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Temperature dependence of exchange stiffness in an off-stoichiometric Ni2MnIn Heusler alloy
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Ferromagnetic exchange stiffness is a key to describe the robustness of a ferromagnetic interaction. Because
the experimental determination of the exchange stiffness constant A continues to be elusive, especially at elevated
temperatures, micromagnetic insights on the impact of thermal fluctuations on the ferromagnetic spin order
have remained less tractable. In this study, the temperature dependence of A is experimentally determined for
a Ni2Mn0.8In1.2 single crystal by measuring the 180◦ domain-wall width using off-axis electron holography
and magnetocrystalline anisotropy. The theoretically expected power-law scaling with magnetization for A is
shown to be applicable only in the low-temperature region (approximately half of the Curie temperature), and
A starts to follow the power law with a significantly larger scaling exponent in the higher-temperature region.
The decremental trends in the domain-wall width and the exchange length at elevated temperature seem to be
attributed to this temperature dependence of A.

DOI: 10.1103/PhysRevB.101.014443

I. INTRODUCTION

The ferromagnetic exchange stiffness constant A and mag-
netocrystalline anisotropy constant K are indispensable in-
formation for spintronic and magnetically functional mate-
rials. As examples, they are the key parameters for tailoring
multilayer spintronic devices [1] and for tuning the exchange
length lex ∝ √

A/K of magnetic materials [2]. Micromagnetic
simulations also require them to simulate the dynamic evo-
lution of spin configurations. Many micromagnetic platforms
have dealt with the dynamics at low temperature, where the
parameters of A and K of the materials do not show appar-
ent temperature dependence. However, owing the increasing
interest in thermally assisted magnetization dynamics, such
as the spin-Seebeck effect [3], ultrafast laser-induced magne-
tization reversal [4], and magnetic skyrmion motion [5,6], a
micromagnetic algorithm for the high-temperature dynamics
has recently been developed [7–9]. A correct description of
the temperature dependence of A and K has accordingly
become a strong concern.

Whereas the temperature dependence of K can be deter-
mined unambiguously for the whole temperature range below
the Curie temperature TC as given later, that of A is nontrivial
and confusing because there exist two different definitions
of the so-called domain-wall (DW) stiffness and spin-wave
(SW) stiffness, depending on the underlying interpretations
with different length scale. In the analytically tractable case
of DW stiffness, the following relation holds even at elevated
temperatures:

�F = 4
√

AK, (1)
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with the free energy �F of a domain wall. The �F has the
form of �F (β ) = ∫ β

0 �E (β ′)dβ ′, where �E is the energy
difference between systems with and without a domain wall
and β = 1/kBT (kB: the Boltzmann constant) [10]. The �F
and K in Eq. (1) show different temperature dependence,
resulting in the nontrivial temperature dependence of A. On
the other hand, the SW stiffness does not have a rigorous
mathematical form and is evaluated from numerical simu-
lations and spin-wave experiments. While the definitions of
the DW stiffness and SW stiffness are independently derived,
their magnitude and temperature dependence are predicted to
be in good agreement [10].

The experimental consolidation of A has been still less
practical because it generally requires significant efforts in, as
examples, the fabrication of high-quality single crystals and
performing highly specialized measurements such as spin-
wave resonance measurements, inelastic neutron scattering,
and Brillouin light scattering [11]. Considerable numerical
scatter among the literature data, which arises from the quality
of single-crystal and/or measurement methods, also makes
the efforts less worthwhile [11–13]. The approximation A ∼
1.0 × 10−11 J/m is commonly recognized to hold for many
soft magnets as the ground state [14] but is too imprecise to
be applied at elevated temperatures. There is a limited number
of experiments on the temperature dependence because of
the requirement for temperature controllability and higher
signal-to-noise ratio, especially near the TC, while performing
multiple measurements. However, theoretical studies on the
magnetization dependence of A provide in-depth insights
on this intractable problem: Atxitia et al. first predicted a
quadratic scaling law with respect to the normalized sponta-
neous magnetization m, A ∝ m2 from a mean-field approxi-
mation [15], but later refined the scaling factor to be 1.715 for
body-centered-cubic (bcc) ferromagnets under the different

2469-9950/2020/101(1)/014443(6) 014443-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0430-8868
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.014443&domain=pdf&date_stamp=2020-01-29
https://doi.org/10.1103/PhysRevB.101.014443


NIITSU, XU, UMETSU, KAINUMA, AND HARADA PHYSICAL REVIEW B 101, 014443 (2020)

FIG. 1. (a) Relationship between magnetization (M) and magnetic field (H ) at 4.2 K along [100], [111̄], and [01] directions.
(b) Temperature dependences of normalized spontaneous magnetization m and normalized in-plane magnetic flux density Bn. The Bn can
be derived from the electron holography observations. (c) Temperature dependences of magnetocrystalline anisotropy constants Kc1 and Kc2.

spin models based on the domain-wall energy and the spin-
wave dispersion wherein the correlation between different
spin-wave modes is involved [10]. These predictions have
been deduced to be valid at temperatures below ∼TC/4.

Some authors have recently proposed an alternative
method to explain the temperature dependence of the 180◦
domain-wall width δ observed in materials having a rel-
atively small cubic magnetocrystalline anisotropy constant
Kc1 [16]. This suggests that the width of the 180◦ domain
wall introduced in the thin-foiled specimen is dictated by
the energy minimization, where the total energy γtotal is
given as a summation of the exchange energy γex = Aπ2/δ,
the anisotropy energy γani = δKc1/2, and the magnetostatic
energy γmag = [πδ2/(δ + D)]M2

s , that is, γtotal = Aπ2/δ +
δKc1/2 + k[πδ2/(δ + D)]M2

s with a sample-dependent pa-
rameter k that modifies the significance of γmag relative to
γex + γani. The energy minimization condition satisfies

∂γtotal/∂δ = −A(π/δ)2 + Kc1/2

+ πkM2
s δ(δ + 2D)/(δ + D)2 = 0, (2)

where D and Ms are the thickness of thin-foiled specimen
and spontaneous magnetization, respectively. Equation (2) has
successfully explained the temperature-insensitive δ varia-
tions observed in Fe and Ni thin foils, which is a completely
different behavior from the well-known scalability of δ ∝√

A/K in the bulk [17]. Because Eq. (2) allows us to evaluate
A through microscopic magnetic imaging, such as Lorentz
microscopy and electron holography, it will have an exclusive
advantage for materials having difficulties in, as examples, the
large-volume and/or high-purity fabrications.

A Ni-based Heusler alloy is a multiferroic material that
exhibits a metamagnetic martensitic transformation [18] and
hosts competing magnetism in relation to the change in the
degree of atomic ordering: Ferromagnetic decoupling and
antiferromagnetic coupling are promoted as the degree of
atomic ordering decreases [19,20]. Indeed, it has been re-
ported that antiferromagnetism arises at antiphase boundaries
(APBs), where the degree of atomic ordering locally decays
[21], thus the 180◦ domain walls preferentially locate at the
APBs [22]. This has invoked interest in the temperature,
chemical, and degree of atomic ordering dependences of the
magnetic exchange length, which is a measure of the long-
range magnetic interaction, because it may have an effect on

the magnetic domain structure as well as the martensitic trans-
formation behavior. In this study, the cubic magnetocrystalline
anisotropy constants of Kc1 and Kc2 and A are examined for an
off-stoichiometric Ni2Mn0.8In1.2 Heusler alloy. This In-rich
Heusler alloy does not undergo the metamagnetic martensitic
transformation [23] but inherits potent antiferromagnetism in
the disordered B2 structure, while ferromagnetism is robust in
the ordered L21 Heusler structure.

II. EXPERIMENTAL METHOD

The ingot was fabricated by induction melting and sub-
jected to homogenization at 1173 K for 12 h and subsequent
annealing at 873 K for 4 d followed by quenching in ice water.
Since the order/disorder (L21/B2) transition temperature was
∼970 K [24], the obtained bulk had an L21 crystallinity with
almost no thermal APBs. A (011)-oriented single-crystalline
disk with ∼2.5-mm diameter and ∼0.7-mm thickness [see
the inset schematic in Fig. 1(a)] was cut out from the bulk
where the crystallographic orientation was checked by x-ray
Laue diffraction. The orientation dependence of the magneti-
zation curves was measured with respect to the [100], [111̄],
and [011̄] directions at various temperatures below TC using
a superconducting quantum interference device. For the mag-
netic domain-wall observation, off-axis electron holography
with double biprism interferometry [25] was employed using
a 300-kV transmission electron microscope equipped with a
well-calibrated liquid He cooling holder. A (100) thin-foiled
specimen with 250 ± 10-nm thickness was lifted up using a
focused ion beam. The detailed imaging and reconstructing
processes were basically the same as the precedent work
[16]. To improve the signal-to-noise ratio, more than ten
reconstructed phase images were averaged into one at every
settled temperature. The resultant spatial and phase resolu-
tions were ∼15.1 nm and ∼0.10 rad, respectively. While the
phase resolution was still not sufficient for this study, we have
averaged over 270-nm width along the domain wall and have
reduced the phase undulation to ∼0.02 rad.

III. RESULTS AND DISCUSSION

The representative orientation dependence of magnetiza-
tion curve is shown in Fig. 1(a). Similar to bcc-Fe, easy and
hard axes of this alloy are the 〈100〉 and 〈111〉 directions,
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FIG. 2. (a) Lorentz image taken at 5 K (over focus). (b) Reconstructed magnetic phase (ϕmag) image of the region surrounded by the
rectangle in (a). Color coding is assigned to the atan2(ϕmag) distribution, the absolute value and direction of which are identical to the brightness
and color hue of the inserted color wheel. (c) Differential ϕmag profiles traversing the 180◦ domain wall at various settled temperatures.
(d) Temperature dependence of domain-wall width δ.

respectively. The temperature dependence of Ms is derived
from the M-H relationship and presented in the normalized
form of m in Fig. 1(b). The inserted fitting curve is derived
using the following equation proposed by Kuz’min:

m = [1 − s(T/TC)3/2 − (1 − s)(T/TC)p]1/3, (3)

where s and p are fitting parameters [26]. A fitting curve
with p = 5/2 and s = 3/2 can reproduce the experimental
plots over the whole temperature range. The TC and Ms at
0 K are determined to be 225 K and 5.4 × 105 A/m (5.4 ×
102 emu/cm3), respectively. Furthermore, Kc1 and Kc2 are
approximated from Fig. 1(a), as shown in Fig. 1(c). The
normalized magnetocrystalline anisotropy constants obey the
power law (so-called Zener’s theory [27]) with respect to m,
that is,

Kc1/Kc1
◦ = mα1 , Kc2/Kc2

◦ = mα2 , (4)

where Kc1
◦ and Kc2

◦ are the magnetocrystalline anisotropy
constants at 0 K. The fitting curves in Fig. 1(c) are derived
with α1 = 3.8, Kc1

◦ = 8.0 × 103 J/m3, and α2 = 1.7, Kc2
◦ =

2.1 × 105 J/m3, where the temperature dependence of m is
dictated by Eq. (3). Noteworthy is that Kc2 is greater than

Kc1 by more than one order of magnitude at all examined
temperatures. Meanwhile, an ideal Bloch-type 180◦ domain
wall introduced in a (100) plane is assigned to a (010) or (001)
in-plane rotation, which indicates that one of the directional
cosines is always zero for this domain-wall geometry. The
magnetocrystalline anisotropy energy Ea can be expanded as

Ea 	 Kc1
(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

) + Kc2α
2
1α

2
2α

2
3, (5)

with directional cosines α1, α2, and α3. Considering the
orientation of the domain wall, the contribution of the Kc2
term becomes zero for an ideal Bloch-type 180◦ domain wall.
Strictly speaking, complete Bloch-type rotation is not allowed
and an asymmetric spin configuration is achieved owing to the
contribution of γmag. Nevertheless, the numerical contribution
of Kc2 is considered to be still less significant, as demonstrated
later, and Eq. (2) seems to be applicable for the observed 180◦
domain wall in the (100) thin foil of this material.

Figure 2(a) shows an over-focused Lorentz image taken at
5 K for the thin-foiled specimen. The white line running along
nearly the [010] direction is identical to a 180◦ domain wall.
Note that this wall remained stationary up to 219 K; this wall
lay with almost no motion up to 219 K. Electron holography
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FIG. 3. Exchange stiffness constant A plotted as functions of (a) T/TC and (b) m. The black and red lines are obtained with κ = 1.715 and
3.4, respectively.

observation was performed for the rectangle in Fig. 2(a): a
representative reconstructed magnetic phase (ϕmag) image at 5
K is shown in Fig. 2(b). This image straightforwardly explains
that the direction of the in-plane magnetic flux (B) is opposite
across the domain wall. Regarding the spatial distribution of
ϕmag., we have

∂ϕmag

∂x
= − e

h̄

∫
Bydz 	 − e

h̄
ByD, (6)

where e, h̄, and By represent the elementary charge, Dirac’s
constant, and the y component of B, respectively. [The x-y-z
coordination is given in Fig. 2(b).] The latter approximation in
Eq. (6) holds when By does not change along the z direction.
From this equation, By at 5 K is determined to be 0.42 ±
0.02 T. The normalized magnetic flux Bn is plotted in Fig. 1(b)
as a function of temperature. This shows good agreement
with m, which indicated that this foil maintains the magnetic
properties of the bulk. The ∂ϕmag/∂x variations across the
domain wall at various settled temperatures are shown in
Fig. 2(c). All profiles show high rotational symmetry with
respect to the domain-wall center, which indicates the spin
configuration is close to an ideal Bloch-type 180◦ rotation.
This symmetric configuration is responsible for the small
contribution of γmag to γtotal and thus we could propose that the
Bloch-type picture with negligible effect of Kc2 is applicable
for this material. To derive the domain-wall width δ from this
profile, the fitting curves with the function

∂ϕmag/∂x = I tanh[π (x − xoff )/δ] (7)

are also appended, where I and xoff are the amplitude and
offset of distance x. Thereby we can calculate δ numerically
as a function of the temperature, as shown in Fig. 2(d). Similar
to that observed for a (100) Fe thin foil [16], δ does not
exhibit an apparent sensitivity to the temperature change. This
behavior clearly contradicts that of the well-known δ’s scaling
parameter of

√
A/Kc1, which shows a monotonous increase

with increasing temperature [16]. A temperature-insensitive δ

is mainly attributed to the presence of a surface, which pinches
off domain walls to reduce the energy penalty of γmag.

Because the temperature dependences of Kc1 and δ are
obtained, we can derive the temperature dependence of A from
Eq. (2). Note that k is set to 0.4: this value scales the exchange
stiffness constant at 0 K, A◦, but does not have an effect on
the temperature function of A/A◦. Taking into account the
affinity between the derived A◦ of 1.2 × 10−11 J/m and the
widely accepted approximation of ∼1.0 × 10−11 J/m [14], as
well as the comparability to k = 0.5 for a (100) Fe thin foil
[16], k = 0.4 would be a reasonable approximation. Derived
A values are plotted as functions of T/TC [Fig. 3(a)] and m
[Fig. 3(b)]. In both figures, the power-law relation A/A◦ = mκ

with κ = 1.715 [10] is given as the black lines. While the
scaling with κ = 1.715 seems valid for the low-temperature
region up to ∼0.4TC, it apparently fails to reproduce the exper-
imental results at elevated temperatures. An alternative scaling
with κ = 3.4, which provides the best fitting above 0.4TC,
is presented as the red lines. The two scaling curves suggest
that the temperature dependence of A may not be trivial and
can roughly be classified into two temperature classes of
T � 0.4TC, where theoretical description is highly applicable,
and 0.4TC � T , where the thermodynamic ensemble may not
be sufficiently incorporated in theoretical studies. As another
reason for this behavior of A, from an experimental implica-
tion, the possible correlation between A and γmag should be
taken into further consideration: because the A component
perpendicular to the foil plane is considered to be smaller
than that within the foil plane, the increasing contribution of
surfaces at elevated temperatures may result in an underes-
timation of the averaged A in the foil specimens. In-depth
experiments for this possibility will be conducted in the near
future.

The temperature dependence of δ with the differ-
ent scaling exponents κ is provided in Fig. 2(d). The
trend at elevated temperature is found to be totally dif-
ferent: while the curve with κ = 1.715 showed an ac-
celerated increase similar to the temperature dependence
of

√
A/Kc1, that with κ = 3.4 shows a gradual decrease

which reproduces the experimental results at elevated
temperatures.
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FIG. 4. (a) Temperature dependence of domain-wall width δ calculated with various sets of κ and k. (b) Energy breakdown as a function
of T/TC. The solid and dotted lines are obtained with κ = 3.4 and 1.715, respectively. (c) Exchange length lex as a function of T/TC.

To evaluate the numerical significance of the parameters
κ and k to δ, the temperature dependence of δ is presented
in Fig. 4(a) for various sets of κ and k. As a general trend,
an increase in k reduces the amplitude of the temperature
dependency, but is not enough to reverse the trend when κ �
2, which fails to reproduce the experimental results. A larger κ

seems to be more straightforward to explain the experimental
results. The energy breakdown of the observed domain wall is
given in Fig. 4(b) where the solid and dotted lines are obtained
with κ = 3.4 and 1.715, respectively. All lines monotonously
decrease and the relative significance of γmag becomes larger
with increasing temperature, which is qualitatively similar to
that observed for a (100) Fe thin foil [16]. The transition
between the lines with κ = 3.4 and 1.715 is located at around
T ∼ 0.4TC: a κ value giving a lower γtotal is favored. Finally,
the exchange length lex = √

A/2πM2
s , which is the essen-

tial length scale for dictating magnetic reversal in magnets
[14,28,29], is derived as shown in Fig. 4(c). Similar to the tem-
perature dependence of δ, lex. changes its trend from a slight
increase to a significant decrease with increasing temperature.
Again, this trend is not able to be explained with a single κ

scaling.

IV. SUMMARY

In conclusion, we have examined the temperature depen-
dence of A for an off-stoichiometric Ni2Mn0.8In1.2 Heusler al-
loy using the measurements of magnetocrystalline anisotropy
and of a 180◦ domain-wall width through electron holography
observations. The power-law scaling A/A◦ ∼ mκ with κ =
1.715, which is given from the theoretical considerations,
seems to be applicable below 0.4TC, but is supplanted by the
scaling with a much larger κ of 3.4 above 0.4TC. The observed
nontrivial temperature dependence of A, which has not been
experimentally captured and not been theoretically predicted,
results in the opposite temperature trends of δ and lex.. Toward
the correct parametrization of A, the results highlight the
fundamental but overlooked aspect of A and provide insights
from an experimental approach on the effect of temperature.
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