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Magnetic properties of a spin-1
2 honeycomb lattice antiferromagnet
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We present an S = 1/2 antiferromagnetic (AF) honeycomb lattice composed of a verdazyl-based complex
[Zn(hfac)2][o-Py-V-(4-F)2]. Ab initio molecular orbital calculations indicate that two AF interactions and a
ferromagnetic interaction lead to the formation of a honeycomb lattice. We explain the magnetic susceptibility,
magnetization curve, and magnetic specific heat based on the S = 1/2 Heisenberg AF honeycomb lattice using
the quantum Monte Carlo method. Further, by considering the distortion effect on the magnetic behavior, we con-
firm that the dimer-like lattice distortion in the present compound is small enough not to affect the intrinsic two-
dimensional properties of the honeycomb lattice. Our numerical study on the distorted honeycomb lattice reveals
a quantum phase transition from a disordered dimer phase to an AF ordered phase at a critical distortion ratio.
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I. INTRODUCTION

Two-dimensional (2D) S = 1/2 Heisenberg antiferromag-
netic (HAF) spin systems have received considerable attention
as parent insulating states of high-temperature superconduc-
tors in layered cuprates. The most studied example is the
S = 1/2 HAF square lattice. Although it exhibits a long-
range Néel order in its ground state, the effect of quantum
fluctuations reduces the magnetic moment per site by approx-
imately 40% with respect to its conventional value [1]. The
S = 1/2 HAF honeycomb lattice is another intriguing 2D
bipartite spin system. Recent studies on graphene [2,3] and an
exactly solvable Kitaev model with strong anisotropic interac-
tions [4] have garnered further interest in honeycomb lattices.
Although the S = 1/2 HAF honeycomb lattice exhibits a
Néel order in its ground state, the quantum fluctuations are
enhanced because of its low 2D coordination number. This
further reduces the magnetic moment per site relative to that
of the square lattice [5–9] and makes its ordered state fragile.
Numerical investigations on a distorted honeycomb lattice
revealed that relatively small lattice distortions can destroy
the ordered state and induce a disordered phase [10–12].
The dimer-like distortion, which is similar to the distortion
in the present model, causes a quantum phase transition
(QPT) from the AF ordered phase to a gapped dimer phase
at a critical distortion ratio. The evaluated quantum critical
exponents indicate that the quantum criticality falls in the O(3)
universality class.

From an experimental viewpoint, among inorganic com-
pounds, there are only a few model substances for the
S =1/2 HAF honeycomb lattice [13–15]. Copper oxide
InCu2/3V1/3O3 is known as a candidate with an equivalent
exchange interaction of J/kB = 280 K [13,16–18]. How-
ever, structural domains of approximately 300 Å exist in a
2D hexagonal plane [16]. Therefore, it is unclear whether
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the magnetic behavior in the case of InCu2/3V1/3O3 orig-
inates from intrinsic quantum nature or the finite-size ef-
fect in the domain boundaries. Copper coordination polymer
Cu2(pymca)3(ClO4) with an exchange interaction J/kB =
37 K is another candidate for the equivalent model [15]. The
β modification of Cu2V2O7 is expected to form a slightly
distorted lattice with an averaged exchange interaction J/kB =
60–66 K, and a phase transition to the long-range Néel order
is observed at 26 K [14]. Considering the energy scale of the
exchange interactions in the above inorganic compounds, it
is difficult to examine the quantum behavior of the S = 1/2
HAF honeycomb lattice in magnetic fields up to the saturation
field. Conversely, organic compounds have relatively weak ex-
change interactions owing to their intermolecular couplings.
Verdazyl radicals, which have been developed for quantum
spin systems, can form several S = 1/2 distorted HAF honey-
comb lattices [19–21]. In verdazyl radical 2-Cl-3,6-F2-V [=3-
(2-chloro-3,6- difluorophenyl)-1,5-diphenylverdazyl] and 2-
Cl-6-F-V [= 3-(2-chloro-6-fluorophenyl)-1,5- diphenylver-
dazyl], uniform AF chains connected by slightly weak AF
interactions and uniform ferromagnetic chains connected by
AF interactions are formed, respectively. The magnetic behav-
iors in the case of verdazyl compounds have been observed
up to the saturation field and quantitatively described using
honeycomb lattice models [19,20].

In this paper, we present a verdazyl-based complex form-
ing an S = 1/2 HAF honeycomb lattice. We synthesized sin-
gle crystals of [Zn(hfac)2][o-Py-V-(4-F)2] [hfac = 1,1,1,5,5,5-
hexafluoroacetylacetonate, o-Py-V-(4-F)2 = 3-(2-pyridyl)-
1,5-bis(4-fluorophenyl)-diphenylverdazyl]. Ab initio molec-
ular orbital (MO) calculations indicated that three types of
predominant interactions lead to the formation of an S = 1/2
honeycomb lattice. We explained the magnetic susceptibility,
magnetization curve, and magnetic specific heat based on the
S = 1/2 HAF honeycomb lattice using the quantum Monte
Carlo (QMC) method. Further, we examined the effects of
lattice distortion on the magnetic behavior and found a critical
distortion ratio at which a QPT occurs from a disordered
dimer phase to an AF ordered phase.
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II. EXPERIMENTAL AND NUMERICAL METHOD

We synthesized o-Py-V-(4-F)2 through a conventional pro-
cedure for verdazyl radical [22]. A solution of [Zn(hfac)2] ·
2H2O (51.5 mg, 0.1 mmol) in 15 ml of heptane was refluxed
at 70◦ C. A solution of o-Py-V-(4-F)2 (35.0 mg, 0.1 mmol) in
2 ml of CH2Cl2 was slowly added, and stirring was continued
for 1 h. After the mixed solution cooled to room tempera-
ture, a dark-green crystalline solid of [Zn(hfac)2][o-Py-V-(4-
F)2] was separated by filtration and washed with heptane.
The dark-green residue was recrystallized using acetonitrile
at 10◦ C.

A single-crystal x-ray diffraction (XRD) experiment was
performed by using a Rigaku AFC-8R Mercury CCD
RAMicro7 diffractometer with Japan Thermal Engineering
XRHR10K. The single crystal XRD data are refined by us-
ing the SHELX software [23]. The structural refinement was
carried out using anisotropic and isotropic thermal parameters
for the nonhydrogen atoms and the hydrogen atoms, respec-
tively. Restrains or constrains were used for atomic hydrogen
positions and thermal displacements.

The magnetic susceptibility was measured using a
commercial superconducting quantum interference device
(SQUID) magnetometer (MPMS-XL, Quantum Design) with
a 3He refrigerator down to about 0.5 K. The magnetization
curve was measured using a capacitive Faraday magnetome-
ter with a dilution refrigerator at 0.1 K. The experimental
results were corrected for the diamagnetic contribution of
−5.1×10−4 emu mol−1, which is determined to become
almost χ−1 ∝ T above approximately 10 K and close to
that calculated by Pascal’s method. The specific heat was
measured with a commercial calorimeter (PPMS, Quantum
Design) using a thermal relaxation method above 1.9 K and
a handmade apparatus by a standard adiabatic heat-pulse
method with a 3He refrigerator down to about 0.3 K. There is
no significant difference in magnetic properties between the
field directions owing to the isotropic g value of ∼2.004 in
verdazyl radical systems [24,25]. Therefore, all experiments
were performed using small randomly oriented single crystals.

Ab initio MO calculations were performed using the
UB3LYP method with the basis set 6-31G in the GAUSSIAN09
program package. The convergence criterion was set at 10−8

hartree. For the estimation of intermolecular magnetic inter-
action, we applied our evaluation scheme that was studied
previously [26].

The QMC code is based on the directed loop algorithm
in the stochastic series expansion representation [27]. The
calculations for the S = 1/2 HAF honeycomb lattice was per-
formed for N = 1152 under the periodic boundary condition,
where N denotes the system size. It was confirmed that there
is no significant size-dependent effect. All calculations were
carried out using the ALPS application [28,29].

III. RESULTS AND DISCUSSION

A. Crystal structure and magnetic model

The crystallographic data for the synthesized
[Zn(hfac)2][o-Py-V-(4-F)2] are summarized in Table I, and
the molecular structure is shown in Fig. 1(a). The verdazyl
ring (which includes four N atoms), the upper two phenyl

TABLE I. Crystallographic data for [Zn(hfac)2][o-Py-V-(4-F)2].

Formula C29H16F14N5O4Zn

Crystal system Monoclinic
Space group P21/c
Temperature (K) RT 25(2)
Wavelength (Å) 0.7107
a(Å) 9.141(4) 8.898(2)
b(Å) 31.879(14) 31.491(9)
c(Å) 10.945(5) 10.859(3)
β (degrees) 92.170(5) 91.347(4)
V (Å3) 3187(2) 3041.9(14)
Z 4
Dcalc (g cm−3) 1.729 1.812
Measured reflections 5590 5258
Reflection merged 4586 3380
Parameters refined 478
R [I > 2σ (I )] 0.0636 0.0631
Rw [I > 2σ (I )] 0.1565 0.1525
Goodness of fit 1.077 0.945
CCDC 1 952 182 1 952 183

rings, and the bottom pyridine ring are labeled R1, R2, R3,
and R4, respectively. The dihedral angles of R1-R2, R1-R3,
R1-R4 are approximately 15◦, 48◦, and 8◦, respectively.
Each molecule has a delocalized S = 1/2 spin. The result
of the MO calculation for the [Zn(hfac)2][o-Py-V-(4-F)2]
molecule indicates that approximately 59% of the total spin
density is present on R1. Figure 1(b) shows the corresponding
spin-density distribution. Further, while R2 and R3 each
account for approximately 17% of the relatively large total
spin density, R4 accounts for less than 6% of the total spin
density. Therefore, the intermolecular interactions are caused
by the short contacts related to the R1, R2, and R3 rings. Since
Zn(hfac)2 has a low spin density less than 1% of the total spin
density, it works as a spacer between verdazyl radicals. We
focus on the structural features related to the o-Py-V-(4-F)2 to
consider intermolecular interactions.

We evaluated the intermolecular exchange interactions of
all molecular pairs within 4.0 Å through the ab initio MO
calculations and found three types of predominant interac-
tions. They are evaluated as J1/kB = 7.4 K, J2/kB = 5.6 K,
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FIG. 1. (a) Molecular structure of [Zn(hfac)2][o-Py-V-(4-F)2]
and (b) its spin-density distribution. Purple and green shapes cor-
respond to positive and negative spin densities, respectively. The
isodensity surface corresponds to a cutoff value of 0.001e bohr−3.
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FIG. 2. Molecular pair of [Zn(hfac)2][o-Py-V-(4-F)2] associated with the exchange interactions (a) J1, (b) J2, and (c) J3. Hydrogen atoms
are omitted for clarity. The broken lines indicate N-C and C-C short contacts. (d) Crystal structure forming a 2D honeycomb lattice in the ac
plane, in which each Zn(hfac)2 in the molecule is omitted for clarity. (e) Crystal structure viewed parallel to the 2D honeycomb plane.

and J3/kB = −3.8 K, which are defined in the Heisenberg
spin Hamiltonian given by H = Jn

∑
<i, j>Si·S j , where

∑
<i, j>

denotes the sum over the neighboring spin pairs. All molecular
pairs associated with these interactions are related by an
inversion center, and the N-C and C-C short contacts for
the J1, J2, and J3 interactions are given by 3.59, 3.41, and
3.64 Å, respectively, as shown in Figs. 2(a) to 2(c). The three
dominant interactions lead to the formation of an S = 1/2
honeycomb lattice in the ac plane, as shown in Fig. 2(d). Al-
though the molecular arrangement is not hexagonal, the spin
network is topologically equivalent to the honeycomb lattice
considering the isotropic nature of organic radical systems.
The nonmagnetic Zn(hfac)2 acts as a spacer between the 2D
structures, as shown in Fig. 2(e). The interplane couplings are
evaluated to be less than approximately 1/50 of J1 in absolute
values.

B. Magnetic and thermodynamic properties

Figure 3(a) shows the temperature dependence of the
magnetic susceptibility (χ = M/H) at 0.1 T. Above 10 K,
it follows the Curie-Weiss law, and the Curie constant and
Weiss temperature are estimated to be 0.362 emu K/mol and
θW = −1.2 K, respectively. This small value of θW indicates
contributions of both ferromagnetic and AF interactions as
suggested by the MO calculations. We evaluated the paramag-

netic impurities to be approximately 1.2% of all spins, which
is defined to fit the following calculated result and is close
to those evaluated in other verdazyl radical crystals [30,31],
and subtracted it from the raw data by assuming conventional
paramagnetic behavior. The corrected data in Fig. 3(a) are
normalized by subtracting the impurities. We observe a broad
peak at approximately 2.2 K, which indicates an AF short-
range order in the honeycomb lattice. We calculated the mag-
netic susceptibility for the S = 1/2 HAF honeycomb lattice
using the QMC method. Here, for simplicity, we assumed
a uniform model with J1=J2 = |J3|. Given the radical-based
compound, we used the isotropic g-value of 2.00. We obtained
a good agreement between the experimental and calculation
results when J1/kB = 3.6 K with a radical purity of 95%, as
shown in Fig. 3(a).

Figure 3(b) shows the magnetization curve at 0.1 K. The
magnetization curve clearly indicates a combined behavior
of a linear increase and Brillouin function in the low-field
region. Thus, we can determine the amount of paramagnetic
impurities and obtain an intrinsic behavior so that low-field in-
crease becomes smooth. We subtracted a small paramagnetic
contribution given by the Brillouin function in the low-field
region that is evaluated to account for 4.3% of all spins. The
corrected data in Fig. 3(b) is normalized by subtracting the
impurities. These paramagnetic impurities are slightly larger
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FIG. 3. Magnetic and thermodynamic properties of [Zn(hfac)2][o-Py-V-(4-F)2]. (a) Temperature dependence of magnetic susceptibility
(χ = M/H ) at 0.1 T. The open triangles denote raw data, and the open circles are corrected for the paramagnetic term due to the impurity.
(b) Magnetization curve at 0.1 K. The open triangles denote raw data, and the open circles are corrected for the paramagnetic term due to the
impurity. (c) Total specific heat Cp and its magnetic contribution Cm at 0 T. The inset shows Cp up to 20 K. The solid lines with open squares
represent the calculated results for the S = 1/2 uniform HAF honeycomb lattice with the relation of J1=J2=|J3| (α = 1.0).

than those evaluated from the magnetic susceptibility. This
difference is considered to originate from the measurement
setting as well as the sample differences. For the measurement
using capacitive Faraday magnetometer, we use grease to
fix the sample on the capacitance stage. The paramagnetic
contribution is considered to be increased by the radicals
dissolve in the grease. We observe nonlinear behavior origi-
nating from quantum fluctuations in the S = 1/2 honeycomb
lattice. We calculated the magnetization curve at 0.1 K as-
suming the same model as for the magnetic susceptibility
by using the same parameters and obtained good agreement
between the experiment and the calculation, as shown in
Fig. 3(b).

The inset of Fig. 3(c) shows the experimental results of
the total specific heat Cp at zero field. A clear shoulder is
observed at approximately 2 K. We evaluated the magnetic
specific heat Cm by subtracting the lattice contribution Cl

and assumed Cl in the low-temperature region approximated
as Cl = a1T 3 + a2T 5 + a3T 7. The constants a1 − a3 are de-
termined to reproduce the following magnetic specific heat
calculated by the QMC method. As a result, Cl was evaluated
by using the constants a1 = 0.05, a2 = −3.3 × 10−4, and
a3 = 9.4 × 10−7. The value of a1 corresponds to a Debye tem-
perature of 34 K, which is close to that for the verdazyl-based
complex with the same crystal structure [31]. We calculated
the magnetic specific heat assuming the same honeycomb
lattice model as for the magnetization susceptibility by using
the same parameters and reproduced the observed behavior in
the low-temperature region below 10 K, as shown in Fig. 3(c).

C. Numerical analysis on the spin-1/2
distorted honeycomb lattice

The MO calculation results indicate that the three dominant
interactions, J1/kB = 7.4 K, J2/kB = 5.6 K, and J3/kB =
−3.8 K, lead to the formation an S = 1/2 distorted honey-
comb lattice. This distorted model can be understood as a
J1-J2 AF alternating chain connected by ferromagnetic J3 or a
J1-J3 AF-ferromagnetic alternating chain connected by AF J2.

To examine the lattice distortion effects on the S = 1/2 HAF
honeycomb lattice, we simplified the spin lattice such that
J2 = |J3|. We then introduced a distortion ratio α = J2/J1,
which is equivalent to the dimer-like distortion reported in
previous numerical studies [10,11], except that J3 is ferromag-
netic. Figures 4(a) and 4(b) show the magnetic susceptibilities
and magnetization curves for representative values of α be-
tween 0 and 1.0, respectively. The value of J1 was determined
for each α to reproduce the experimental result of χ above
10 K. Thus, the following values were obtained: J1/kB = 4.6 K
(α = 0.3), J1/kB = 4.4 K (α = 0.5), J1/kB = 4.3 K (α =
0.6), J1/kB = 4.2 K (α = 0.7), J1/kB = 4.0 K (α = 0.8), and
J1/kB = 3.6 K (α = 1.0). The lattice system in the extreme
cases, i.e., when α = 0 and α = 1.0, corresponds to a gapped
singlet dimer coupled by J1 and a gapless uniform honeycomb
lattice, respectively. Considering the presence of the energy
gap when α � 0.6, clear differences can be observed in the
low-temperature regions of χ and the magnetization curve, as
shown in Figs. 4(a) and 4(b). The increase in α corresponds to
increased two-dimensionality toward the uniform honeycomb
lattice when α = 1.0, resulting in the disappearance of the
energy gap. Accordingly, the magnetization curves exhibit a
reduction in the energy gap and approach the experimental
gapless behavior with increasing α. Although the experimen-
tal results can be well explained with α = 1.0, as shown in
Figs. 3(a) to 3(c), α dependence is almost indistinguishable
when 0.8 < α < 1.0. These results suggest that the small
dimer-like lattice distortion for 0.8 < α < 1.0 does not
affect the intrinsic properties of the present S = 1/2 HAF
honeycomb lattice. The actual value of α in the present
compound should be 0.8 < α < 1.0. If we assume J1-J2 or
J1-J3 alternating chain, the calculated magnetizations exhibit
a gapped behavior [32,33], which is clearly different from the
experimental gapless behavior.

Finally, we examined the α dependence of the phase
boundaries for the present S = 1/2 distorted HAF honeycomb
lattice. We predicted the ground-state phase diagram in the
α-H plane, as shown in Fig. 5, where the phase boundaries are
estimated from the peak structure in the field derivative of the
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FIG. 4. (a) Calculated magnetic susceptibility and (b) magnetiza-
tion curves at 0.1 K of the S = 1/2 HAF honeycomb lattice assuming
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at T/J1 = 0.01 near the critical distortion ratio αc. For clarity, the
values of the vertical axes have been shifted up.

magnetization curve at T/J1 = 0.01 for various α, as shown in
the inset of Fig. 4(b). The phase diagram can be divided into
three regions: a dimer phase, an AF ordered phase (including
a canted state), and a fully polarized phase. A QPT from the
disordered dimer phase to the AF ordered phase is expected at
αc � 0.68. We considered the value of αc by comparing it to
those given in previous theoretical works on similar models.
If J2 and J3 are equal and AF, the dimer phase region becomes
slightly narrower, yielding αc � 0.54 [11]. Conversely, when
J2 and J3 are equal and ferromagnetic, the dimer phase is
stable for most values of α, yielding |αc| � 0.93 [12]. These
numerical results suggest that the ferromagnetic correlations
in the honeycomb lattice with dimer-like distortion make the
AF dimer stable. In the present case, we assumed that J2 and J3

are equal and AF and ferromagnetic, respectively. Therefore,
the intermediate value of αc obtained in the present model is
consistent with those reported previously.
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FIG. 5. Ground-state phase diagram of the S = 1/2 distorted
HAF honeycomb lattice in the α-H plane, characterized by a dis-
ordered dimer phase, an AF ordered phase (including a canted state),
and a fully polarized phase. The magnetic field H is normalized by
J1. The αc indicates a QPT. The illustrations show schematic pictures
of the singlet dimer and the AF order at zero field.

IV. SUMMARY

We synthesized single crystals of a verdazyl-based com-
plex [Zn(hfac)2][o-Py-V-(4-F)2]. Ab initio MO calculations
indicated three dominant interactions, namely J1, J2, and
J3, leading to the formation of an S = 1/2 AF honeycomb
lattice. The magnetic susceptibility and specific heat indi-
cated the development of AF correlations in the honeycomb
plane. The low-temperature magnetization curve exhibited a
nonlinear behavior originating from quantum fluctuations in
the S = 1/2 honeycomb lattice. We explained the magnetic
susceptibility, magnetization curve, and magnetic specific
heat based on the S = 1/2 HAF honeycomb lattice using
the QMC method. Further, we examined the lattice distor-
tion effects using a simplified honeycomb lattice with J2 =
|J3|. The dimer-like lattice distortion for 0.8 < α < 1.0
(α = J2/J1) did not affect the intrinsic properties of the
present S = 1/2 HAF honeycomb lattice. Consequently, the
actual value of α was expected to be in the range of 0.8 <

α < 1.0 with J1/kB ≈ 3.6–4.0 K. Our numerical study
on the α dependence of the magnetic behavior revealed that
a QPT occurs from the disordered dimer phase to the AF
ordered phase at αc � 0.68.
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