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Hilbert space fragmentation and Ashkin-Teller criticality in fluctuation coupled Ising models
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We discuss the effects of exponential fragmentation of the Hilbert space on phase transitions in the context
of coupled ferromagnetic Ising models in arbitrary dimension with special emphasis on the one-dimensional
case. We show that the dynamics generated by quantum fluctuations is bounded within spatial partitions of the
system and weak mixing of these partitions caused by global transverse fields leads to a zero temperature phase
with ordering in the local product of both Ising copies but no long-range order in either species. This leads to a
natural connection with the Ashkin-Teller universality class for general lattices. We confirm this for the periodic
chain using quantum Monte Carlo simulations. We also point out that our treatment provides an explanation for
pseudo-first-order behavior seen in the Binder cumulants of the classical frustrated J1 − J2 Ising model and the
q = 4 Potts model in two dimensions.
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I. INTRODUCTION

The nature of quantum phase transitions has generated
a large amount of interest in the context of magnetic sys-
tems. Some of the important fields in which the physics at
a quantum phase transition plays an essential role include
order-to-order transitions with exotic emergent symmetries
[1–4], determining the ability of quantum annealing to solve
computational problems [5–7], and the understanding of field-
theoretic frameworks to describe low-energy physics of dis-
crete models [8–10]. Crucial to these topics is the structure
of low-energy excitations at critical points, especially those
which have spatial restrictions such as fractons [11,12]. Re-
cently these restricted dynamics have been seen as a conse-
quence of spatial “fragmentation” of the Hilbert space [13,14].
Fragmentation describes the consequence of block diagonal-
ization of a Hilbert space into an exponentially large number
of sectors, with spatial structure corresponding to the states
making up a sector. A similar phenomenon has been observed
in quantum dimer models as well [15], although a spatial
pattern corresponding to sectors has not been identified in this
case.

In this article, we address another more general mani-
festation of the phenomenon of Hilbert space fragmentation
by introducing a simple model whose Hilbert space breaks
into an exponentially large number of sectors, each of which
has interesting spatial patterns which limit the growth of the
correlation length. We draw connections between the nature
of this fragmentation and the partitions of natural numbers and
discuss in the context of this model the effects of the underly-
ing lattice it is set on in terms of its percolation properties and
the structure of excitations they lead to. We study the nature
of eigenstates and energies for the one-dimensional (1D) case
and briefly discuss our expectations from this model when it
is placed in contact with a thermal bath. We then turn to the
effects of adding symmetry-breaking quantum perturbations
at zero temperature, where we find behavior suggestive of a

phase with partial ordering. We draw a comparison with the
Ashkin-Teller model [16], where a similar phase is seen, and
argue for a complete mapping between our model and the
Ashkin-Teller model. We quantitatively check this mapping
for the 1D case using quantum Monte Carlo simulation and
find consistency with the range of continuously varying expo-
nents already known to exist for the Ashkin-Teller universality
class [17,18]. We also point out that the partially ordered
phase provides an explanation for pseudo-first-order behavior
observed in the Binder cumulants at some continuous phase
transitions, e.g., 2D q = 4 Potts and J1 − J2 frustrated Ising
models [19].

The outline of the paper is as follows: In Sec. II, we present
the model, describe the fragmented Hilbert space structure,
and point out the few general constraints required to get
this feature. We also present a detailed study of the energy
spectrum for a periodic chain. In Sec. III, we incorporate
the perturbation which takes the systems away from the
fragmented Hilbert space structure and briefly discuss the
expected effect on dynamics. This is followed by a description
of the Ashkin-Teller universality class along with a general
mapping to our system, which we check in detail for the 1D
system through numerical results. In Sec. IV, we describe
pseudo-first-order behavior and the role of the partially or-
dered phase in generating a behavior similar to the four-state
Potts and other related models. In Sec. V, we conclude with a
brief summary and discussion.

II. FLUCTUATION COUPLED ISING
MODELS AND FRAGMENTATION

We will introduce the fragmentation of the Hilbert space
and its consequences in the context of a coupled Ising model
made out of two Ising species, σ and τ , with the following
Hamiltonian:

H = − s

2

∑
〈i, j〉

(
σ z

i σ z
j + τ z

i τ
z
j

) − (1 − s)
∑

i

σ x
i τ x

i . (1)
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FIG. 1. A fragment arrangement for the square lattice with inter-
acting sites connected by dotted lines. The +’s and −’s denote the
value of σ z

i τ z
i at each site.

Here 〈i, j〉 refers to nearest neighbors and s is the tuning
parameter used to drive the ground state from a paramagnet
(s = 0) to a ferromagnet (s = 1). This model can also be
written using just a single species (σ ) which lives on a
larger lattice and comprises two copies of the original lattice
connected in a bilayer fashion.

The Hamiltonian described in Eq. (1) possesses a local
conserved quantity, σ z

i τ z
i , associated with each site of the

lattice. This is due to the particular form of the quantum
fluctuation, σ x

i τ x
i , which commutes with σ z

i τ z
i . As σ z

i τ z
i is a

conserved quantity, it takes well-defined values, which are +1
and −1 in this case. For a lattice with N sites, the set {σ z

i τ z
i }N

i=0
can take 2N values, implying that the Hamiltonian can be
broken into 2N blocks. An example of one such block is shown
in Fig. 1 for a square lattice, where +/− denote the value of
σ z

i τ z
i at each site. In terms of the individual σ and τ spins, we

shall use 0 to denote the state σ z(τ z ) = −1 and 1 to denote
σ z(τ z ) = +1. Now the four possible states in the z basis on a
single site are {00, 01, 10, 11}, where the first number denotes
the state of the σ spin (0 or 1) and the second denotes the τ

spin. The constraint of a particular value for σ z
i τ z

i reduces the
number of basis states at site i to two. This implies each block
is a 2N × 2N matrix.

For the rest of our analysis, we will assume that we have
block diagonalized the Hamiltonian in Eq. (1) and that any
quantum state of the system belongs only to one of these
blocks. In addition to the block structure due to the conserved
quantities described above, there is a further fragmentation
within each block. This is developed below for the cases of
an arbitrary lattice and a periodic chain.

A. Arbitrary lattice

We begin by considering a system which lives on an arbi-
trary lattice or dimensionality and examine the spin degrees
of freedom. We show below that for nearest-neighboring sites
i and j, if the state of the system belongs to a block such that
σ z

i τ z
i �= σ z

j τ
z
j , then this pair of sites can be considered to be

noninteracting.
First consider σ z

i τ z
i = σ z

j τ
z
j = +1, with the state 00 on

site i and the state 11 on site j. The energy cost of such
an arrangement due to the classical term −(σ z

i σ z
j + τ z

i τ
z
j ) is

−2 (in units of the ferromagnetic coupling). This can be
maximized by switching 11 → 00 on site j, which is allowed
by σ z

j τ
z
j = +1. If the constraint on site j is instead chosen to

be σ z
j τ

z
j = −1, then site j hosts either 01 or 10, and the energy

associated with the arrangement of states on i and j will
always be 0, as one of the bonds (either σσ or ττ ) is always
broken while the other is always satisfied. This implies that,
from energy considerations, states 01 and 10 are equivalent
if site i hosts 00. It follows that, if σ z

i τ z
i = σ z

j τ
z
j , then they

have an Ising bond of strength s between them, else they are
noninteracting. If we now consider a typical set of values of
{σ z

i τ z
i }N

i=0 (corresponding to a block) as shown in Fig. 1 for a
2D lattice, then we see that the system has essentially broken
into several smaller Ising models which coexist on the lattice.
We call each of these smaller Ising models a fragment. For
simple regular lattices, such as a 1D chain, square, or cubic
lattice with periodic conditions, the fragment arrangements
can be related to the partitions of natural numbers [20,21].
This connection will be later illustrated using a periodic chain.
It is worth noting here that this argument applies also for a
more general classical term of the form f (σ z

0 , τ z
0 , . . . , σ

z
N , τ z

N ),
which is symmetric under the exchange of the Ising species,
σ → τ . As this function must be symmetric for all spin
configurations, the constraint would need to be satisfied for
each bond, and the above argument would be valid. There may
be other convoluted ways to satisfy the symmetry requirement
for certain complicated functions.

The phenomenon described above is similar to the frag-
mentation discussed in recent work in the context of the
eigenstate thermalization hypothesis [13,14] and has also been
studied in disordered Floquet circuits composed of Clifford
gates [22]. This phenomenon has also been observed numeri-
cally in quantum dimer models with restricted dynamics, but
a similar real-space geometric way to understand the same has
not been identified in that context [15].

One of the key features of the fragmentation of real space
into components is that the correlation length in a particular
block is bounded by the spatial extent of the largest clusters
in the corresponding fragment arrangement. This feature de-
pends crucially on the restricted dynamics generated by σ x

i τ x
i

and the classical term allowing a degeneracy in energies. If the
classical term were to be augmented by adding an interaction
of the form −σ z

i τ z
j which breaks the σ → τ symmetry, then

the noninteracting nature would be lost as the state 00 on site i
would now prefer 10 on site j over 01. Due to this term, each
spin species has a global pattern specific to which block the
state belongs, and fluctuations would occur around this pattern
in the large s limit. The maximal correlation length in every
block grows to the system size in the presence of such a term,
although the details of this growth depend on the structure of
the particular block. These arguments illustrate that, although
the quantum term determines the block structure, interacting
units within a block may be controlled by the choice of
classical terms. Careful choice of tuning parameters can also
create a scenario where there are two length scales, one
associated with the growth of correlation within a component
and the other with the growth across components. If we were
to require that the symmetry in σ → τ be maintained, then an
additional term would have to be added to ensure that the state
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00 does not favor one of 01 or 10, and the physics would again
be the same as the Hamiltonian in Eq. (1).

As a particular block in the Hamiltonian can be thought
of as a configuration where each site is assigned either +1 or
−1 with probability 1/2, it can also be written in terms of a
percolation problem where a particular site is occupied or left
empty. If the percolation threshold for the particular lattice is
below 1/2, then most blocks will have a giant fragment and
this may have consequences on the correlation length as far
above the percolation threshold, almost all blocks will have
diverging length scales, leading to a continuous transition.
The universality class for the transition may relate to those of
diluted Ising models above the percolation threshold, which
have been studied in the context of thermal and quantum
phase transitions [23–25]. We are unable to study this aspect
of the problem in the context of the periodic chain as the
percolation threshold in 1D is unity, which means none of
the fragment arrangements percolate except the two blocks
which correspond to all sites having the same value for
σ z

i τ z
i . It is also noteworthy that, due to this fragmentation,

the dynamics generated by σ x
i τ x

i reduces to the dynamics
within the fragments and no interfragment correlations are
introduced. In 2D and higher, the fragments would in general
represent nonintegrable systems which thermalize within their
boundaries but not with the entire system. This implies that
the system would not reach a thermal distribution and would
not exhibit characteristics such as volume law entanglement
entropy which would be expected of thermalizing systems.

B. Periodic chain

Now we specialize to the case of a periodic chain with
L sites and consider the eigenstates and eigenenergies for
various s. In the ferromagnetic limit (s = 1), the lowest energy
belongs to two blocks, one with σ z

i τ z
i = +1 for all i and the

other σ z
i τ z

i = −1 for all i. We shall refer to these two blocks
as the reference blocks for this model, as they are the easiest
to analyze and map exactly to the simple transverse-field Ising
chain. These blocks have L activated bonds, whereas all other
blocks have at least one pair of nearest-neighbor sites which
are noninteracting, leading to loss of the energy which could
potentially be gained from that Ising bond. The first excited
level in the ferromagnetic limit is made out of all blocks which
have two fragments each, one with all σ z

i τ z
i = +1 and the

other with all σ z
i τ z

i = −1, as these arrangements have L − 2
activated bonds. In the limit of s = 0, all the Ising bonds are
switched off and all 2L blocks are degenerate. The fragment
arrangement of any block can be seen as a sum of independent
Ising chains of various lengths. As the energy density of a
longer Ising chain is always larger in magnitude than a shorter
chain for all s other than s = 0 and s = 1, the reference
blocks, which comprise a single periodic chain of length L,
always form the lowest-energy manifold. A schematic energy
spectrum classification for general s can be seen in Fig. 2.

As each block can be composed of many smaller chains,
the energy spectrum of this Hamiltonian hosts a large amount
of degeneracy. This can be understood by recognizing that
many blocks share the same number and sizes of chains,
and each block carries a different ordering of the chains.
As the energy of a block is simply the sum of the energies

E

FIG. 2. Fragment arrangements sorted by energy with reference
blocks making up the lowest-energy region and energy increasing
bottom to top.

of individual chains, the arrangement of chains that makes
up a particular block does not play any role in calculating
the energy; only the number and sizes of chains control the
energy. Following this line of thought, we can now map our
energy spectrum to the partitions of the natural number L,
where each partition is defined as a set of smaller pieces whose
lengths sum to L. For example the partitions for L = 4 are as
follows:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. (2)

It was shown [26] that the number of partitions p(L) of
a natural number L asymptotically behaves as log p(L) ≈
C

√
L with C = π

√
2/3. Due to periodic boundary conditions,

the only allowed partitions for the chain arrangements are
those which have an even number of chains. It follows that
the number of energy levels in addition to the reference level
are the number of even partitions of the number L. We observe
that this number quickly approaches half the asymptotic value
for L � 10. If we now consider a particular block and study
the growth of its correlation length as we change s from the
paramagnetic regime to the ferromagnetic regime, then we
would find that the correlation length grows until it reaches
an upper bound which must be smaller than the largest chain
in the partition corresponding to that block. If the largest chain
is much smaller than system size, then the ground state of
this block can never develop long-range order. The statistics
of different blocks along with their energies now control how
much they contribute to the ground state of the total system in
the presence of a temperature or symmetry-breaking quantum
fluctuation which allows them to mix.

An added level of complexity is brought in by observing
that each partition of the number L corresponds to a different
number of chain arrangements, i.e., blocks. The combinatorial
factor related to this can be calculated using the following ar-
guments. A particular arrangement of the chains in a partition
can correspond to only two arrangements for the signs of σ z

i τ z
i ,

as the moment a value is chosen for a chain, all others must be
chosen in accordance with it to ensure the condition that the
pieces are noninteracting. Taking this into account along with
all the permutations of a particular partition and the translation
invariance of the system, we conclude that the number of
blocks b(p) that correspond to that particular partition p of
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FIG. 3. Average size of the largest fragment in a block plotted
as a function of the system size L for a periodic chain and fit to
the form 〈n〉 ≈ a + b log(L) with b = 1.32(1). Inset: The probability
distribution of the size of the largest fragment, which shows an
exponential tail.

the system size L with an even number of chains N is

b(p) = 2L
(N − 1)!

k1!k2!...kL!
, (3)

where there ki is the number of pieces of length i and we
use 0! = 1. For example, the partition of system size L =
20 given by 4 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 has N =
10 with k1 = 4, k2 = 3, k3 = 2, k4 = 1, and ki = 0 for all
other i = 5, . . . , 20. We have checked Eq. (3) against exact
enumeration. Although the average size of the largest chain in
a partition where all partitions are sampled with equal weight
goes as O[

√
L log(L)] [26], we find numerically (Fig. 3) that

the added suppression caused by the factor in Eq. (3) reduces
this to O[log(L)].

We find numerically that the average size, 〈n〉, of the largest
chain in the fragment arrangement corresponding to a random
block follows the relation 〈n〉 = a + b log(L), as seen in Fig. 3
for L = 20, . . . , 60. We also study the probability distribution
of the size of the largest chain in a random block chosen with
uniform probability and find exponential tails for p(n) for n >

〈n〉 (shown in inset of Fig. 3 for a 60 site chain). This suggests
that if the system is allowed to choose a block at random, then
the largest chain in the chosen block will be much smaller than
system size with a probability → 1, thus leading to a severe
limitation on the growth of correlation length.

The probability distribution with which the system samples
different blocks depends on the terms connecting different
blocks and the relative ground-state energies of different
blocks. As discussed above, the ground state of the entire
system is always composed of the two blocks which have the
same value of σ z

i τ z
i on all sites. The opposite limit is again

made up of just two blocks, which are the blocks where all
odd sites have the same value of σ z

i τ z
i , and the even sites

have the opposite value (Fig. 2). Each of these breaks into
L disconnected spins, as no nearest-neighbor spins have a
ferromagnetic bond between them. This implies that every
spin is polarized in the ±x direction due to the σ xτ x term
with an energy of −s, making the total energy of the state

 0
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FIG. 4. Energy levels for the Hamiltonian defined in Eq. (1) for
system size L = 10, as a function of tuning parameter s, seen to
converge in the s = 0 limit and approach the spectrum of the classical
Ising chain in the s = 1 limit. Inset: The minimum gap at s = 0.5 as
a function of 1/L; extrapolating to 1/L = 0 gives a minimum gap of
0.31835(2).

−Ls. We can assume that the ground-state energy for the
reference blocks can be written as −Lε(L, s), where ε(L, s)
is the energy density for a periodic chain of length L at
tuning parameter value s. These two extremes set the range of
energies which can be occupied by all other blocks. Another
general trend to be expected from the lowering of the energy
due to larger system size would be to have partitions with
the largest chains having ground states which occupy lower
energy levels (Fig. 2). As we have seen from the distribution
of partitions, these levels would contain a relatively small
number of ground states as the parent blocks must contain
long chains. Also, all the energies must converge in the s =
0 limit, as the ferromagnetic term switches off, leaving all
blocks equivalent in energy.

The above arguments give us a fair idea of the energy-level
diagram for the ground states in all the blocks. We present a
detailed study of the L = 10 case in Fig. 4, obtained using
Lanczos diagonalization, which captures the essential fea-
tures. An important region of the energy-level diagram is s ≈
0.5, as the simple Ising chain undergoes a continuous quantum
phase transition at this point. In an Ising chain, the correlation
length grows continuously with increasing s for s < 0.5 and
at the transition the correlation length reaches the system size.
If the gap to a large number of blocks vanishes at this point,
then the correlation length would acquire large contributions
from the other blocks in the presence of arbitrarily small
coupling across blocks, which would lead to a capping on the
correlation length. As the gap must once again open in the
ferromagnetic regime, the system will drop back into the fully
polarized state with large correlation length. This mechanism
can create a jump in the correlation length, which is a hallmark
of a first-order phase transition. This is a heuristic argument
which does not take into account the nature of the coupling to
other blocks. Using the Jordan-Wigner transformation to map
the Ising chains to noninteracting fermions [27], we find that
the gap at s = 0.5 indeed converges to a nonzero value with
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increasing size. This is shown in the inset of Fig. 4 for system
sizes up to L = 512, along with a finite-size extrapolation,
leading to a gap of 0.31835(2) in the thermodynamic limit.
This is expected for higher dimensions as well, as the lowest
block above the ground-state block must necessarily have at
least one missing ferromagnetic bond which contributes a
finite amount to the energy. Our analysis also showed that
the first state above the ground state of the reference blocks
belongs to a block which breaks into a fragment which has a
single site and a fragment which has L − 1 sites. At s = 0.5,
blocks with this type of structure have the minimum energy
amongst all blocks with only two fragments.

C. Fluctuations between blocks and block mixing

Here we discuss the effects of block mixing for arbitrary
lattices with N sites. One of the easier ways to allow the
system to access all possible blocks would be to couple it to
a thermal bath which provides an inverse temperature β. As-
suming that the ground-state energies of all the blocks is O(N )
(an example of which we see in the energy-level diagram in
Fig. 4), the contribution of the blocks with relatively small
fragments or “restricted” blocks (Zr) in the partition function
is Zr = e−βE Dr , where Dr is the degeneracy of the blocks. As
we have seen that this degeneracy→ 2N and E ∝ N , a finite
β will not necessarily suppress these levels, and there can
exist a range of temperatures where these levels can mediate a
transition with limited correlation length, i.e, a first-order tran-
sition. Finite temperature would allow thermal fluctuations
which can jump across blocks and in this way wash out the
block structure as well. This cannot be studied in our analysis
of the 1D chain as it is known that any nonzero temperature
leads to disorder in the Ising chain and the phase transition is
thus completely washed out. For higher-dimensional systems
this mechanism can lead to interesting crossover physics
between the continuous quantum phase transition and the
thermal phase transition of the classical system expected at
any finite temperature. A coupling across blocks can also
be achieved by a weak global transverse field or other more
complicated quantum fluctuations. Nonperturbative numerical
results, which layout the entire phase diagram in the presence
of a transverse field, are presented in the following section.

III. PERTURBATIONS AND ASHKIN-TELLER
CRITICALITY

We now connect the different blocks using a weak per-
turbation which breaks the conservation of σ z

i τ z
i . In spin

language this corresponds to a global transverse field, leading
to a Hamiltonian of the form

H = −s

2

∑
〈i, j〉

(
σ z

i σ z
j + τ z

i τ
z
j

)

− (1 − s)
∑

i

[
pσ x

i τ x
i + (1 − p)

(
σ x

i + τ x
i

)]
. (4)

Here the σ x(τ x ) operator switches 00 → 10 (00 → 01), ef-
fectively mixing blocks. In the weak perturbative limit of
(1 − p) 	 1, this can be seen as connecting blocks which
have differing values for σ z

i τ z
i for only a few sites, i.e., those

which have similarly sized chains in a similar arrangement.

For smaller p, blocks which have chains of substantially
different sizes would begin to couple as well, which would
imply that the bound on the correlation length would weaken
as the system can now build in longer correlations through
a combination of blocks for the same value of s. In the
opposite limit of p → 0, blocks are strongly coupled, and
the system can also be seen as two copies of transverse-field
Ising models. This suggests that the system would undergo a
continuous transition, which would be in the Ising universality
class of the appropriate dimension.

For p = 1, the ground-state sector is exactly a transverse-
field Ising model on the appropriate lattice, as discussed in
the previous section. In this limit, for all s ∈ [0, 1], MP =
1
N

∑
i σ

z
i τ z

i = ±1 as all σ z
i τ z

i are either +1 or −1 for the
reference blocks. Here P signifies polarization order, a term
which is used in literature discussing the Ashkin-Teller (AT)
model [16,18], which is the higher-dimensional classical
equivalent of our model. This will be discussed in more
detail later in this section. For s → 1, σ z and τ z are each
disordered and with reducing s, and they undergo an Ising
transition where they develop long-range order. For p < 1,
at s = 0 the paramagnet phase has no long-range order in
fragment arrangements or either of the spin species, as the
perturbation allows complete access to Hilbert space. The
conditions describe three phases: (1) complete paramagnetic
phase with 〈M2

P〉 = 〈M2
σ 〉 = 〈M2

τ 〉 = 0, (2) polarization order-
ing with 〈M2

P〉 �= 0, 〈M2
σ 〉 = 〈M2

τ 〉 = 0, and (3) ferromagnet
with 〈M2

P〉 �= 0, 〈M2
σ 〉 = 〈M2

τ 〉 �= 0.
These three phases can also be understood in terms of the

well-studied AT model [18]. Our model of fluctuation-coupled
Ising systems can be mapped onto this classical model using
the d-dimensional quantum to d + 1-dimensional classical
mapping based on the path integral formalism. For a quantum
system, the partition function, given by Tr[e−βH ], can be
expanded in imaginary time using β = n�τ . This leads to a
partition function of a classical model in a higher dimension
[28], where σ x

i in the quantum model is replaced by a bond
σ z

i σ z
i+1 in the imaginary time direction. This substitution to

Eq. (4) leads to an anisotropic version of the AT model in d +
1 dimensions. The isotropic AT Hamiltonian is as follows:

H = −J
∑
〈i, j〉

σ z
i σ z

j − J
∑
〈i, j〉

τ z
i τ

z
j − K

∑
〈i, j〉

σ z
i τ z

i σ
z
j τ

z
j . (5)

For spin systems where there is no explicit coupling to the
lattice, the anisotropy is expected to be irrelevant (this equiv-
alence is well known for the simple transverse-field Ising
model). The phase diagram of the above Hamiltonian in 2D
as a function of J

T and K
T contains the three phases shown by

the 1D quantum Hamiltonian. The arguments presented until
this point in this section are valid for general lattices in all
dimensions.

In 2D, the AT model is fairly well studied from a theoretical
viewpoint [18]. It was found that for K > J and J > 0, the
system passes through two phase transitions; from the param-
agnet to the polarized phase and from the polarized phase to
the ferromagnet. Both these transitions are Ising-like as a Z2

symmetry is broken each time. At K = J , the polarized phase
vanishes, and we have a direct transition from the paramagnet
to the ferromagnet. The universality class at this point is that
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FIG. 5. Binder cumulant as a function of s with crossing points
for a pair of sizes showing approximate locations of the two transi-
tions at p = 0.95. Inset: Extrapolation of crossing points of (L, 2L)
for UM as a function of 1/L fit to the form f (x) = a + bx gives
sc = 0.497(1).

of the q = 4 Potts model in 2D. For 0 < K < J , the system
interpolates smoothly between two disconnected Ising models
(K = 0) and the q = 4 Potts model. Along this interpolation,
some of the critical exponents, such as the scaling dimensions
of the polarization operator and the energy density, vary
smoothly [17]. This is expected as the energy density coupling
between the two species caused by the four-spin term is
marginal in 2D and allows a smooth flow under a conformal
field theory description [29]. We check for a similar behavior
in the coupled quantum Ising model on a periodic chain, using
stochastic series expansion quantum Monte Carlo [30] as it is
a powerful and unbiased method of extracting thermodynamic
expectation values for such systems.

The p = 0 limit corresponds to the K = 0 limit of the AT
model and describes decoupled Ising models. The p = 1 limit
has no paramagnetic phase and at some intermediate pPotts, we
would expect q = 4 Potts criticality. For p < pPotts, the system
would trace out the line of continuously varying exponents
and for 1 > p > pPotts, it would host all three phases along
with two Ising transitions; one between the paramagnetic and
polarized phases and the other between the polarized and fer-
romagnetic phases. To investigate these phase transitions, we
define a Binder cumulant [31] with coefficients corresponding
to Z2 symmetry breaking, as

UM = 3

2

(
1 − 1

3

〈M4〉
〈M2〉2

)
, (6)

where M can denote either MP, Mσ , or Mτ . In the regime
where we have two Ising phase transitions, the Binder cu-
mulant is by this definition zero in the paramagnetic phase
and unity in the ordered phase, for whichever order parameter
is considered. There is a sharp transition in UM at the phase
transition for large sizes and we need to study only one of Mσ

or Mτ as they are identical. By tracking UP (corresponding to
MP) and UM (corresponding to Mσ ), we notice two transitions
for p = 0.95 at distinct values of s. This is seen in Fig. 5
through crossing points of the Binder cumulant, and the

0
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2/3

1

 0  0.2  0.4  0.6  0.8  1

III
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s c
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0.13
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0.22

 0  0.02  0.04  0.06  0.08  0.1

Δ P

1/L

FIG. 6. Phase diagram of the model described by Eq. (4) with
phases I (paramagnet), II (polarization ordered), and III (ferromag-
net) with the AT line of continuously varying exponents from p =
0 to p ≈ 0.75. Inset: Polarization exponent �P(1/L) for p = 0.5
extrapolated to �P(0) = 0.20(1).

inset shows an extrapolation of the crossing points of UM

as a function of inverse size, which leads to a critical s of
0.497(1) separating phases 2 and 3. These two transitions are
expected for values of p close to 1 until a point at which the
q = 4 Potts point is realized. The scaling dimension of the
spin operator is fixed at �σ = 1/8 (which is the 2D Ising
value) along the critical line joining the p = 0 and p = pPotts,
whereas the polarization operator has �P = �σ + �τ at the
decoupled point and �P = �σ = �τ at the Potts point. The
critical exponent ν varies from 1 (Ising value) to 3/2 (Potts
value) along this line. From our simulations and finite-size
scaling analysis following the method presented in Ref. [32],
we observe that, at p = 0.75, ν = 1.41(5) and �P = 0.13(1),
indicating that this point is quite close to the Potts point
(as can be seen in our approximate phase diagram, Fig. 6).
The value of ν may be somewhat affected by logarithmic
corrections expected in the exponents at the Potts point. The
same extrapolation at p = 0.50 gives us ν = 1.21(1) and
�P = 0.20(1) (the extrapolation for �P is shown in the inset
of Fig. 6), which are values between the two extremes. This
analysis shows us in a conclusive manner that the system flows
to the AT universality class in the thermodynamic limit.

IV. RELATION TO PSEUDO-FIRST-ORDER BEHAVIOR

The Binder cumulant is used in general to identify the
nature of a phase transition and the critical exponent ν for the
correlation length (extracted from the slope). Nonmonotonic
behavior in the Binder cumulant involving a minimum is
usually taken as a signature of a first-order transition, although
this can only be confirmed by checking that the value of this
negative peak diverges as Ld [31]. A dip in the Binder cumu-
lant had been misinterpreted to signal a first-order transition
[33] for the frustrated J1-J2 classical Ising model on the square
lattice where nearest neighbors interact with a ferromagnetic
bond of strength J1 and next nearest neighbors with an antifer-
romagnetic bond of strength J2 [19]. In this model there exists
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a phase transition between a Z4 symmetric striped phase and
a paramagnetic phase with increasing temperature. The dip
was taken to represent a first-order transition until a detailed
numerical study by Jin et al. [19] showed that the cumulant
dip mapped onto the 2D q = 4 classical Potts model, which
also shows nonmonotonicity with a negative dip which does
not diverge. The reason for this behavior was traced to the
shape of the distribution at the critical point for these models
[34] and it was noticed that phase coexistence was not seen,
which would be a characteristic of a first-order transition.

Here we present the same kind of analysis for our model
of coupled Ising systems [Eq. (1)] in 1D and argue that the
negative peak arises from an inappropriate definition of the
Binder cumulant when investigating multiple phase transi-
tions. The Binder cumulant may evaluate to different values
in different phases and if the phases are not well understood,
then this behavior can be interpreted as arising from a first-
order transition. Even at special points such as the Potts point
(K = 1 point in the AT model), which is known to harbor a
continuous phase transition between trivial paramagnetic and
ferromagnetic phases, remnants of the polarization ordered
phase cause nonmonotonic behavior in the Binder cumulant.
We will first show the nonmonotonic behavior for the coupled
Ising chains and will follow it up by explicitly showing the
remnant at the Potts point.

If we consider the p = 0.95 phase transitions presented in
the previous sections, then we see that in the paramagnetic
phase the Binder cumulant can be defined as

UM = 2 − 〈M4〉
〈M2〉2 , (7)

instead of the definition used in Eq. (6), because the mag-
netization can now be defined as a vector M = Mxx̂ + Myŷ,
where Mx(My) is the magnetization for the subset of spins
with σ z

i τ z
i = +1(−1). This definition leads to UM = 0 for the

paramagnetic phase and UM = 1 for the ferromagnetic phase
and is used for decoupled Ising systems as well as systems
with XY symmetry. Importantly, however, this definition of
UM evaluates to −1 in the polarization ordered phase as a
global value of σ z

i τ z
i is chosen and only constrained Ising-like

fluctuations are allowed along this axis forcing 〈M4〉/〈M2〉2 =
3, which can be calculated assuming Gaussian probability
distributions arising from the central limit theorem. If we
use Eq. (7) for the entire range of s at p = 0.95, in the
thermodynamic limit, then we would expect a region where
UM = 0, a region with UM = −1 and a region with UM = 1.
A schematic of this is shown in the inset of Fig. 7. For small
sizes UM changes gradually and these values are not reached
exactly.

From Fig. 5 and extrapolations similar to the one shown in
its inset, we note that the paramagnetic to polarization ordered
transition occurs at s = 0.44(1) and the polarization ordered
to ferromagnetic one occurs at s = 0.497(1). Following the
behavior of UM as defined above, we find a nonmonotonicity
in the polarized phase where the dip extrapolates to −1
(Fig. 7). We also study the histograms of the order param-
eter M and clearly see the aligning of the polarization in
Fig. 8, where we present order parameter histograms for a
50-site system. We observe that the (Mx, My) histograms look
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FIG. 7. The minimum value of Um for 1D coupled Ising chains,
with Hamiltonian given by Eq. (4), at p = 0.95 as a function of
length L fit to the form a + bL−c converges to 1.02(3). Inset: UM

as a function of tuning parameter s for various system sizes. The
thermodynamic from of UM is shown by the dashed line with
transitions at 0.44(1) and 0.497(1).

substantially different from a continuous transition as the
tails develop a large distributed weight as we cross into the
ferromagnetic phase, even though the peak of the histogram is
still at (0,0), which represents the disordered phase. This can
be seen better in the marginal distribution of Mx in the lower
panels of Fig. 8, where we see that at s ≈ 0.49, the histogram
shows a spread in weight outside of the disordered region,
without a strong peak at the order parameter value for the
ordered phase. This behavior is at odds with both a continuous
phase transition, where one must have a narrow peak which
smoothly moves to |Mx| = 1, and a first-order transition,
where one must see two narrow peaks in the distribution but
is consistent with three phases. In the paramagnetic phase,
the fluctuations are Gaussian distributed in a radial pattern,
whereas in the polarization ordered phase, they are restricted
to one-dimensional distributions. In the ferromagnetic phase,
the system orders at one of the four peaks.

These histograms are similar to those seen at the Potts point
in the J1-J2 model. We have checked this in the more natural
formulation of the classical q = 4 Potts model on a 2D square
lattice, with a Hamiltonian given by

H = −
∑
〈i, j〉

δqi,q j = −
∑
〈i, j〉

cos(θi − θ j ), (8)

where qi ∈ {0, 1, 2, 3} are the possible states and which can
be represented as unit vectors forming a regular tetrahedron,
implying the equivalence of the two terms in Eq. (8) up to a
global shift in the baseline for energy. As mentioned above, if
the fluctuations in the thermodynamic magnetization are Ising
like, then r = 〈M4〉/〈M2〉2 = 3 and if they are completely
paramagnetic, then r = 5/3, which can be seen by evaluat-
ing Gaussian integrals over the unit vectors chosen from a
tetrahedron and which lie in 3D space. In the ordered phase
the fluctuations are small compared to the mean and r = 1.
In the case of a typical continuous transition, r would vary
monotonically from 1 to 5/3 from the ordered to paramagnetic
phases. This is not the case for the Potts model, as seen from
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FIG. 8. Order parameter histogram as a function of the tuning parameter s. Top: The 2D histogram of Mx and My. Bottom: Marginal
probability distribution of Mx at corresponding values of s.

our simulations in Fig. 9, and we find a peak which grows
for larger sizes. The peak appears to diverge logarithmically
in the range which we have studied, but we would expect this
value to converge eventually (perhaps at r = 3, as shown in
the inset of Fig. 9) as we are studying a continuous phase
transition. This implies remnant effects of a polarization phase
which cannot be explicitly realized in this formulation of the
Potts model. These effects persist up to the largest lattice sizes
(3072 × 3072) we were able to study and may be suppressed
at even larger scales, in which case the origin of the new length
scale would be of interest.

V. CONCLUSIONS

The coupled Ising model discussed here is a tractable
system which can source interesting dynamical behavior with
excitations showing a restricted extent in space. Due to the

1

5/3
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L=256

2.4
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2.8
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r m
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FIG. 9. Binder ratio for the 2D q = 4 Potts model shows a peak
at the transition, as shown here for a 256×256 system. Inset: Value
of the peak as a function of inverse linear size 1/L, fit to a function
of the from f (x) = 3 − axb.

intricate structure of noninteracting blocks which this sys-
tem breaks into, curious features may be manifest in the
crossover between quantum and thermal phase transitions,
and we intend to study this in future work. On the addition of
perturbations it is expected that the system regains ergodicity
in a manner which depends on the particular perturbation
used. There has been a recent numerical study [35] which
suggests that long timescales persist even in the case of a 1D
version of our model in the limit of weak global transverse
fields creating a coupling across blocks. In the presence of
the same term, we have verified here that the system encodes
a quantum realization of the AT model in a Hamiltonian
composed of only two body terms explicitly for 1D and expect
the same in higher dimensions.

We have also identified a reason for pseudo-first-order
behavior which is seen in the q = 4 Potts model in 2D which
corresponds to a tricritical point with q � 4 corresponding to
continuous transitions and q > 4 being first-order transitions.
This could help explain the microscopic origin of the weak
first-order transitions in the 1D quantum or 2D classical
Potts model, which has been studied from the perspective
of complex conformal field theories [29]. By switching off
the matrix element of the transverse field in the Potts model
which connects odd and even colors, all even-color Potts
models can be driven to exactly the limit described here. The
classical Potts model has also been independently studied in
terms of restricted partitions [36]. Spin liquids with restricted
dynamics have already been found to have similar features
[15], and we plan to develop a better understanding for this in
analogy with our model in future work.
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