is reabsorbed in a finite
time in the multiple interference processes (see inset). Again,
the inset shows the impulse of the system as a function of
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FIG. 8. 3D plot of the fluxon amplitude φ vs x and t , same as
Fig. 6, for initial velocity u/c̄ = 0.1 and A = 0.6. The fluxon is sped
up, but its shape is conserved except for beatings which mark the
approach of a critical perturbation. The inset shows the impulse of
the field P(t ) vs t .

time. However, it is a space integrated quantity, so that it
captures only the average of the complex evolution. During
the overshooting time and beyond, the phase field rolls down
to higher and higher values, as confirmed by the voltage
difference at the junction integrated over the whole junction
length:

V (t ; A) ∝
∫ L

0
dx ϕt (x, t ; A), (30)

which is plotted in Fig. 10 for A = 0.8. Of course the physical
phase difference amplitude is mod[2π ]. While the shape of the
kink is lost, the propagation across the junction with reflection
at the edges survives and strongly characterizes the impulse
for larger evolution in time. This is reported in Fig. 11 for
A = 0.8 (red curve for u/c̄ = 0.1).

The sequence Figs. 12–14 corresponds to the sequence
Figs. 6–9 but for u/c̄ = 0.6, which implies that the kx vector

FIG. 9. 3D plot of the fluxon amplitude φ vs x and t , same as
Fig. 6, for initial velocity u/c̄ = 0.1 and A = 0.62. The perturbation
scatters the fluxon both backwards and forwards. The various compo-
nents of the field interfere heavily and the fluxon itself is lost, while
acquiring and eventually losing extra impulse (see inset). The phase
difference rolls down with time when the effect of the pulse (but not
the acquired impulse) is over.

FIG. 10. Integrated voltage in units h̄ωJ/2e vs t for initial ve-
locity u/c̄ = 0.1 and A = 0.8 [see Eq. (30)]. The phase φ vs x and t
rolls down almost uniformly in time for any x as shown in the 3D-plot
inset.The pulse acts in the time interval marked by the black lines.

is close to the point where anticrossing occurs in Fig. 4. We
made the choice of keeping similar strength of the perturba-
tion A, although, according to Eq. (28), there would be an
extra factor of ∼20 included in A in this case, to account
for the vicinity to the pole. Apart for the obvious increase
of the strength of the perturbation due to this extra factor,
two features can be noticed when the initial velocity of the
fluxon increases. Comparing Fig. 8 with Fig. 13 with the same
perturbation strength A, the evolution of the fluxon having
an initial velocity u/c̄ = 0.6 appears to be less sensitive to
beating and subharmonic oscillations than when the fluxon is
moving slower. On the other hand, the overshooting of the
impulse when the fluxon inverts its motion at the edges is even
larger as shown in Fig. 11. This corresponds to a faster roll
down of the phase as marked by the larger scale for ϕ, which
appears in Fig. 14, when compared to Fig. 8.

Let us now inquire up to what SPP charge Q̃spp, the fluxon
may be assumed to be insensitive to the pulse. In other words,
to which extent the forcing term can simply neutralize some

FIG. 11. Long time comparison of impulse P(t ) vs t at pertur-
bation amplitude A = 0.8 between u/c̄ = 0.1 and u/c̄ = 0.6. The
periodicity arises from reflection at the boundaries. The step of
the timescale has been adjusted to present graphically comparable
periods for the two velocities. The arrow points at the time interval
during which the square pulse is active.

014506-8



USE OF A SPOOF PLASMON TO OPTIMIZE THE … PHYSICAL REVIEW B 101, 014506 (2020)

FIG. 12. 3D plot of the fluxon amplitude φ vs x and t . The
initial velocity is u/c̄ = 0.6, which locates the k vector close to the
resonance, according to Eq. (9). A square pulse of small amplitude
A = 0.1, acts between times 187 and 220 (duration 0.1 T), marked
by the black slashes. The fluxon is backscattered by the pulse. The
inset shows the impulse of the field P(t ) vs t according to Eq. (29).
The pulse acts in the time interval marked by the black lines.

dissipation induced by a term −αϕt appearing in the motion
equation. Let T̃ be the timescale of the SPP pulse. Quali-
tatively, ignoring the β term which is expected to be small,
we can estimate a compensation on the average, between the
forcing term and the dissipative α term:

−α

∫ +L/2

−L/2
dx

∫ T̃

0
dt ϕt e−t/T̃ cos ωpJt

= 8π2ρspp
w

φ0

∫ +L/2

−L/2
dx

∫ T̃

0
dt e−t/T̃ cos2 ωpJt,

FIG. 13. 3D plot of the fluxon amplitude φ vs x and t . The initial
velocity is u/c̄ = 0.6 (same as Fig. 12), with a pulse amplitude A =
0.6, close to the critical value. Heavy beating form but the fluxon
shape can still be recognized. The inset shows the impulse of the
field P(t ) vs t .

FIG. 14. 3D plot of the fluxon amplitude φ vs x and t , same as
Fig. 6, for initial velocity u/c̄ = 0.1 and A = 0.6. The fluxon is sped
up, but its shape is conserved except for beatings which mark the
approach of a critical perturbation. The inset shows the impulse of
the field P(t ) vs t .

i.e.,

2πα
u

1 + (ωpJ T̃ )2
= λpLw ρspp

λJ

λp

1 + 2(ωpJ T̃ )2

1 + 4(ωpJ T̃ )2
, (31)

where the unperturbed fluxon waveform ϕ(x − ut ) of Eq. (6)
has been used.

The requirement that u < 1 implies (ωJ T̃ � 1 � ωpJ T̃ )
that the overall induced charge by the SPP, Q̃spp = λpLw ρ̃spp,
has to satisfy the inequality

Q̃spp <
α

2π

λp

λJ

1

(ωpJ T̃ )2
, (32)

which is quite a stringent condition on the intensity of the
incoming radiation.

VII. CONCLUSIONS

Integrating superconductive and optical networks in a low
temperature environment is becoming more and more de-
sirable for quantum information processing, but it faces a
longstanding problem. While optical fibers and optical circuits
mostly involve frequencies in the infrared or, recently, THz
frequency window, typical frequencies of a superconducting
device are in the microwave range. On the other hand, the
possibility of putting fluxons traveling in a long Josephson
junction (JJ) in interaction with optical signals would increase
enormously their flexibility as a tool for biasing and control-
ling gates in a classical or quantum circuit. Recently, optically
generated spoof plasmon polaritons (SPPs) can be read out by
means of integrated superconducting single-photon detectors
[10] and, in general, interaction of a Josephson junction with
a surface plasmon allows us to limit the power delivered
to the junction and to avoid large increase of quasiparticle
excitations. Still, optimization of energy exchange between
a surface plasmon and a fluxon requires that the difference
in frequency between the two-excitation modes is somehow
reduced. We have shown that a feasible way to reach this
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goal is to engineer one of the banks of the JJ in the form
of a metamaterial (MM) which has been proved to generate
a SPP at THz frequency [18], when irradiated with a source
in the infrared. The SPP can be absorbed by the moving
fluxon.

We have shown that the two excitation modes, SPP and
fluxon radiative field, can interact (see Fig. 4). Indeed, the MM
bank induces a radiative field by the fluxon of comparable
frequency. The typical anticrossing in the dispersion is due
to charge oscillations at the MM bank, which gives rise to
absorption of impulse by the fluxon. The latter can be sped up
or slowed down or even scattered backwards by interaction
with a pulsed SPP, which acts as a forcing term on the
Sine-Gordon (S-G) dynamics of the fluxon, driven by the
oscillations of the SPP charge.

We provide examples of the simulated S-G dissipationless
dynamics of a fluxon in a long JJ in which a free propagating
fluxon is acted on by the SPP perturbation for a limited
time interval. The boundary conditions for ϕx in the motion
equation are standard [34]. We show that the fluxon field
acquires subharmonic oscillations and beating, due to extra
impulse absorbed from the perturbation, without losing its
kink shape, unless the perturbation amplitude is higher than
a critical value, which depends on the initial velocity, which
is in the vicinity of the anticrossing point. Indeed, the fluxon
keeps being rather robust but, meanwhile, it generates inter-
ference of extra 2π jumps. This happens because the soliton
energy is two orders of magnitude larger than the energies
of the excitation modes of Fig. 4, involved. For perturbation
amplitudes higher than the critical value, the fluxon field
loses its shape, but not the periodic dwelling motion, with
reflections at the edge of the junction. The superconducting
phase rolls down as in a washboard potential and a marked
kink in the voltage appears (see Fig. 11). Increasing the
initial velocity of the fluxon makes it more robust up to
the critical perturbation strength, but lowers the threshold
of criticality quite a lot, because the anticrossing point is
approached.

We argue in Appendix B, with an approach similar to
the standard one reported in Appendix A, that dissipative
terms in the motion equation do not affect qualitatively
the fluxon motion provided an applied current bias is fed in
the junction. This is because the MM has a structure on a scale
of hundreds of nanometers, much smaller than the typical
length scale of the junction dynamics λJ [43]. However,
this also requires that the junction itself is quite long, up to
millimeters.

In our idealized geometry, the SPP is generated by low
power infrared radiation impinging on the top superconduct-
ing MM electrode. Of course challenging problems arise in
the actual fabrication of the device which are left out of
this paper. Crucial is the shielding to substantially reduce
light induced quasiparticle excitations while, in the meantime,
guaranteeing good matching between the impinging radiation
and the radiation captured by the MM. Actually, infrared ra-
diation is just below the threshold for quasiparticle excitation
in bulky contacts out of, e.g., Nb nitride or Nb. On the other
hand, thermal heating is limited by the the choice of isolated
light pulses of picosecond duration, a time interval of the order
of quasiparticle relaxation time [44].
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APPENDIX A: FLUXON ENERGY IN THE
DISSIPATIONLESS CASE

Let us neglect for the time being the electromagnetic
source in the motion equation for the fluxon, Eq. (24). The
γ term accounts for a current source and can sustain the
propagation of the fluxon along the junction compensating
the dissipations. In the infinite length limit for the junction
an energy eigenmode for the fluxon can be derived. When
considering the motion equation, Eq. (23), the eigenmode will
have a dispersion characterized by the k vector kx. The 3D
Hamiltonian H0 for the fluxon in the absence of dissipation is

H0 = h̄

2e
Jc λ2

J

∫
dx̃

[
1

2
(ϕt̃ )

2 + 1

2
(ϕx̃ )2 + (1 − cos ϕ)

]
,

with t̃ = ωJt and x̃ = x/λJ . We drop the tilde in the follow-
ing, unless needed. We drop for the time being the prefac-
tor in front of the integral which can also be rewritten as
{φ2

o/[8π2(2λL + d )]} × 1/2π . In the infinite length limit for
the junction, let us consider a forward moving fluxon of the
form of Eq. (6). The energy of the soliton is easily calculated:

E sol
0 = 8√

1 − u2
, (A1)

where u is the velocity in unity of the light velocity c, and is
conserved:

∂H0

∂t
=

∫
dx ϕt [ϕxx − ϕtt − sin ϕ] = 0. (A2)

If we neglect the β term and we use the form of the dissipa-
tionless fluxon of Eq. (6), but with a perturbed steady state
velocity of the fluxon driven by the current Jext (γ = Jext/Jc):

α
8 u∞/c̄√

1 − (u∞/c̄)2
= 2π γ ,

(u∞
c̄

)2
= 1

1 +
(

4 α
πγ

)2 ,

E sol
0 = 8√

1 − (u∞/c̄)2
= 2πγ c̄

α u∞
= 8

√
1 +

(πγ

4 α

)2
. (A3)

These results are well known [32].

APPENDIX B: DISSIPATIVE TERMS IN THE ABSENCE
OF EXCITATION MODES INTERACTION

In our approximations we expect that the dissipative terms,
in the presence of a bias current γ , lead to a stationary state
dynamics which is not qualitatively different from the dy-
namics presented in the dissipationless simulation of Sec. VI.
The dissipation losses should be compensated by the driving
current. In the absence of the forcing term, the fluxon velocity
u can be determined following the same lines of Appendix A,
with inclusion of the β term. In analogy with Eq. (A2), we
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impose

α
1

ωJ

∫
dx (∂tϕ)2 − β

∫
dxdx′

[
∂ϕ

∂t
(x, t ) G[k(x, x′)]

× ∂3ϕ

∂t∂2x′ (x′, t )

]
−

∫
dx γ ∂tϕ = 0. (B1)

As in the derivation of the SPP, we rely on the fact that the MM
modulation is subwavelength and that all space dependencies
are on a scale larger that the periodicity d of the groove lattice.
In particular, k = 2π/λω � π/d , so that we can consider just
average homogeneous MM contacts and the Green’s function
G(k; x, x′) satisfying Eq. (20) and vanishing at the junction
edge, takes the simple form

G(k; x, x′) = 1

k sinh kL
[sinh k(L − x>) sinh kx<], (B2)

where x> (x<) is the larger (smaller) argument between x, x′.
Far from the edges, we can approximate the unperturbed kink
ϕ(ξ ) as a step function at ξ = x − ut = L/2. Hence, ϕt has
even symmetry in space with respect to L/2, while ϕtx has
odd symmetry. On the other hand, G(k; x, x′) ∼ G(k|x − x′|)
and a double integration by parts changes the β term into∫

dxdx′
[
∂ϕ

∂t
(x, t )

∂2

∂x∂x′ G(k; x, x′)
∂ϕ

∂t
(x′, t )

]
. (B3)

Here ∂2

∂x∂x′ G(k; x, x′) is very localized at x ∼ x′, so that this
term can be changed into a local term which renormalizes the
α term. The derivation of u∞ given in Appendix A follows.

APPENDIX C: FORCING TERMS IN THE
NONDISSIPATIVE S-G EQUATION OF MOTION

Let us now derive the forcing terms to be added in the S-G
equation of motion Eq. (4), assumed to be one dimensional
and nondissipative (α′ = 0).

From Eq. (2), the phase jump between the two edges of the
insulating layer is

∂ϑ+
∂x

− ∂ϑ−
∂x

= 8π2λ2
L

φoc
[J+ − J−]

− 2e

h̄c
[Ax(+∞) − Ax(−∞)], (C1)

[J+ − J−] is the difference of superconducting screening cur-
rents at the barrier boundaries of the Josephson junction.
Equation (C1) is consistent with the London equation (C2b):

∂Js

∂t
= nse2

m
�E
∣∣∣∣
b

, ∇ × �Js + nse2

mc
�B = 0. (C2)

In fact, usually the contacts are bulk superconductors and
the �A field decays far from the edge on the scale of λL and
it is possible to take a circuit with z± well within the bulk
so that J± ≡ J (z±) vanish and the circulation of �A along
the circuit provides the full flux piercing the weak link area
(2λL + di )LBy. In the limit to an inhomogeneous but spacially
continuous superconductor, 2λL + di → z+ − z− → 0, a
local expression can be obtained and the finite difference of
the currents J∓ divided by z+ − z− turns into the curl of the

screening currents:

[J− − J+]

2λL + di
→ −∂zJ

sb
x ∼ −∇ × �Jsb|y (C3)

(the label b stands for “bulk”). Similarly, for a continuous
phase

−
∂ϑ+
∂x − ∂ϑ−

∂x

2λL + di
→ �∇ × �∇ϑ |y = 0. (C4)

so that the ŷ component of the London equation (2) is recov-
ered [1/λ2

L = (4πnse2/mc)]:

0 = −∇ × �Jsb|y − (nse
2/mc) By|b. (C5)

However, there are two crucial differences in our case. On the
one hand, the thickness of the superconducting contacts in the
overlap junction is finite and relatively small. On the other
hand, there is the SPP leaking into the upper superconducting
edge generated by the MM at the top, which does not allow
us to drop the difference in the current flowing between the
two contacts. We assume that the perturbed phase difference
ϕ depends on the current imbalance induced by the plasmon
and on the source field Bsource

y , which penetrates a distance λp

along the ẑ direction (λp is discussed in the text). It follows
that Eq. (C1), along the x̂ direction, takes the form

φ0

2π

∂ϕ

∂x
= −(2λL + di ) By

+ 4πλ2
L

c
[J+ − J−]spp − λp Bsource

y , (C6)

where we assume that By = B(1) + B(2), where B(1) is the one
generated by the fluxon in the absence of the external source
and B(2) is the one giving rise to radiating effects.

In the following we derive an expression for curl B(2),
which contributes to the motion equation of Eq. (4) with a
dissipative term, the usually called β term [see Eq. (21)].
We will drop the magnetic field generated by the Josephson
current itself in the derivation, which is usually considered
to be small. We have, excluding the term due to the source
Bsource

y , for the time being

∇ × ∇ × �B(2)|y = ∂z(∇ × �B(2)|x ) − ∂x(∇ × �B(2)|z )

= ∂

∂z

[
4π

c
Jb

x + 4πλ2
L

c

(
4π i σb ω

c2
+ ε∞

ω2

c2

)
Jb

x

]

− ∂

∂x

[
4π

c
Jz|T

]
. (C7)

Here Jb
x denotes the superconducting screening currents in-

duced by the radiation at the boundary of the contacts. The
first square bracket term in the r.h.s. arises from the Maxwell-
Ampere equation

∇ × �B(2)|x = 4π

c
Jx + 1

c

dD(b)
x

dt
, (C8)

where the total current J also includes a contribution from
the Ohmic transport, J = Jb + Jnb = Jb + σb E (2)

b . �D(b) is the
electric induction vector penetrating in the contacts. Both E (2)

bx
and D(b)

x of Eq. (C8) can be related to Jb
x itself, by means of
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the Fourier transform (∂t → −i ω) of the London equation,
Eq. (10): E (2)

bx = −4πλ2
L i ω Jb

x /c2.
The second square bracket term in the r.h.s. of Eq. (C7)

accounts for the normal quasiparticle tunneling current �Jn|T ,
oriented along ẑ. Quasiparticles excited due to the high op-
erating frequency (ω � �/h̄) contribute dissipatively to the
current. The quasiparticle current coexists with the Josephson
current Jc sin ϕ. σqp is the corresponding quasiparticle conduc-
tivity and this term can be expressed in terms of the derivatives
of the phase difference ϕ:

4π

c

∂JnT
z

∂x
= 4π

c
σqp

∂Ez

∂x
≈ 4π

c

σqp

d

∂V (z = 0)

∂x

= 4π

c
σqp

h̄

2e d

∂2ϕ

∂t∂x
.

Finally, according to Eq. (C5),(
4π

c
∇ × Jsb

)
y

≈ 4π

c
∂zJ

sb
x = − 1

λ2
L

B(2)
y , (C9)

so that Eq. (C7) can be written as [42]

∇ × ∇ × �B(2)
∣∣∣
y
+ 1

λ2
ω

B(2)
y = −4π

c

h̄

2e d
σqp

∂2ϕ

∂t∂x
, (C10)

with
1

λ2
ω

≡ 1

λ2
L

+ εb(ω)
ω2

c2

and ε(ω) = ε∞ + 4π i σb

c2 ω
.

The full motion equation for the fluxon is reported in the text,
Eq. (23).
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