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Critical local moment fluctuations and enhanced pairing correlations in a cluster Anderson model
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The appearance of unconventional superconductivity near heavy-fermion quantum critical points (QCPs)
motivates investigation of pairing correlations close to a “beyond Landau” Kondo-destruction QCP. We focus
on a two-Anderson-impurity cluster in which Kondo destruction is induced by a pseudogap in the conduction-
electron density of states. Analysis via continuous-time quantum Monte Carlo and the numerical renormalization
group reveals a previously unstudied QCP that both displays the critical-local moment fluctuations characteristic
of Kondo destruction and leads to a strongly enhanced singlet-pairing susceptibility. Our results provide insights
into the mechanism for superconductivity in quantum critical metals.
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I. INTRODUCTION

Heavy-fermion metals are highly tunable and provide a
prototype setting to explore strong correlation physics in
general [1–3]. In heavy-fermion systems, unconventional su-
perconductivity often develops near their quantum critical
points (QCPs) [4,5]. Detailed theoretical and experimental
studies have provided evidence for different classes of QCP.
One class follows the Landau theory, in which criticality
is dictated by the fluctuations of an order parameter [6–8].
Another class of QCP goes beyond the Landau framework,
in that it involves new critical modes besides order-parameter
fluctuations. The additional critical modes describe a criti-
cal destruction of the Kondo entanglement between the lo-
calized magnetic moments and conduction electrons [9,10],
which is a form of electronic localization-delocalization in-
stability. As such, studies of superconducting pairing driven
by Kondo-destruction quantum criticality elucidate uncon-
ventional superconductivity not only in heavy-fermion met-
als but also in a broad range of other correlated electron
systems.

An important example of a Kondo-destruction QCP occurs
in CeRhIn5, which has the highest Tc among all the Ce-based
heavy-fermion superconductors [11–14] and is generally be-
lieved to have a dx2−y2 pairing symmetry. A sudden change
of the Fermi-surface size across the antiferromagnetic QCP in
CeRhIn5, accompanied by a diverging tendency of the carrier
effective mass [15], defy explanation within the Landau-based
(spin-density-wave) scenario but instead provide evidence
supporting the Kondo-destruction picture.

How unconventional superconductivity arises near a
Kondo-destruction QCP has yet to receive systematic theo-
retical study. The question is challenging because the normal
state is a non-Fermi liquid with quasiparticles turned critical.
An avenue has been opened by the development of a clus-

ter extended dynamical mean-field theory (C-EDMFT) [16],
which maps the periodic Anderson model onto a cluster model
coupled to self-consistently determined fermionic and bosonic
baths, where the latter decohere and eventually destroy the
Kondo entanglement [17]. The Kondo destruction QCP of the
lattice problem is embedded in the QCP of the quantum clus-
ter model, and the multisite cluster allows the development of
unconventional pairing.

It is illuminating to study the quantum cluster model by
itself. Previous studies [18–22] demonstrate that quantum im-
purity models can manifest hallmarks of a Kondo-destruction
QCP such as a vanishing Kondo energy scale, ω/T scaling
of the dynamics, and a fractional exponent in the temper-
ature dependence of the local spin susceptibility. This is
largely due to the fact that Kondo destruction is primarily a
local phenomenon, and the neglect of spatial correlation is
relatively unimportant. Recent work in an Ising-anisotropic
cluster Bose-Fermi Anderson model [23] has found enhanced
pairing correlations near the Kondo-destruction QCP. This
finding raises an important question: Does Kondo-destruction
quantum criticality robustly promote superconducting pairing
correlations?

This work investigates a two-impurity pseudogap Ander-
son model with Ising exchange between the impurity spins.
We show that the model exhibits a Kondo-destruction QCP
that has not been discussed in previous publications. Instead of
the coupling to a bosonic bath that was responsible for Kondo
destruction in Ref. [23], here the driving force is exchange
coupling of the impurity spins to a conduction band with a
density of states that vanishes in power-law fashion at the
Fermi energy [24]. The presence of a different mechanism
for Kondo destruction allows us to address the generality with
which this type of quantum criticality promotes superconduct-
ing pairing.
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II. MODEL AND SOLUTION METHODS

The two-impurity Ising-anisotropic Anderson Hamiltonian
is

H =
∑
k,σ

εk c†
kσ ckσ

+ V√
Nk

∑
k, j,σ

(eik·r j d†
jσ ckσ

+ H.c.)

+ εd

∑
j,σ

d†
jσ d jσ + U

∑
j

n j↑n j↓ + IzS
z
1Sz

2, (1)

with εk being the conduction-electron dispersion, V the hy-
bridization (assumed to be local), Nk the number of unit cells
in the host, εd the impurity level energy, U the on-site repul-
sion, and Iz the Ising exchange coupling between impurities
at positions r j ( j = 1, 2); n jσ = d†

jσ d jσ for σ =↑, ↓ and

Sz
j = 1

2 (n j↑ − n j↓). The conduction-band density of states is
chosen to be

ρ(ε) = 1

Nk

∑
k

δ(ε − εk ) = ρ0|ε/D|r �(D − |ε|), (2)

where D is the half-bandwidth. For r > 0, ρ(ε) has a pseu-
dogap at the Fermi energy (ε = 0). The impurity-band cou-
pling is fully specified by the hybridization function �(ε) =
π

∑
k V 2δ(ε − εk ) = �0|ε/D|r with �0 = πρ0V 2.

For simplicity, we consider only the particle-hole-
symmetric case εd = −U/2 and take the limit of infinite sep-
aration |r1 − r2| in which there is a vanishing hybridization-
induced Ruderman-Kittel-Kasuya-Yosida interaction and the
two impurities are coupled only via the Ising exchange Iz.
With Iz = 0, we have two independent one-impurity pseudo-
gap models; for 0 < r < 1

2 , a Kondo-destruction QCP [25,26]
that we denote CR1 separates a Kondo phase (�0 > �c) from
a local-moment phase (�0 < �c). With �0 = 0 and Iz > 0, the
two impurity spins are decoupled from the conduction band
and antialign in an Ising antiferromagnetic configuration. Our
goal is to probe the quantum phase transitions that arise when
both �0 > 0 and Iz > 0 [27].

We begin by analyzing the perturbative effect of the cou-
pling Iz near the single-impurity critical point CR1. At this
QCP, 〈Sz

i (τ )Sz
i 〉 ∼ τ−(1−x1 ), with x1 being an r-dependent ex-

ponent that satisfies 0 < x1(r) < 1 [21]. Since the impurities
decouple, 〈Sz

1(τ )Sz
2(τ )Sz

1Sz
2〉 ∼ τ−2(1−x1 ). The scaling dimen-

sion of Sz
1Sz

2 is thus seen to be 1 − x1(r) and we obtain
the scaling dimension [Iz] = x1(r). The Hamiltonian term
IzS

z
1Sz

2 is therefore a relevant perturbation at CR1 and will
likely lead the two-impurity model to a new unstable fixed
point CR2 as shown on a conjectured RG flow diagram in
Fig. 1(a).

Since the pseudogap breaks conformal invariance, the
model (1) cannot be treated nonperturbatively using conven-
tional analytical methods [28–30] and we instead employ
continuous-time quantum Monte Carlo (CT-QMC) [31,32]
and the numerical renormalization group (NRG) [33,34]. We
present results for two representative cases: (i) r = 0.2, U =
0.3 and (ii) r = 0.4, U = 0.1, where we have set the energy
scale D = 1. In CT-QMC calculations we vary Iz at fixed �0,
and are able to reach sufficiently low temperatures to access
the asymptotic quantum critical regime. We fix Iz and vary �0

FIG. 1. (a) Conjectured RG flow of the symmetric two-impurity
pseudogap Anderson model. Gray dots represent unstable fixed
points and black dots represent stable fixed points. CR1 is the
unstable fixed point of the single-impurity pseudogap Anderson
model. CR2 is the unstable fixed point of the two-impurity model
studied in this work. The red line marks the separatrix and phase
boundary. (b) Phase boundary of the symmetric two-impurity pseu-
dogap Anderson model on the Iz–�0 plane for r = 0.2, U = −2εd =
0.3 and for r = 0.4, U = −2εd = 0.1. The boundary value of �0

obtained from NRG calculations is plotted before extrapolation to the
continuum limit (see discussion in Appendix A). (c) Crossover scale
T ∗ from the NRG vs |�0 − �c| on both sides of the phase boundary
for r = 0.2, Iz = 1.54, �c 	 0.5503 and for r = 0.4, Iz = 0.73, �c 	
0.8032. Filled symbols represent � > �c and open symbols represent
� < �c. Fits to T ∗ ∝ |�0 − �c|ν yield estimated exponents given in
the text.

when applying the NRG, a technique that can reach arbitrarily
close to absolute zero but has limited ability to calculate
finite-temperature dynamics. Further numerical details are
described in Appendix A.

III. QUANTUM CRITICAL PROPERTIES

A critical phase boundary can be mapped out within the
NRG by looking for the hybridization width �c(Iz ) at which
the asymptotic low-energy many-body spectrum jumps from
that of one stable fixed point to another. The phase boundaries
are plotted Fig. 1(b). For �0 close to �c, the NRG spectrum
flows away from the critical spectrum toward one or other
of the stable fixed points around a crossover temperature
T ∗ ∝ |�0 − �c|ν . Using this relation, illustrated in Fig. 1(c),
one obtains ν−1 = 0.334(2) for r = 0.2 and ν−1 = 0.1835(4)
for r = 0.4.

To search for a QCP using CT-QMC, we examine the
Binder ratio [35] B(β, Iz ) = 〈M4〉/〈M2〉2, where the staggered
impurity magnetization M = β−1

∫ β

0 dτ [Sz
1(τ ) − Sz

2(τ )].
Plots of B(β, Iz ) vs Iz for different values of β = 1/kBT
should all cross at the location Iz = Ic of a QCP, as is indeed
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FIG. 2. (a), (b) Binder ratio B(β, Iz ) from CT-QMC vs Iz at
various inverse temperatures β for (a) r = 0.2, �0 = 0.5 and (b)
r = 0.4, �0 = 1.5. (c) Scaling collapses of B(β, Iz ) with respect
to ζ = β1/ν (Iz − Ic )/Ic + Cβ−φ/ν giving Ic = 1.56(7), ν−1 = 0.33(4)
at r = 0.2 and Ic = 3.75(7), ν−1 = 0.20(2) at r = 0.4. (d) Static
staggered local spin susceptibility χz vs T at the estimated location
Iz = Ic of the QCP, calculated using CT-QMC (filled symbols) and
the NRG (open symbols). Fitting to Eq. (4) yields the values of x
given in the text.

shown in Fig. 2(a) for r = 0.2 and Fig. 2(b) for r = 0.4. A
scaling collapse

B(β, Iz ) = f (β1/ν (Iz − Ic)/Ic + Cβ−φ/ν ) (3)

(where the term involving C accounts for subleading finite
temperature corrections) demonstrates that the quantum phase
transition at Iz = Ic is second order, as illustrated in Fig. 2(c).
By minimizing a quality function [36] (see Appendix B for
details), we find ν−1 = 0.33(4) for r = 0.2 and ν−1 = 0.20(2)
for r = 0.4, reproducing the NRG values to within estimated
errors [37].

The static staggered local spin susceptibility (the order-
parameter susceptibility), defined as χz = β〈M2〉, diverges at
the QCP as

χz(Iz = Ic, T ) ∼ T −x, (4)

as seen in Fig. 2(d). The values of x(r) from CT-
QMC [x(0.2) = 0.78(4) and x(0.4) = 0.34(5)] and the
NRG [x(0.2) = 0.78588(3) and x(0.4) = 0.35075(3)] are in
good agreement. We have also calculated the connected
spin susceptibility, χ c

z = β(〈M2〉 − 〈|M|〉2), which based on
the scaling hypothesis can be described by χ c

z (β, Iz ) =
βxg(β1/ν (Iz − Ic)/Ic + Cβ−φ/ν ); see Fig. 5 in Appendix C.

We summarize our results for the critical exponents ν−1

and x at the two-impurity pseudogap QCP CR2 in Table I,
where we have also included NRG values of the order-
parameter critical exponent β ′ defined through M(�0, T =
0, h = 0) ∝ (�c − �0)β

′
and the magnetic critical exponent

1/δ defined through M(�0 = �c, T = 0, h) ∝ |h|1/δ , with h

TABLE I. Critical exponents (defined in the text) at the two-
impurity pseudogap QCP CR2. Parentheses enclose the estimated
error in the last decimal place.

r Source 1/ν x β ′ 1/δ

0.2 CT-QMC 0.33(4) 0.78(4)
NRG 0.334(2) 0.78588(3) 0.31991(2) 0.11990(4)

0.4 CT-QMC 0.20(2) 0.34(5)
NRG 0.1835(4) 0.35075(3) 1.7701(2) 0.48066(4)

being an external field that couples solely to the staggered
impurity spin (see Fig. 10 in Appendix D). These exponents
take values different from those at the single-impurity pseu-
dogap QCP CR1 [21], demonstrating CR2 to be a distinct
critical point. Moreover, they obey scaling relations δ−1 =
(1 − x)/(1 + x) and ν−1 = (1 − x)/2β ′ characteristic of an
interacting critical point [21].

We turn to the dynamical properties at CR2 of the single-
particle Green’s function Gi,σ (τ, T ) = 〈Tτ d†

i,σ (τ ) di,σ 〉 and the
spin correlation function χz(τ, T ) = 〈Tτ [Sz

1(τ )−Sz
2(τ )](Sz

1−
Sz

2)〉. Guided by previous work on the single-impurity models
[18–20,22], we find from CT-QMC (see Fig. 6 in Appendix
C) that these functions share similar power-law forms in the
low-T , large-τ limit:

Gi,σ (τ, T ) ∼ [πT/ sin(πτT )]ηG(r), (5)

χz(τ, T ) ∼ [πT/ sin(πτT )]ηχ (r), (6)

with exponents ηG(0.2) = 0.795, ηG(0.4) = 0.600,
ηχ (0.2) = 0.213, and ηχ (0.4) = 0.657. As expected,
ηχ = 1 − x is satisfied within numerical accuracy. Moreover,
our results suggest that (i) the relation ηG = 1 − r known to
hold at CR1 [38] also applies at CR2 and (ii) 0 < ηG < 1 and
0 < ηχ < 1, so Gi,σ and χz will also obey ω/T scaling on the
real frequency axis [22]. This supports the interacting nature
of CR2.

IV. PAIRING SUSCEPTIBILITIES

We study static pairing susceptibilities χα (β, Iz ) =∫ β

0 dτ 〈Tτ�
†
α (τ ) �α〉 with �d = (d2↓d1↑ − d2↑d1↓)/

√
2 (sin-

glet channel) [39] and �p = (d1↑d2↑ + d1↓d2↓)/
√

2 (triplet
channel). Using the general four-point correlation function
formula in CT-QMC [40], we find singlet pairing to be sig-
nificantly enhanced near the QCP, as shown in Figs. 3(a) and
3(b). By contrast, triplet pairing is monotonically suppressed
as Iz increases (see Fig. 7 in Appendix C).

At T = 0, the imaginary part of the dynamical pairing
susceptibility Im χd (ω) can be calculated using the NRG. We
plot data for �0 = �c(Iz ) in Fig. 3(d) and for other cases in
Fig. 11 in Appendix D. Our results can be summarized in the
form

Im χd (ω) sgn(ω) ∝

⎧⎪⎪⎨
⎪⎪⎩

∣∣ω∗
D

∣∣y∣∣ ω
ω∗

∣∣1−2r
, |ω| < ω∗, Iz < Ic,∣∣ω∗

D

∣∣y∣∣ ω
ω∗

∣∣1+2r
, |ω| < ω∗, Iz > Ic,∣∣ ω

D

∣∣y
, ω∗ < |ω∣∣ < ω1,

(7)
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FIG. 3. Singlet pairing susceptibility: (a), (b) static susceptibility
χd (β, Iz ) vs Iz at various inverse temperatures β for (a) r = 0.2, �0 =
0.5, and (b) r = 0.4, �0 = 1.5. (c) Imaginary-time susceptibility
χd (β, τ ) at Iz = Ic, consistent with a 1/τ 1+y decay with y = 0.075
for r = 0.2, �0 = 0.5 and y = 0.012 for r = 0.4, �0 = 1.5. For
clarity, the r = 0.4 susceptibilities have been multiplied by a factor
of 10. (d) NRG results for the imaginary part of the real-frequency
susceptibility, Im χd (ω) ∝ ωy, at �0 = �c, T = 0, calculated both
for r = 0.2, Iz = 1.54 yielding y = 0.077(1) and for r = 0.4, Iz =
0.73 yielding y = 0.0139(1).

where ω1 is the high-energy scale marking the upper bound
of the quantum critical regime and ω∗ 	 T ∗ is the scale
for crossover into the low-temperature phase. This implies
that, at the critical point, χd (τ ) ∼ 1/τ 1+y; cf. Fig. 3(c). The
NRG gives y = 0.077(1) for r = 0.2 and y = 0.0139(1) for
r = 0.4, values that agree very well with the CT-QMC esti-
mates of y = 0.075 and y = 0.012, respectively. Equation (7)
also implies (see Appendix E for derivation) that, near the
QCP,

Re χd (ω = 0) = C1(r) − C2(r)

(
1

y
− 1

1 ± 2r

)

×
( |(Iz − Ic)/Ic|ν

D

)y

, (8)

with ± corresponding to Iz > Ic or Iz < Ic, and C1(r) and C2(r)
being independent of Iz. Given that yν � 1, Re χd (ω = 0)
should have a pronounced cusp at Iz = Ic, as confirmed by the
numerical data in Figs. 3(a) and 3(b).

V. DISCUSSION AND SUMMARY

We note that, in the single-impurity pseudogap Anderson
model, the impurity spectral function vanishes (diverges) as
|ω|r (|ω|−r) in the local-moment (Kondo-screened) phase
[25]. Our calculations suggest that this property also holds in
the present model (see Fig. 8 in Appendix C). This indicates
that the frequency dependences of Im χd (ω) at the two stable
fixed points do not acquire any singular correction [26]. By
contrast, at CR2 the |ω|y dependence reflects the relevance of
vertex corrections at an interacting critical point. Since CR1

and CR2 both exist only for 0 < r < 1
2 , we expect that y is

always smaller than 1 ± 2r, namely that pairing fluctuations
are always strongest in the quantum critical regime, and that,
as r → 1

2 , y and 1 − 2r both approach zero before CR1 and
CR2 merge with the Kondo-singlet fixed point and disappear.
We therefore conclude that the underlying Kondo-destruction
QCP promotes singlet superconducting pairing.

To summarize, we have found a quantum critical point in
the two-impurity Anderson model with a pseudogap density
of states. It exhibits critical Kondo destruction and shows all
the hallmarks of an interacting fixed point, such as hyper-
scaling relations among critical exponents and ω/T scaling in
the dynamical properties. The singlet pairing susceptibility is
found to be sharply peaked at the quantum critical point. Our
results suggest that Kondo-destruction quantum criticality
promotes spin-singlet unconventional superconductivity in a
robust way and, as such, is a viable mechanism for under-
standing superconductivity in CeRhIn5 and related quantum
critical heavy-fermion systems.
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APPENDIX A: METHODS

The CT-QMC hybridization expansion algorithm allows
us to stochastically sample the perturbation series in the
hybridization term free of any sign problem in the infinite
separation limit. The average perturbation order exceeds 103

per orbital for the largest inverse temperature, β = 3200 at
�0 = 1.5. Within our specific case, we find the autocorrela-
tion time measured in terms of successful updates will grow
not only as temperature is lowered and perturbation order
increases, but also as one increases Iz deep into the magnetic
ordered phase, where a domain wall-like structure can form in
the imaginary time direction. Therefore, we have introduced
an additional global update, in addition to the standard local
one-kink (a kink refers to a creation and annihilation operator
pair) and two-kinks update, by exchanging all the kinks
between different orbitals within an imaginary time interval
of length around β/2 (with a probability that satisfies detailed
balance), to prevent the sampling process from getting trapped
in some metastable state.
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FIG. 4. Contour plot of quality function S(Ic, ν
−1) × 104 for the

scaling collapse shown in Fig. 2(c) for (a) r = 0.2 and (b) r = 0.4.

The NRG runs were performed for Wilson discretization
parameter � = 9, retaining between 1000 and 4000 many-
body eigenstates after each iteration. The Wilsonian dis-
cretization of the conduction band reduces the effective den-
sity of states so it is appropriate to compare NRG calculations
for hybridization width �0 with continuum-limit (� → 1)
results for hybridization width �0/A(�, r), where A(�, r) is
defined in Ref. [21]. Hybridization widths reported in the text
are the values entered into the NRG calculations and do not
include the discretization correction factor.

APPENDIX B: FINITE SIZE SCALING
OF BINDER CUMULANT

The values of ν−1 and Ic are determined through minimiza-
tion of the quality function S(Ic, ν

−1), which is essentially
the mean square deviation of the scaled data points with
respect to the unknown universal function. For k sets of
data points represented by {xi j, yi j}, where i = 1, . . . , k labels
different β values and j labels different Iz values, we define
S(Ic, ν

−1) = 1/N
∑

i, j (yi j − Yi j )2. Here Yi j is the estimated
value of the universal function at xi j by linear interpolation
from the rest of the sets {xi′ j, yi′ j}, i′ �= i. During the scaling
collapse, we start by including all the sets, and then gradually
exclude the highest temperature data until the result reaches
convergence. Only data points satisfying β1/ν (Iz − Ic)/Ic �
1 are included. The best estimate of Ic and ν−1 is where
S(Ic, ν

−1) reaches its minimum Smin. We estimate the error
by requiring S(Ic + δIc, ν

−1 + δν−1) − Smin 	 Smin/2. (See
Fig. 4.)

APPENDIX C: ADDITIONAL DATA FROM CT-QMC

See Figs. 5, 6, 7, 8, and 9 for additional data.
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FIG. 5. Connected static staggered spin susceptibility χ c
z (β, Iz )

vs Iz at various inverse temperatures β for (a) r = 0.2, �0 = 0.5 and
(b) r = 0.4, �0 = 1.5. (c), (d) Scaling collapse of χ c

z (β, Iz ) in (a) and
(b), respectively, with Ic = 1.53(6), ν−1 = 0.37(8), x = 0.75(4) for
r = 0.2 and Ic = 4.0(2), ν−1 = 0.26(4), x = 0.42(7) for r = 0.4.
The deviation from exponents in Table I can be attributed to stronger
finite-size corrections to χ c

z .
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FIG. 6. (a) Scaling of the single-particle Green’s function
G(τ, T, Iz = Ic ) (averaged over impurity site and spin) with
πT/ sin(πτT ). We find G(τ → ∞, T → 0, Iz = Ic ) ∼ [πT/

sin(πτT )]ηG (r) with ηG(0.2) = 0.795 and ηG(0.4) = 0.600, consis-
tent with ηG = 1 − r. (b) Scaling of the staggered spin correlation
function χz(τ, T, Iz = Ic ) with πT/ sin(πτT ). We find χz(τ → ∞,

T → 0, Iz = Ic ) ∼ [πT/ sin(πτT )]ηχ (r) with ηχ (0.2) = 0.213 and
ηχ (0.4) = 0.657, consistent with ηχ = 1 − x. Calculations are
performed at �0 = 0.5 for r = 0.2 and �0 = 1.5 for r = 0.4.

χ p
 (β

, I
z)

0

0.5

1

1.5

Iz/D
0 0.5 1 1.5 2 2.5

βD=50
     100
     200
     400

(a) r=0.2

χ p
 (β

, I
z)

0

0.2

0.4

0.6

0.8

Iz/D
0 2 4 6

βD=800
     1600 
     3200 

(b) r=0.4

FIG. 7. Static triplet pairing susceptibility χp(β, Iz ) vs Iz at vari-
ous inverse temperatures β for (a) r = 0.2, �0 = 0.5 and (b) r = 0.4,
�0 = 1.5.
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FIG. 8. Single-impurity Green’s function G(τ ) at β = 3200
in (a) the Kondo-screened phase (Iz = 0, �0 = 0.5 for both r =
0.2 and r = 0.4) and (b) the local-moment phase (Iz = 3, �0 =
0.5 for r = 0.2 and Iz = 2, �0 = 0.5 for r = 0.4). Fitting to
Gi,σ (τ ) ∼ [πT/ sin(πτT )]ηG (r) in (a) gives ηG(0.2) = 0.77 and
ηG(0.4) = 0.57, while in (b) gives ηG(0.2) = 1.21 and ηG(0.4) =
1.45. Results are consistent with G(τ ) ∼ 1/τ 1±r for Iz > Ic or
Iz < Ic.

APPENDIX D: ADDITIONAL DATA FROM NRG

See Figs. 10 and 11 for additional data.
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FIG. 9. Transverse component of the staggered spin sus-
ceptibility χ+−(τ ) at Iz = Ic, �0 = 0.5 for r = 0.2. χ+−(τ ) =∫ β

0 dτ 〈Tτ
1
2 [S+

1 (τ ) − S+
2 (τ )] 1

2 (S−
1 − S−

2 )〉/2, with S−
i = d†

i↓di↑ and

S+
i = S−

i
†, such that χz = χ+− at the Iz = 0 SU(2)-symmetric point.

The result is consistent with χ+−(τ ) ∼ 1/τ 1+y, with y taking the
same value (within numerical uncertainty) as found in the singlet
pairing susceptibility χd (τ ).
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FIG. 10. (a) Staggered local moment M(�0, T = 0, h = 0) vs
�c − �0, fitted to M ∝ (�c − �0)β

′
with β ′ = 0.31991(2) for r =

0.2 and β ′ = 1.7701(2) for r = 0.4. (b) Staggered local mo-
ment M(�0 = �c, T = 0, h) vs staggered external magnetic field
h, fitted to M ∝ h1/δ with 1/δ = 0.11990(4) for r = 0.2 and
1/δ = 0.48066(4) for r = 0.4. Calculations are performed at Iz =
1.54 (0.73) for r = 0.2 (0.4).
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FIG. 11. Im χd (ω) at T = 0 in (a) Kondo-screened and
(b) local-moment phases. The low-frequency asymptotics give
(a) Im χd (ω) sgn(ω) ∝ |ω|1−2r and (b) Im χd (ω) sgn(ω) ∝ |ω|1+2r .
Calculations are performed at �0 = 0.5503 and �0 = 0.8032,
respectively.

APPENDIX E: DERIVATION OF EQ. (8)

We make use of the Kramers-Kronig relation

Re χd (ω = 0) = 1

π

∫ ∞

−∞
dω′ Im χd (ω′)

ω′ . (E1)

Because Im χd (ω′) is odd,

Re χd (ω = 0)

= 2

π

∫ ∞

0
dω

Im χd (ω)

ω

= 2

π

(∫ ω∗

0
dω +

∫ ω1

ω∗
dω +

∫ ∞

ω1

dω

)
Im χd (ω)

ω
, (E2)

where ω∗ ∼ |(Iz − Ic)/Ic)|ν is the crossover scale into the
quantum critical regime and ω1 is some upper cutoff, which
we have assumed to be independent of Iz. The high-frequency
nonuniversal part should only have a weak dependence on Iz,
so we put

∫ ∞
ω1

dω [Im χd (ω)]/ω 	 D1(r).
Now we substitute Eq. (7) in the main text:

Re χd (ω = 0)

= 2

π

∫ ω∗

0
C

(
ω∗

D

)y( ω

ω∗
)1±2r 1

ω
dω

+ 2

π

∫ ω1

ω

C

(
ω∗

D

)y 1

ω
dω + D1(r)

= 2

π
C

(
ω∗

D

)y 1

1 ± 2r
+ 2

π
C

1

y

(
ω

y
1 − ω∗y

)
Dy

+ D1(r)

= 2C

π

[
1

y

ω
y
1

Dy
−

(
ω∗

D

)y(1

y
− 1

1 ± 2r

)]
+ D1(r). (E3)

From NRG data, the proportionality constant C has negligible
dependence on Iz. Finally we replace ω∗ by |(Iz − Ic)/Ic)|ν to
obtain

Re χd (ω = 0)

= C1(r)

−C2(r)

(
1

y
− 1

1 ± 2r

)( |(Iz − Ic)/Iz|ν
D

)y

, (E4)

where

C1(r) = 2C(r)

π

1

y

ω
y
1

Dy
+ D1(r), C2(r) = 2C(r)

π
. (E5)
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