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Majorana phase gate based on the geometric phase
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We study the dynamics of a single qubit encoded in two pairs of Majorana modes, whereby each pair is hosted
on a trijunction described by the Kitaev model extended by many-body interactions. We demonstrated that the
challenging phase gate may be efficiently implemented via braiding of partially overlapping modes. Although
such a qubit acquires both geometric and dynamical phases during the braiding protocol, the latter phase may be
eliminated if the Majorana modes are hosted by systems with appropriate particle-hole symmetry.
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I. INTRODUCTION

The Majorana zero-energy modes (MZMs) have recently
attracted significant interest as building blocks of future
topological quantum computers [1–11]. So far, experimental
and theoretical studies have focused mostly on finding an
optimal physical system that hosts the MZM [12–18] as
well as on developing appropriate techniques which clearly
confirm the existence of MZMs therein [19–21]. Recent
experimental results strongly support the presence of the
MZM in superconductor-semiconductor hybrid nanostruc-
tures [22–31], in one-dimensional monoatomic chains de-
posited on the surface of superconductors [32–37], in the
superconducting vortices [38–41], and in two-dimensional
topological superconductors [42,43].

The fundamental problem for quantum computing is to
effectively implement the set of universal gates which con-
sists of the Hadamard gate, the Z gate, and also the π/8
gate (phase gate) [44]. The general scheme for building the
former two gates is already well established via topologically
protected braiding operations of MZMs [45–56]. However,
the phase gate poses a challenging problem since the latter
operations are insufficient for its implementation [6]. The very
basic method of overcoming this problem is to bring two
Majorana quasiparticles close to each other [6]. The MZMs
are operators which map an eigenstate from one parity sector
to a state in another sector with identical energy. Bringing
two MZMs together lifts the latter degeneracy (MZMs are
no longer strict zero modes) and splits the levels for odd and
even numbers of particles by δE . In principle, the phase shift
needed for the phase gate can be obtained via fine tuning of
two parameters: δE and the period of time �t for which the
MZMs are brought close to each other. However, the resulting
phase is not protected by any symmetry, and as a consequence,
each such operation must be followed by an error correction,
e.g., via the magic state distillation [57].
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The phase shift induced via the proximity of two MZMs
is a dynamical phase. Such an operation requires precise
control of two independent parameters: δE and �t . In the
present work we derive another possibility in which fine
tuning of �t is eliminated. It consists of double braiding
two MZMs, which were previously brought together, so that
the Majorana edge states partially overlap in the real space.
Braiding of such overlapping modes leads to a small shift
of the geometric phase with respect to results for spatially
separated MZMs [53]. The geometric phase is independent of
the braiding time �t ; hence, it is better suited for building the
phase gate than the simple protocol based on the dynamical
phase. Despite the apparent advantage of such a protocol,
an important problem remains to be solved: a qubit built
out of overlapping MZMs acquires during its evolution not
only the geometric phase but also the dynamical phase, where
the latter occurs due to the energy splitting δE . However,
we demonstrate that the dynamical phase may be effectively
eliminated if the MZMs are hosted by appropriate systems
with particle-hole symmetry. The latter property is shown to
hold also for systems with many-body interactions. We also
show that the shift of the geometric phase is connected to
the spatial redistribution of MZMs. The discussed scenario is
rather general and is not limited to a particular realization of
the braiding protocol.

This paper is organized as follows: in Sec. II we recall the
method of storing a qubit in four MZMs (sparse encoding)
and specify the microscopic model of a system that hosts
MZMs; next, in Sec. III we present our numerical results
concerning the geometric and dynamical phases gained after
braiding overlapping Majorana modes and show how the latter
phase may be eliminated; finally, we summarize our results in
Sec. IV.

II. MODEL AND DETAILS OF BRAIDING

We study the dynamics of a single qubit (sparsely) encoded
in two pairs of MZMs, �1, �2 and �3, �4. Each pair of MZMs
is hosted on a trijunction schematically shown in Fig. 1(a),
whereas the entire system is sketched in Fig. 2. The basis
of the qubit consists of two states with an even total number
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FIG. 1. (a) Sketch of a trijunction hosting a pair of MZMs, �1

and �2, as well as the braiding procedure marked schematically with
arrows, (b) loss of the fidelity wloss as a function of the total evolution
time T = 6τ , (c) energy gap �E vs time t/τ , and (d) difference
between �φAA and �φBerry vs the evolution time T = 6τ . Results
are for a system with (V = 1) and without (V = 0) many-body
interactions (see labels) for L = 7, � = 0.8, μ = 0.

of fermions, |0〉 = |e12〉 ⊗ |e34〉 and |1〉 = |o12〉 ⊗ |o34〉. Here,
|e12〉 and |o12〉 denote the states of the junction J12 with even
and odd numbers of fermions, respectively. Similar notation
holds for junction J34.

FIG. 2. Two connected trijunctions forming Majorana qubit con-
sisting of four MZMs: �1, �2, �3, �4. As discussed in Sec. III F, the
double execution of the sketched protocols is equivalent to (a) the Z
gate, (b) R(θ ) phase gate, and (c) X gate.

We study the simplest setup which allows for the braiding
of MZMs [45,53]. Namely, we consider a trijunction [see
Fig. 1(a)] consisting of three chains of equal length, and we set
for each chain a different phase of the superconducting order
parameter, �i j = � exp(−iϕi j ), where ϕi j = 0, +π

2 , −π
2 in

the left, right, and vertical chains, respectively. We assume
also that each junction contains L sites and is described by the
Kitaev model [58] with many-body interaction,

H (t ) = H0 +
∑

i

μi(t )̃ni,

H0 =
∑
〈i, j〉

[(t0 a†
i a j + �i ja

†
i a†

j ) + H.c. + V ñĩn j]. (1)

Here, a†
i creates a fermion on site i, ñi = a†

i ai − 1
2 , t0 is the

hopping between the neighboring sites on a junction, and V is
the nearest-neighbor repulsion.

The time dependence of μi(t ) allows us to implement the
braiding of MZMs, as described below in more detail. We
use dimensionless units, h̄ = 1 and t0 = 1. The motivation
for introducing the many-body interaction is that we study
a quasi-one-dimensional system, where even weak Coulomb
interactions may significantly affect the properties of the
system. In particular, in the absence of superconductivity, the
wires are described by the interacting Luttinger liquids [59].
The Majorana states are not completely immune against
many-body interactions [60–67], whereas moderate interac-
tions may even stabilize the MZMs [68–71].

In the case of a single Kitaev chain with a uniform and
time-independent μi(t ) = μ, one may switch between the
trivial and the topological phases via tuning the chemical
potential. In a system without many-body interaction (V =
0) and nonzero |�| > 0, the topological phase is present
for |μ| � 2t0, while the trivial one is present for |μ| >

2t0 [58,72]. The topological regime in a system with many-
body interaction was discussed, e.g., in [62,63,73]. The braid-
ing is achieved via slow tuning of μi(t ) in such a way that
selected sites remain in the topological regime, whereas the
others remain in the trivial regime [45]. Namely,

μi(t ) = μcgi(t ) + μ, (2)

where μ is the uniform chemical potential and we set μc =
±4. The details of the ramping protocol, gi(t ) ∈ [0, 1], are the
same as in Ref. [53] and are recalled in the Appendix.

The braiding protocol describes a cyclic evolution of
the Hamiltonian (1) in the parameter space. The many-
body wave function is obtained from the numerical solu-
tion of the time-dependent Schrödinger equation i∂t |ψ (t )〉 =
H (t )|ψ (t )〉, where |ψ (0)〉 is the ground state of the initial
Hamiltonian H (0). The ground state has been obtained from
the Lanczos method, studying independently sectors with odd
and even particle numbers. The evolution |ψ (t )〉 → |ψ (t +
δt )〉 is calculated in small time windows, δt ∼ 0.01, by
expanding the unitary propagators exp[−iH (t + δt/2)δt] in
the Chebyshev polynomials [74–76].

First, we consider a single braiding of two MZMs on a
single trijunction, as shown in Figs. 1(a) and 2(a). Initially
(t = 0), we set μi = μc for sites i in the vertical chain, which
is then in the trivial regime. Two remaining (horizontal) chains
are in the topological regime and host two MZMs located
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at the edges of these wires. Next, by adiabatic tuning of
gi(t ), we control the boundaries of the topological regime and
swap the positions of �1 and �2 [see Fig. 1(a)]. We split our
protocol into six equal time windows: (0, τ ), moving �1 to
the center of the junction; (τ, 2τ ), moving �1 to the edge of
the vertical chain; (2τ, 3τ ), moving �2 to the center of the
junction; (3τ, 4τ ), moving �2 to the edge of the left chain;
(4τ, 5τ ), moving �1 to the center of the junction; and (5τ, 6τ ),
moving �1 to the edge of the right chain. These steps are
shown explicitly in Fig. 8, presented in the in the Appendix.

III. RESULTS

A. Geometric phase for braiding on a single trijunction

We examine the non-Abelian properties of MZMs by
calculating the geometric phases: the Berry phase φBerry in
the case of the adiabatic evolution [77] and the Aharonov-
Anandan phase φAA in the case of a general cyclic evolu-
tion [78]. However, first, we check when the evolution is
cyclic, i.e., when the final quantum state |ψ (T )〉〈ψ (T )| equals
the initial one |ψ (0)〉〈ψ (0)|, where for the present protocol
T = 6τ . We examine this property by calculating the loss of
the fidelity,

wloss = 1 − |〈ψ (T )|ψ (0)〉|2, (3)

which is shown in Fig. 1(b). One may observe that this
quantity decreases when the evolution time increases and
becomes negligible for τ � 100. The necessary condition for
the adiabaticity of the time evolution is a nonvanishing energy
gap between the ground state and the first excited state. In
Fig. 1(c) we show the gap �E = min{Eo

1 − Eo
0 , Ee

1 − Ee
0 }

during the entire evolution, where Ee(o)
n is the energy of the

n eigenstate in the even- (odd-) parity sector. Since �E does
not vanish, the evolution should be adiabatic for sufficiently
large τ .

In the case of a cyclic evolution the initial and final wave
functions differ only by the phase factor,

|ψ (T )〉 = eiφ|ψ (0)〉 = ei(φdyn+φgeo )|ψ (0)〉, (4)

which contains both the gauge-invariant geometric phase φgeo

and the dynamical phase φdyn [79]. We evaluate the geometric
phase from the standard expression [80],

φgeo = arg[〈ψ (0)|ψ (T )〉] − arg

⎡
⎣N−1∏

j=0

〈ψ (t j )|ψ (t j+1)〉
⎤
⎦, (5)

where t0 = 0 and tN = T . In the case of a generic cyclic
quantum evolution, φgeo evaluated from Eq. (5) represents
φAA. Then, the wave function |ψ (t j )〉 is obtained directly
from the time-dependent Schrödinger equation. In the case of
the adiabatic cyclic evolution, φAA = φBerry. Then, the wave
functions |ψ (t j )〉 are obtained from the diagonalization of the
instantaneous Hamiltonians H (t j ).

The essential quantity for implementing the Majorana
quantum gates is the difference between phases acquired dur-
ing evolution in sectors with even and odd particle numbers:
�φgeo = φe

geo − φo
geo, (see the basis states of the qubit). As a

final test of the adiabatic evolution, in Fig. 1(d) we show that
the difference �φAA − �φBerry decreases with increasing τ .

The latter difference is significantly larger for systems with
many-body interactions; nevertheless, one may expect that it
vanishes for τ → ∞ also for V 	= 0. Therefore, from now on
we focus only on the adiabatic evolution.

Finally, we introduce the dynamical phase for the adiabatic
evolution in the ground states, e.g., for |e12(t )〉:

φ
e,J12
dyn =

∫ T

0
dt 〈e12(t )|H (t )|e12(t )〉, (6)

and the phase difference between even- and odd-parity sec-
tors,

�φ
J12
dyn = φ

e,J12
dyn − φ

o,J12
dyn . (7)

The latter quantity is proportional to the difference of the
ground-state energies in various sectors, δE = Ee

0 − Eo
0 . One

tries to eliminate the dynamical phase and work only with the
geometric phase.

If Majorana fermions are separated in real space, then they
are strict zero modes; hence, Ee

0 = Eo
0 , and �φ

J12
dyn = 0. Then,

the only contribution to the phase difference comes from the
geometric phase, �φ = �φBerry. It is well established that the
braiding of strict MZMs leads to �φBerry = ±π

2 [45]. In order
to construct the phase gate based on the geometric phase,
one needs a protocol for which �φBerry = π/4 [44], whereas
�φdyn = 0. Such a gate is unprotected by topology, but it is
adiabatic; that is, the acquired phase is independent of the
evolution time.

B. Braiding error due to overlap of the Majorana fermions

The geometric phase is a gauge-invariant quantity provided
that the Hamiltonian follows a closed loop in the parameter
space. However, in order to gain more insight, we introduce
also the adiabatic exchange phase �ϕex(t ), defined for ar-
bitrary 0 � t � T [53], such that �φBerry = �ϕex(T ). Fig-
ure 3(a) shows the latter quantity. While the exchange phase

FIG. 3. Single braiding on a single trijunction for μ = 0: (a) ex-
change phase �ϕex during evolution as a function of time t/τ for
L = 7, (b) finite-size scaling of the braiding error ε, (c) split between
the instantaneous ground-states energies in different parity sectors
δE (t ) = Ee

0 (t ) − Eo
0 (t ), and (d) finite-size scaling of the average

energy split δE .
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is not gauge invariant and could depend on the particular
realization of a protocol, it gives intuitive insight into the
details of the protocol [50,53,81]. For the special case � = 1,
V = 0, the MZMs are located on single edge sites and do not
overlap during the braiding even for a finite system. Then,
�φBerry = π

2 for arbitrary L, as shown in Fig. 3(a). However,
for � 	= 1 and finite L, such a phase deviates from π

2 by
a braiding error, ε = �φBerry − π

2 . Figure 3(b) demonstrates
that the braiding error is a finite-size effect. In the case of an
infinite trijunction, when the MZMs are fully separated in real
space, ε seems to vanish, and the Berry phase equals π

2 .
We stress that a nonzero braiding error is intimately con-

nected to a nonvanishing dynamical phase. Overlap of the
Majorana fermions lifts the degeneracy of the ground state,
Ee

0 	= Eo
0 ; hence, in general, �φ

J12
dyn 	= 0. The energy splitting

δE depends on the distance between the Majorana fermions,
which varies during the evolution. In Fig. 3(c) we show the
instantaneous δE as a function of the evolution time t/τ for
different system sizes L. It is clear that δE decreases when
L increases. In order to discuss this effect in more detail,
we have calculated the average splitting δE = 1

T

∫ T
o dt δE (t ),

which also determines the dynamical phase �φ
J12
dyn = T δE .

Figure 3(d) shows the finite-size scaling of δE , which seems
to decay almost exponentially with increasing L.

C. Cancelation of the dynamical phases

While the braiding error should be avoided in the topo-
logically protected operations, it may still be very useful for
constructing the phase gate with arbitrary phase shift. The ad-
vantage of such a solution over the simplest protocol based on
getting Majorana fermions close to each other consists of the
fact that �φBerry does not depend on the total evolution time T .
However, a nonzero braiding error is intimately connected to
a nonzero dynamical phase. Therefore, the idea of using the
Berry phase would be useless unless one finds a method of
eliminating the dynamical phase. Below we show that �φdyn

can, indeed, be eliminated by appropriate tuning of junctions
which build the Majorana qubit.

We assume that both trijunctions, J12 and J34, are de-
scribed by the same Hamiltonian (1), which is particle-hole
symmetric up to the term containing μi [see Eq. (2)]. Each
junction contains an odd number of sites, and the braiding
is applied twice to each junction [see Fig. 2(b)]. However,
one applies positive μi for one junction and negative μi for
the other. Namely, the trijunctions J12 and J34 are described,
respectively, by the Hamiltonians

H12(�i j ) = H0(�i j ) +
∑

i

μi(t )̃ni, (8)

H34(�i j ) = H0(�i j ) −
∑

i

μi(t )̃ni, (9)

where for clarity of the present discussion we explicitly mark
the dependence of Hamiltonians on the superconducting order
parameter.

In Fig. 4(a) we present the geometric phase �ϕex gained
by each junction during such a double-braiding protocol. The
sign of μi does not influence the geometric phase, and we find
�φ̄

J12
Berry = �φ̄

J34
Berry = π + 2ε. Here, the symbol ·̄ indicates

FIG. 4. (a) and (b) Double braiding for μ = 0. We set μc = 4
and μc = −4 for junctions J12 and J34, respectively. (a) Exchange
phase �ϕex and (b) energy splittings δE determined separately for
each junction. Spatial structures of Majorana fermions �1 (red solid
line) and �2 (blue dashed line) (c) before and (d) after single braiding
for � = 0.8 and V = 0 (L = 7, μ = 0).

that braiding is applied twice. However, Fig. 4(b) shows that
the energy splittings δE for the trijunctions J12 and J34 have
opposite signs; hence, �φ̄

J12
dyn + �φ̄

J34
dyn = 0. In order to explain

the latter identity we assume that the sites within each junction
are enumerated according to the scheme shown in the inset
in Fig. 4(c). Then, it is easy to check (for odd L) that the
neighboring sites 〈i, j〉 are labeled by integers with opposite
parities; that is, if i is odd, then j is even. In other words,
the trijunctions form a bipartite lattice consisting of two
sublattices which contain, respectively, odd and even lattice
sites i.

We consider a standard particle-hole (Shiba) transforma-
tion [82],

U = (a†
L − aL )(a†

L−1 + aL−1) · · · (a†
2 + a2)(a†

1 − a1), (10)

for which U †U = UU † = 1 and UaiU † = (−1)ia†
i . One finds

that Hamiltonians of both junctions are connected via this
particle-hole transformation,

UH12(�i j )U
† = H34(�∗

i j ), (11)

whereas the parity operator

P =
L∏

i=1

(1 − 2a†
i ai ) (12)

is odd under the latter transformation, UPU † = (−1)LP =
−P. Considering an eigenstate |n〉 of H12(�i j ),

H12(�i j )|n〉 = En|n〉, P|n〉 = pn|n〉, (13)

one finds that U |n〉 is an eigenstate of H34(�∗
i j ) with energy

En but with the opposite parity, PU |n〉 = −pnU |n〉. Therefore,
H12(�i j ) and H34(�∗

i j ) have the same energy spectra, but with
swapped parities of the energy levels. It is also clear that the
energy spectrum of H34(�∗

i j ) is the same as that of H34(�i j ).
Overlapping of the Majorana fermions lifts the ground-

state degeneracy; however, the above particle-hole transfor-
mation holds true during the entire quantum evolution. Then,
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using Eq. (6), one finds that φ̄
e,J12
dyn = φ̄

o,J34
dyn as well as φ̄

o,J12
dyn =

φ̄
e,J34
dyn and, consequently,

�φ̄
J12
dyn + �φ̄

J34
dyn = φ̄

e,J12
dyn − φ̄

o,J12
dyn + φ̄

e,J34
dyn − φ̄

o,J34
dyn = 0. (14)

The phases gained by the qubit’s basis states read

|0〉t=2T = exp
[
i
(
φ̄

e,J12
dyn + φ̄e,J12

geo + φ̄
e,J34
dyn + φ̄e,J34

geo

)] |0〉t=0,

|1〉t=2T = exp
[
i
(
φ̄

o,J12
dyn + φ̄o,J12

geo + φ̄
o,J34
dyn + φ̄o,J34

geo

)] |1〉t=0;

(15)

hence, the cyclic evolution of an arbitrary state of the qubit
|ψ〉 takes the form

|ψ (2T )〉 = eiχ R(θ )|ψ (0)〉, (16)

where

R(θ ) =
[

1 0
0 eiθ

]
, |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (17)

Here, R(θ ) is the phase gate, while χ is a global phase that
is not relevant for the operation of the latter gate [44]. Using
Eqs. (14) and (16), one finds

χ = φ̄
e,J12
dyn + φ̄

e,J34
dyn + φ̄e,J12

geo + φ̄e,J34
geo , (18)

θ = −�φ̄J12
geo − �φ̄J34

geo = −4ε. (19)

Due to the particle-hole symmetry, the operation of the gate
depends solely on the braiding error for the geometric phase
(θ = −4ε), whereas the dynamical phases enter only the
global phase.

To summarize this section, we note that the discussed
scenario is general in that it is independent of the particular
form of the Hamiltonian (1) and arises solely from its particle-
hole symmetry. One needs to apply the same protocol to
both junctions; however, the execution of these protocols does
not need to be synchronized in time. In other words, the
protocols can be executed on two trijunctions sequentially;
however, the variations of the parameters within the same
time interval must be identical for both junctions, up to the
opposite signs of μi(t ). The time dependence of μi(t ) may be
implemented by applying opposite gate voltages to both junc-
tions. Experimental application of this protocol may still pose
challenging technical problems. In particular, both junctions
may not be identical, more realistic Hamiltonians may contain
terms which break the particle-hole symmetry, or μi(t ) on
both junctions may have slightly different magnitudes. Then,
in general, the dynamical phase would also contribute to the
phase θ in Eq. (17), and the latter contribution could be
eliminated only via fine tuning of the experimental setup,
e.g., via tuning the execution time on one trijunction. If such
fine tuning turns out to be insufficient, the protocol should be
followed by the error correction [57]; however, the initial error
is expected to be smaller than in the protocol based on a purely
dynamical phase of overlapping Majorana modes.

D. Tuning of the geometric phase

The main result of the present work concerns the phase
gate based on the braiding error ε, i.e., the deviation of the
Berry phase �φBerry from π

2 . The braiding error vanishes for

FIG. 5. Absolute value of the braiding error ε (i.e., the deviation
of the Berry phase �φBerry from π

2 ): (a) and (b) |ε| as a function of
interaction V and superconducting gap � (μ = 0) for L = 7 and L =
13, respectively, and (c) and (d) |ε| as a function of interaction V and
chemical potential μ (� = 0.6) for L = 7 and L = 13, respectively.

the topologically protected gates when one braids nonover-
lapping MZMs on an infinite trijunction. However, in order to
construct the standard π/8 gate, one needs ε = π/16. Here,
we show for a finite junction that ε may be rather easily tuned
via changing the parameters of the Hamiltonian (1).

Since ε originates from the overlap of Majorana fermions,
it strongly depends on the system size. Figures 5 shows |ε| for
L = 7 and L = 13, which are the smallest system sizes with
odd L. In Figs. 5(a) and 5(b) we show how |ε| depends on
the many-body interaction V and the superconducting order
parameter � for μ = 0. Figures 5(c) and 5(d) show the same
quantity for � = 0.6 as a function of the many-body interac-
tion V and chemical potential μ. Tuning the superconducting
order parameter or the interaction strength is (most likely) not
relevant for realistic experimental setups. Therefore, the most
important result is that ε may be well tuned via changing the
chemical potential.

E. Spatial structure of overlapping Majorana
fermions after braiding

In order to follow the spatial structure of the overlapping
Majorana fermions (�1 and �2) during a single adiabatic
braiding on a single junction J12, we represent both fermions
as a linear combination of the local Majorana operators γ +

i =
ai + a†

i and γ −
i = i(ai − a†

i ), namely, �m = ∑L
i (αm,+

i γ +
i +

αm,−
i γ −

i ) for m ∈ {1, 2}. Then, we apply the algorithm de-
veloped in Ref. [63] to find the coefficients αm,±

i for each
instantaneous Hamiltonian H (t ). This algorithm targets the
MZMs following their formal definition via the commutation
relations [6]: {�m, �m′ } = 2δm,m′ and [�m, H] = 0. The latter
commutation relations are invariant under the rotation �� →
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ANDRZEJ WIĘCKOWSKI et al. PHYSICAL REVIEW B 101, 014504 (2020)

O (β )��, where

�� =
[
�1

�2

]
, O (β ) =

[
cos β − sin β

sin β cos β

]
; (20)

hence, also the coefficients αm,±
i are defined up to an arbitrary

choice of β. Initially, at time t = t0, we choose the angle
β(t0) following the standard convention in that �1 and �2 are
located at the opposite edges of the trijunction, as shown in
Fig. 4(c). Then, for each time t j during the adiabatic evolution,
we find the β(t j ) that minimizes the (squared) distance,

‖��(t j ) − ��(t j−1)‖2 =
L∑

i=1

2∑
m=1

∑
s=±

[
αm,s

i (t j ) − αm,s
i (t j−1)

]2
.

(21)
If Majorana fermions are strict zero modes, then this approach
reproduces the standard braiding that swaps the MZMs, i.e.,
�1(T ) = ±�2(0) and �2(T ) = ∓�1(0). The latter swapping
may also be written as ��(T ) = O (�φBerry)��(0) for �φBerry =
±π

2 . It turns out that the latter relation holds true also for
�φBerry 	= ±π

2 , i.e., also for braiding of the overlapping Majo-
rana fermions. Then, however, the cyclic evolution cannot be
understood as a simple swapping of the Majorana fermions. In
particular �1(T ) becomes a linear combination of both �1(0)
and �2(0); hence, it contains nonvanishing contributions lo-
cated at both edges of the junction [see Figs. 4(c)–4(d)]. The
latter holds true whenever �φBerry is not a multiple of ±π

2 .

F. Phase gate constructed from the braiding error

It is desirable to have a single junction on which one
may perform the topologically protected operations, e.g.,
braiding of separated MZMs with �φBerry = ±π

2 , and also
the unprotected adiabatic operations, e.g., the braiding of
overlapping MZMs with �φBerry 	= ±π

2 . Due to the former
operations, the trijunction with L sites should be as large as
possible (formally, L → ∞), and the corresponding protocol
is schematically shown in Fig. 2(a). Then, in order to perform
also the latter operation, one needs to bring both MZMs
towards the center of the junction, so they start to overlap.
This may be achieved via appropriate tuning of μi(t ) in the
time window t ∈ (−τ, 0) [see the left shaded area in Fig. 6(a)

FIG. 6. Braiding of MZMs which are brought together for t ∈
(−τ, 0) and shifted apart for t ∈ (6τ, 7τ ). We set � = 0.8, μ =
0. (a) Exchange phase �ϕex for L = 19 and L′ = 7. (b) Geomet-
ric phase �φBerry for L′ = 7 vs L. Horizontal lines in (b) show
�φBerry(∞) for L′ = 7 obtained from the finite-size scaling to L →
∞ using an exponential fitting function �φBerry(L) = a exp(−bL) +
�φBerry(∞).

FIG. 7. A schematic plot of the unrestricted (all sites) and re-
stricted (blue sites) junctions consisting of L and L′ sites, respec-
tively. Initially, two MZMs are located at the edges of the unrestricted
junction. Then, they are brought together to the edges of the restricted
junction, braided, and shifted apart to the initial positions at the edges
of the unrestricted junction.

as well as Fig. 7]. Then, one may carry out the braiding
protocol on the restricted trijunction with L′ � L sites in
the time window t ∈ (0, 6τ ). The latter protocol is sketched
in Fig. 2(b). Finally, for t ∈ (6τ, 7τ ) the Majorana fermions
are shifted apart to their original positions at the edges of
the unrestricted (infinite) junction with L sites [see the right
shaded area in Figs. 6(a) and 7].

Figure 6(a) shows the exchange phase �ϕex(t ) for L = 19
and L′ = 7. The changes in �ϕex(t ) during the time windows
when MZMs are brought together, (−τ, 0), or when they
are shifted apart, (6τ, 7τ ), are small but not negligible. As
discussed in Sec. III C, implementation of the phase gate
depends on the braiding error ε; hence, the latter quantity
should be finite also for L → ∞. The most desirable scenario
is when ε is determined mostly by L′ and weakly depends on
L. In order to establish the L dependence of the geometric
phase we numerically studied the series of junctions shown
in Fig. 7. Figure 6(b) shows one of the main results of the
present work: the finite-size scaling of the geometric phase
�φBerry for fixed L′ = 7 and various L. In contrast to results
in Fig. 3(a), the braiding error is not a finite-size effect and
remains nonzero also for L → ∞ provided that L′ is finite
and Majorana fermions overlap during the braiding protocol.
Weak L dependence of �φBerry in Fig. 6(b) may originate from
the leakage of MZMs into these sites, which remain in the
trivial regime [13,83,84].
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A robust scheme for obtaining a Majorana phase gate was
recently discussed in Ref. [47] within an effective model
that describes only MZMs, and the braiding was performed
via changing the couplings between them in a specific time
sequence. In the present case, these effective couplings arise
from the parameters of the microscopic Hamiltonian (1), and
the braiding is implemented via the time dependence of the
local potentials. Nevertheless, the main objective of both
approaches is the same: to eliminate the dynamical phase
and to implement the phase gate in terms of the geometric
phases. Repeating a specific gate protocol in Ref. [47] allows
us to eliminate the dynamical phase and up to errors from
the temporal change of the system between the parity-echo
protocol steps. In the present approach the dynamical phase
is eliminated due to the particle-hole symmetry of the system
that hosts MZMs.

To summarize the discussion, in Fig. 2 we show a minimal
setup for a single-qubit realization of all basic gates. In
Figs. 2(a) and 2(c) we recall the standard implementations
of the topologically protected gates X = [0 1

1 0] and Z =
[1 0
0 −1], respectively [45,85]. In both cases the MZMs do

not overlap with each other throughout the entire protocol.
In Fig. 2(b) we present the protocol for the phase gate R(θ ),
implemented via braiding of the overlapping MZMs.

IV. CONCLUSIONS

We have studied the dynamics of a qubit built out of
four Majorana quasiparticles evolving on two trijunctions. We

FIG. 8. Braiding protocol: (a) initial position of the MZMs,
(b) moving �1 to the center of the junction, (c) moving �1 to the edge
of the vertical chain, (d) moving �2 to the center of the junction, (e)
moving �2 to the edge of the left chain, (f) moving �1 to the center
of the junction, (g) moving �1 to the edge of the right chain, and (h)
the final position of the MZMs.

FIG. 9. Standard braiding protocol. (a)–(c) Potentials μi as a
function of time t/τ in: (a) left, (b) right, and (c) vertical chains of
the trijunction. (d) The numbering of sites.

focused on a case in which Majorana fermions evolve on
spatially restricted junctions. Due to their mutual overlapping,
they are not strict zero modes anymore; hence, the qubit
acquires both dynamical and geometric phases during the
braiding protocol. We have demonstrated that the dynami-
cal contribution may be canceled out if the trijunctions are
described by the same particle-hole-symmetric Hamiltonian
and contain an odd number of the lattice sites. The geometric
contribution deviates from that for braiding of strict zero
modes �φBerry = ±π

2 , and the latter deviation allows one to
build the adiabatic phase gate with tunable phase shift. The

FIG. 10. Extended braiding protocol in which MZMs are brought
together for t ∈ (−τ, 0) and shifted apart for t ∈ (6τ, 7τ ). (a)–
(d) Potentials μi as a function of time t/τ for selected sites of
(a) left, (b) right, and (c) vertical chains of the trijunction, which
is schematically represented in (e); (d) shows μi for sites marked
with red rectangles in (e). For sites which are marked with the gray
rectangle in (e) we set μi(t ) = μc throughout the protocol.
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only difference with respect to the topologically protected
braiding of MZMs consists of the fact that the Majorana
fermions are brought together before the braiding and are
shifted apart after the braiding. Probably, the protocol still
should be followed by some error correction; however, the
initial error is expected to be smaller than in the standard
protocol based on the dynamical phase.
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APPENDIX: SMOOTH RAMPING PROTOCOL

We use exactly the same smooth ramping protocol as in
Ref. [53]. Figure 8 illustrates subsequent steps of the braiding
protocol and the corresponding time windows. The swap

of MZMs is achieved via appropriate tuning of μi(t ); see
Eqs. (1) and (2) in the main text. Whenever we ramp up
selected sites, we use the following time-dependent function
gi(t ) ∈ [0, 1]:

gi(t ) = m

{
t

τ
[1 + α(� − 1)] − α(� − i)

}
, t ∈ [0, τ ],

(A1)

where we take α = 0.025 and � is the length of each
chain, i.e., L = 3� + 1. Here, m(x) is a scalar function,
m(x) = sin2[π

2 r(x)], and r(x) is a linear ramp, r(x) =
min[max(x, 0), 1]. For the ramp-down protocol, we replace
t → τ − t in Eq. (A1) to reverse the process in time.
Figure 9 shows μi(t ) for the standard braiding protocol
relevant for Fig. 3 in the main text. Figure 10 shows
the same, but for the extended protocol in which MZMs
are first brought together for t ∈ (−τ, 0), braided for t ∈
(0, 6τ ), and shifted apart for t ∈ (6τ, 7τ ); see Fig. 6 in the
main text.
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[14] M. M. Maśka and T. Domański, Polarization of the Majo-
rana quasiparticles in the Rashba chain, Sci. Rep. 7, 16193
(2017).
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ANDRZEJ WIĘCKOWSKI et al. PHYSICAL REVIEW B 101, 014504 (2020)

[57] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[58] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[59] F. D. M. Haldane, ‘Luttinger liquid theory’ of one-dimensional
quantum fluids. I. Properties of the Luttinger model and their
extension to the general 1D interacting spinless Fermi gas, J.
Phys. C 14, 2585 (1981).

[60] S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss,
Majorana Edge States in Interacting One-Dimensional Systems,
Phys. Rev. Lett. 107, 036801 (2011).

[61] A. Manolescu, D. C. Marinescu, and T. D. Stanescu, Coulomb
interaction effects on the Majorana states in quantum wires, J.
Phys.: Condens. Matter 26, 172203 (2014).

[62] R. Thomale, S. Rachel, and P. Schmitteckert, Tunneling spectra
simulation of interacting Majorana wires, Phys. Rev. B 88,
161103(R) (2013).
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