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Zero-field propagation of spin waves in waveguides prepared by focused ion beam direct writing
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Metastable face-centered-cubic Fe78Ni22 thin films are excellent candidates for focused ion beam direct
writing of magnonic structures due to their favorable magnetic properties after ion-beam-induced transformation.
The focused ion beam transforms the originally nonmagnetic fcc phase into the ferromagnetic bcc phase with
additional control over the direction of uniaxial magnetic in-plane anisotropy and saturation magnetization. Local
magnetic anisotropy direction control eliminates the need for external magnetic fields, paving the way towards
complex magnonic circuits with waveguides pointing in different directions. In the present study, we show that
the magnetocrystalline anisotropy in transformed areas is strong enough to stabilize the magnetization in the
direction perpendicular to the long axis of narrow waveguides. Therefore, it is possible to propagate spin waves
in these waveguides in the favorable Damon-Eshbach geometry without the presence of any external magnetic
field. Phase-resolved microfocused Brillouin light scattering yields the dispersion relation of these waveguides
in zero as well as in nonzero external magnetic fields.
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I. INTRODUCTION

Nowadays, the vibrant field of magnonics stands on the
edge between the development of elementary building blocks
of magnonic circuitry and envisioned all-magnon on-chip
devices [1,2]. The magnonic devices, utilizing the physics of
spin waves, are recognized to have potential in information
processing in the frequency range from gigahertz to terahertz.
High frequencies together with low energy of elementary
excitations render the magnonic devices suitable for beyond-
CMOS computational technologies. Many concepts of future
devices used for steering and manipulating spin waves have
been presented recently [3–6]. To allow further advances in
this field, new types of materials possessing additional means
of control over their magnetic properties together with good
spin-wave propagation are needed.

Here we show that magnonic waveguides with fast spin-
wave propagation at zero magnetic field can be directly
written into metastable Fe78Ni22 thin films by a focused ion
beam (FIB). The local dose and scanning strategy control
both the saturation magnetization and the magnetocrystalline
anisotropy (direction, type, and strength) of irradiated areas.
The unique possibilities of this material system allow one to
overcome the shape anisotropy of long magnonic waveguides
and stabilize the magnetization perpendicular to the direction
of the waveguide even in the absence of any external mag-
netic field. This is of great importance for using magnons
as information carriers because the geometry where the
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magnetization is aligned perpendicularly to the propagation
direction has the maximum group velocity (Damon-Eshbach
modes).

The Fe78Ni22 layers grow on a Cu(001) substrate in the
metastable nonmagnetic fcc phase and can be transformed by
ion irradiation into the ferromagnetic bcc phase [7,8]. Using
a FIB, the fcc→bcc transformation can be precisely con-
trolled, which results in unprecedented local control over the
magnetic properties [9]. This approach removes the need for
complicated multistep lithography processing and provides
rapid prototyping of individual structures on the sample with
the additional possibility to control the magnetic properties
of each structure or even to change the magnetic properties
locally in a single magnetic element [9–12]. This approach
is more versatile than the conventional approaches, which
use external magnetic fields or global magnetic anisotropy
for stabilizing and controlling the spin-wave propagation.
The highly local character of the presented approach allows
stabilizing the magnetization in the direction of the locally
variable magnetic anisotropy. Classical approaches of nanos-
tructuring of magnetic materials such as optical or electron
beam lithography combined with lift-off processing [13], wet
[14] or dry [15] etching, or ion implantation [16,17] do not
offer the same control over local material properties. The same
is true for fabrication processes that rely on a binary selection
of adding or removing the magnetic materials.

II. EXPERIMENTS

The FIB-written waveguides together with a microwave
antenna for spin-wave excitation are shown in Fig. 1(a). The
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FIG. 1. (a) SEM micrograph of FIB-prepared waveguides (bcc
waveguides appear dark gray). The crystallographic orientations of
the fcc matrix and bcc waveguides are indicated (for the latter,
inferred from the magnetic anisotropy, double-headed arrow). The
microwave antenna is highlighted in ocher. The FIB irradiation
strategy is schematically shown in the bottom-right structure by the
yellow zigzag path. In the same structure, the overlaid cyan pattern
highlights the growth initiation triangular region which has been
irradiated with an increased ion dose. (b) Hysteresis loops of three
waveguides for two different orientations of the magnetic field [blue
and red curves correspond to the orientations of the magnetic field
indicated by arrows in the top-right corner of (a)]. (c) 2D frequency
maps of thermal spin-wave spectra measured by microfocused BLS
scanning over the waveguides in the transverse direction along the
red lines in zero external magnetic field (top row) and in an applied
magnetic field Bext−0◦ = 50 mT (bottom row). The spatially and
magnetic-field-invariant mode at approximately 3 GHz is a spurious
laser mode.

waveguides are 30 µm long with nominal widths of 3, 2, and
1.5 µm and are clearly visible in the SEM image.

Prior to the FIB processing, the metastable fcc Fe78Ni22

thin film of nominal thickness 12 nm was grown under
UHV conditions on a Cu(001) single-crystal substrate using
the procedure described in Ref. [8]. After deposition, the
sample was transferred to the FIB-SEM microscope for FIB
irradiation. We oriented the long axis of the waveguides along
the fcc[010] direction of the Cu substrate in order to obtain
the highest possible magnetocrystalline anisotropy [9]. To
imprint the anisotropy direction perpendicularly to the long
axis of the waveguide, we wrote the structures with a single
pass of a 30 keV Ga+ ion beam (30 nm spot, beam current
of 150 pA, and 5 μs dwell time) with the fast scanning
direction rotated by 80° from the waveguide’s long axis [see
the bottom-right structure in Fig. 1(a)]. The resulting ion dose
of 4 × 1015 ions/cm2 has given reliable growth conditions
for all the waveguides. Nucleation of the bcc structure was
facilitated by starting the growth in a triangular 5-µm-wide
region with the doubled ion dose of 8 × 1015 ions/cm2 (again
in a single FIB scan).

After the irradiation, the magnetic waveguides were inves-
tigated with Kerr magnetometry [18] and Kerr microscopy.
When the field Bext−90◦ is applied parallel to the long axis
of the waveguide, hard-axis hysteresis loops [blue lines in
Fig. 1(b)] with effective anisotropy fields [19] in the range
20–25 mT are observed for all waveguides. When the field
Bext−0◦ is applied perpendicular to the waveguide, easy-axis
loops [red lines in Fig. 1(b)] with coercive fields in the range
of 4–8 mT are observed.

Thermal spin-wave spectra obtained by microfocused Bril-
louin light scattering microscopy [20] are shown in Fig. 1(c)
for zero magnetic field and for the external field Bext−0◦ =
50 mT. The signal is proportional to the density of spin-
wave states at the detection frequency (y axis) and shows
pronounced spin-wave spectral intensity localized solely in
the areas irradiated by the FIB. The bandgap of the spin-wave
band structure for the middle of the waveguide (x = 0 μm)
can be clearly seen as a sudden increase in the density of
spin-wave states for frequencies higher than approximately
6 GHz in zero field and at approximately 10 GHz in the
external field of 50 mT.

All three waveguides show qualitatively the same behavior.
The data also reveal the local change in spin-wave spectra
towards the sides of the waveguide. Here localized low-
frequency modes appear at approximately 4 GHz in zero
field and at approximately 8 GHz in the external field of
50 mT. This is a clear indication of the transverse orientation
of the magnetization and its inherent demagnetizing field
leading to lower effective fields at the waveguide edges and
thus directly resulting in the localized spin-wave edge modes
[21,22]. The overall analysis is depicted for three vertically
oriented waveguides only as the behavior of the horizontally
oriented waveguides shows qualitatively the same behavior
(the anisotropy is again imprinted perpendicular to the long
axis of the waveguides). This also demonstrates the unique
potential of our approach when compared to other less ver-
satile approaches or materials with global magnetocrystalline
anisotropy.

In the following experiments, we extract the magnetic field
dependence of the spin-wave dispersion relation. By fitting
the measured dispersion, we were able to obtain the full set
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FIG. 2. Phase-resolved BLS microscopy interference intensity
map for various external magnetic fields at a fixed excitation fre-
quency of 10.2 GHz. Individual line scans have been normalized
and a space-invariant background was subtracted. The bottom graph
shows line profiles extracted from the intensity map for 15 mT (red
line) and for zero external magnetic field (blue line).

of magneto-dynamic parameters of the material. The standard
µBLS method cannot directly sense the phase of the detected
spin waves, and thus it does not allow to determine the wave-
length λ (or equivalently the wave propagation vector �k) of the
spin waves. In order to extract the wave-vector information,
we employed the phase-resolved µBLS technique [20,23].
The method directly reveals the spatial profile of the spin-
wave phase by letting the scattered photons interfere with a
reference signal of a constant phase created by an electro-optic
modulator (EOM).

We recorded the interference signal along the 1.5 µm
wide waveguide (x = 0 μm) with a step size of 120 nm
from the edge of the exciting antenna up to 7 µm distance
at a microwave frequency of 10.2 GHz. The phase-resolved
measurements are shown in Fig. 2.

We measured the BLS interference line scans with an ap-
plied external magnetic field (perpendicular to the waveguide
long axis) from 0 to 15 mT (1 mT step). The BLS interference
intensity map shows a gradual increase of the spin-wave wave-
length from the lowest value of 1.09 µm found at zero field
up to 1.60 µm at 15 mT. This is additional evidence for the
presence of the Damon-Eshbach geometry even at zero field
since otherwise a decreasing wavelength with increasing field
would be expected. To extract the spin-wave wavelength, we
fitted the measured data with the simple interference model:

I (y) = ISW(y) + IEOM + 2
√

ISW(y)IEOMcos[θ (y)], (1)

FIG. 3. (a) Dependence of the spin-wave wavelength λl [ex-
tracted from Eq. (1)] on the external magnetic field for three different
frequencies fitted with the model given by Eq. (2). (b) Experimental
and calculated (blue line) spin-wave dispersion together with the
calculated group velocity (red line) at zero external magnetic field.
The error bars have been calculated from the 95% fit confidence
bounds.

where we assume ISW = Imaxe−y/Latt. . The parameters IEOM

and Imax are EOM and spin-wave maximum intensities, Latt.

is a spin-wave attenuation length, and the total phase differ-
ence is θ = 2π

y
λl

+ θ0 with λl representing the longitudinal
spin-wave wavelength, y is the distance from the excitation
antenna, and θ0 is an arbitrary phase offset between the EOM
and the spin-wave excitation. We fitted the experimental data
using Eq. (1) with all five parameters unconstrained. The
two important fit parameters are the wavelength [shown in
Fig. 3(a) as a function of Bext] and the attenuation length.
The largest attenuation length Latt. = 3.1 ± 0.4 µm is mea-
sured for zero external magnetic field and the frequency of
10.2 GHz. The spin-wave dispersion at zero field obtained
from these fits is shown in Fig. 3(b).

III. MODELING AND DISCUSSION

From the dispersion, we can determine the magnetic
parameters using the model of Kalinikos and Slavin [24],
while taking into account the finite width of our waveguides
by assuming the effective boundary conditions as described
by Guslienko et al. [25]. The effective dipolar conditions
yield an effective width weff = wd/(d − 2) of the waveg-
uide, determined by the geometric width w and the pinning
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parameter d = 2π/[p + 2pln(1/p)]. The parameter p is given
by p = t/w, where t is the thickness of the magnetic material.
For the spin-wave dispersion model, we assumed that the
external magnetic field Bext points in the direction of the
magnetic anisotropy, i.e., perpendicularly to the long edge of
the waveguide (magnetic anisotropy is introduced in the form
of an effective magnetic field Bani). With all the terms in place
the model is the following:

f 2

γ 2
= [|Bext| + |Bani| + μ0MsPsin2(�k) + (2Aex/Ms )|�k|2]

× [|Bext| + |Bani| + μ0Ms(1 − P) + (2Aex/Ms)|�k|2]

(2)

where f is the spin-wave frequency and γ is the gyromagnetic
ratio. Ms is the saturation magnetization and Aex is an ex-
change stiffness. �k is an angle of the spin-wave propagation
with respect to the long axis of the waveguide. It is calculated
from the respective orthogonal components of the propagation
vector as �k = atan(k‖/k⊥n). The longitudinal component of
the total propagation vector is k‖ (parallel to the long axis
of the waveguide) and the transverse (quantized) component
is k⊥n. Since the thickness of the waveguide is small with
respect to the other dimensions and the spin-wave wavelength,
we only calculate the first branch of spin waves along the
thickness t , yielding P = 1 − [1 − exp(−|�k|t )]/|�k|t . The total

propagation vector is given by |�k| =
√

k2
‖ + k2

⊥n. The ampli-

tude of the transverse component k⊥n is calculated from the
width quantization condition k⊥n = nπ/weff for n = 1, 2, . . ..
In the microfocused BLS experiment, as we record only the
interference pattern along the long waveguide axis, we see
only the longitudinal component of the propagation vector
k‖ = 2π/λl.

We performed the fit using Eq. (2) [considering 95% confi-
dence intervals obtained by fitting of Eq. (1)] for various width
modes (and their linear combinations [26,27]) with a single
set of unconstrained universal parameters, and we minimize
the total residuals of the fit. The best fit was found using
a single mode (n = 1) only (in contrast to experiments in,
e.g., permalloy waveguides [26,27]), with magnetic param-
eters of Ms = 1.41 ± 0.03 MA/m, γ = 29.3 ± 0.1 GHz/T,
Bani = 24 ± 1 mT, t = 9.5 ± 1.0 nm, Aex = 11 ± 5 pJ/m,
and w = 1.62 ± 0.05 µm (for the 1.5 µm wide waveguide,
II in Fig. 1). The obtained fit parameters lie close to the
bulk values of single-crystal iron films [28]. The saturation
magnetization Ms = 1.41 MA/m is expectedly lower than the
bulk value of iron (MFe

s = 1.7 MA/m). If we consider 22%
of nickel (MNi

s = 0.51 MA/m) in our films and assume a
linear dependence on composition, we estimate the expected
saturation magnetization to be MFeNi

s = 1.45 MA/m, which
is very close to the value Ms = 1.41 MA/m obtained from
the fit. The large saturation magnetization together with the
Damon-Eshbach geometry result in a high group velocity
vg = ∂ f /∂k‖ of the spin waves reaching almost 6 km/s [see
Fig. 3(b)]. The anisotropy field resulting from the fit perfectly
reproduces the value measured by Kerr microscopy, which
further supports the validity of the model. The fitted thick-
ness is very close to the nominal thickness of 12 nm (the
few topmost layers are expected to oxidize when performing

ex-situ experiments) which indicates that the film is trans-
formed to the magnetic bcc phase throughout the whole
thickness. This is also supported by the Monte Carlo ion
stopping range simulations using the SRIM/TRIM package
[29], where more than 90% of the 30 keV Ga+ ions penetrate
to the copper substrate. The width of the waveguide w = 1.62
µm is slightly larger than the nominal value (1.5 µm). First
and presumably the major contribution increasing the width
of the waveguide is the finite size and shape of the focused
ion beam spot. Furthermore, in our previous work on thinner
films [30], it was shown that the bcc crystallites protrude
into the fcc phase from the ion impact spot, and thus they
also effectively increase the width of the waveguides (the
protrusion length was approximately 50 nm). Both effects
effectively create a gradient in the magnetization affecting
the dynamic boundary conditions of our waveguides [31],
which differs from the discontinuous boundary conditions
found, e.g., in structures prepared by classical lithography
techniques [26,27]. We performed micromagnetic simulations
in mumax3 [32] to study the effects of the magnetization
gradient at the waveguide edges on the spin-wave dispersion.
For a detailed description of the micromagnetic study see
the Appendix. In the simulations we continuously decreased
the magnetization from the bulk value to zero in a defined
region at the edge of the waveguide (see definition in the
Appendix). The introduced profile of the magnetization was
chosen as an error function as it resembles the convolution
of the nominal shape of the waveguide with a FIB spot.
Due to the gradient of the saturation magnetization, it is
expected that the local spin-wave dispersion will differ from
the discontinuous case where the saturation magnetization
changes abruptly [31]. The transverse profiles of the saturation
magnetization together with the simulated effective (internal)
magnetic field at zero external magnetic field are shown in
Fig. 4(a).

The micromagnetic simulations reveal that an infinite gra-
dient in the magnetization leads to a sharp spike of the effec-
tive magnetic field (Beff ) at the edges of the waveguide. In the
case of finite magnetization gradient, the Beff profile becomes
smeared out. The maximum value of the Beff is lower and the
central homogeneous region is significantly broadened, as the
lower gradient of the magnetization leads to a lower and less
localized demagnetizing field. The simulations also showed
that for both cases in a narrow region near the edges of the
waveguide the magnetization realigns to the longitudinal di-
rection. The longitudinal spin-wave dispersion extracted from
the micromagnetic simulations is plotted in Fig. 4(b). There is
an obvious difference in the modal structure of the dispersion
when we compare the cases with σ = 0 nm and σ = 25 nm.
As the gradient is introduced to the edge region, the boundary
conditions for the dynamic magnetization are altered. The
quantization of the modes with higher transverse mode num-
bers is deteriorated. As a direct consequence, the modes with
higher transverse k vector get weaker (as can be seen from a
lower power spectral density). The first waveguide mode does
not significantly change even for σ = 100 nm. This is likely
the main mechanism explaining the absence of any higher-
order waveguide modes seen in the phase-resolved BLS data
(Fig. 2). This statement is further supported by a careful
analysis of the line scans. To confirm the visual impression
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FIG. 4. (a) Transverse profiles of the saturation magnetization
(dark gray) and effective magnetic field (red) for a discontinuous (left
panel) and continuous (right panel) transition of the saturation mag-
netization on the edges of the waveguide at zero external magnetic
field for the material parameters obtained by the fitting procedure.
The continuous transition was implemented as a quasicontinuous
modulation of Ms expressed by the equation shown above the plots.
The transition width (σ ) of the complementary error function is
designated in each plot. (b) dispersion relations of the spin-wave
modes for both magnetization profiles extracted from micromagnetic
simulations. The power spectral density of the modes (represented by
the color scale) has been normalized to the maximum value.

we have extended Eq. (1) to allow for more overtone spatial
frequencies [as expected by Eq. (2)] to be detected since
we expect from the modal profiles of the analytical model
presented by Eq. (2) to excite multiple odd modes [27,33] at
certain frequencies by the excitation antenna. This analysis
confirmed the results of the micromagnetic simulation as the
best agreement is found in the absence of any higher spatial
frequencies.

IV. CONCLUSIONS

We have studied the spin-wave propagation in waveguides
prepared by FIB direct writing into metastable fcc Fe78Ni22

thin films. We have shown that in these high-aspect-ratio
waveguides spin waves can propagate with high group ve-
locities reaching almost 6 km/s without the necessity of
external magnetic fields or global magnetic anisotropy. This
unique feature is realized by the local uniaxial magnetic
anisotropy, which is controlled by the writing procedure [9].
The spin-wave dispersion relation has been determined by
using phase-resolved BLS microscopy and the magnetic prop-
erties of the waveguides were extracted. The relatively large
saturation magnetization together with high (controllable)
magnetic anisotropy render the material suitable for high-
frequency spin-wave circuits operational even at zero external
magnetic field. Moreover, the extracted material properties of
the system will allow us to design more complex spin-wave
devices by utilizing the possibility to spatially control both the

saturation magnetization and the direction of the uniaxial
magnetic anisotropy in a single magnetic structure. Our
unique approach paves the way towards many other possibil-
ities to develop and study spin-wave propagation in magne-
tization landscapes that are unattainable in any conventional
magnetic system.
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APPENDIX: MICROMAGNETIC MODELING

In order to obtain the spin-wave dispersion of a magnonic
waveguide with a continuous magnetic-to-nonmagnetic tran-
sition at the waveguide edges, we employed the free GPU-
accelerated finite difference solver mumax3 [32] and the
procedure described, e.g., in Ref. [34]. Mumax3 allows one
to define up to 256 regions, in which the material parameters
can be individually defined. In our approach, the waveguide
“core” has a constant value of the saturation magnetization
Ms, whereas the edge regions have a saturation magnetization
that decreases quasicontinuously from the maximum value of
Ms to zero. Figure 5 depicts the geometry definition of the
problem.

The saturation magnetization spatial modulation has been
chosen in the form of a complementary error function because
it resembles the convolution of nominal geometry with the
spot of the focused ion beam (approximated by a Gaussian
beam profile): Msat (x) = 0.5Mserfc[(−x + xedge)/

√
2σ ]. The

inflection point of the error function is denoted xedge; the
decay region extends by ±4σ to both sides of xedge, where
σ is the standard deviation of the Gaussian that the error
function is based on (we chose σ = 25 nm). This ensures a
smooth transition to the core region with constant saturation
magnetization Msat = Ms and the periphery with Msat = 0.
The distance between the two inflection points is chosen larger
than the nominal width wnominal by 100 nm (4σ ), to account for
the growth of the magnetic bcc structure into the nonirradiated
area, as mentioned above. This setup, shown in Fig. 5, results
in a total width of the simulation cell of W = wcore + 16σ =
wnominal + 12σ . The discretization grid spacing was chosen
as �x = 3.52 nm, �y = 14.7 nm, and �z = 9.5 nm. The
rather large value of �y is due to computational reasons as for
good resolution in the reciprocal space (small step in k‖) the
simulated geometry needs to be rather large. The resolution
of k‖ is determined by 1/(ny�y) where ny is the number of
elements in the y direction. The resulting grid size for the data
presented in Fig. 4 with σ = 25 nm, and wnominal = 1.5 µm
was 2048 points in y and 512 points in x. Thus, the simulated
geometry was 30 000 × 1800 × 9.5 nm3 large.

The material parameters were chosen to Ms=1.41 MA/m,
Aex = 11 ± 5 pJ/m, ku x = 22 kJ/m3 and α = 0.001.
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FIG. 5. Schematic definition of the micromagnetic problem. The
waveguide is divided into a discrete number of material regions,
where the central part is defined as one region. The magnetization in
the edge area (schematically magnified in the left part of the image)
of the waveguide is modulated by steplike manner where each region
has a constant value of Msat (x) given by the error function. The
excitation antenna is overlaid in the image and has a form of a simple
rectangular region. The spin-wave detection region is indicated by a
crosshatched area in the center of the core. The spin-wave dispersion
is extracted only from this area as in the actual experiment, where
we measure only the central part of the waveguide. Above the 2D
map, a transverse profile of the magnetization is shown, together with
the equation defining Msat (x) in the edge region. Individual short red
lines in the edge region denote the length of 2σ .

The ku x value differs from the value derived for the anisotropy
field Bani (24 mT; see above). In the experiment, only the
effective value of the anisotropy is measured. The value of
ku x is obtained by summing the experimentally found value of
ku exp = BaniMs/2 with the estimation of ku shape based on the
model by Aharoni [35]. Final tuning of ku x was performed
in the micromagnetic simulations in order to match the fre-
quency of the ferromagnetic resonance (mode with zero k
vector) with the FMR frequency given by the analytical model
for Bani.

After the initialization of the geometry, the static magnetic
field Bx was applied, and the magnetization was relaxed to
the energetical minimum. Subsequently, the field was set to
zero, and again the energy minimum was found. Afterwards
we excited the waveguide by a localized in-plane magnetic
field By with sinc(t ) time dependence:

By(t ) = Bmaxsinc[2π f (t − t0)],

where Bmax = 1 mT, t0 = 100 ps, and f = 30 GHz is the cut-
off frequency. The dynamic field is localized in a rectangular
region spanning over the width of the waveguide (x direction)
and having a length of 0.5 μm. After the excitation, the mag-
netization vector map in a 0.5 μm wide region is saved every
25 ps for 40 ns. For postprocessing, we load the mz(x, y) map
and calculate the average value over the width of the central
region to obtain mz(y) for each time step. This creates a 2D
data set mz(y, t ). The spatiotemporal matrix is then windowed
by the Hann function in order to eliminate windowing artifacts
in the subsequent FFT analysis. The dispersion map shown in
Fig. 4(b) is then obtained directly by plotting the amplitude
of the spatial and temporal frequencies obtained from a two-
dimensional fast Fourier transform of mz(y, t ):

mz(k‖, ω) = F[mz(y, t )].

These data still contain some artifacts, e.g., nonuniform
excitation in the k space due to the rectangular antenna shape.
Deconvolution of the obtained dispersion with the Fourier
image of the antenna shape and the excitation pulse would
enhance the data quality even further yet does not reveal any
new phenomena in the presented data. For this reason and for
the sake of simplicity we did not employ this step in our data
processing.
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Schmid, and P. Varga, APL Mater. 6, 060701 (2018).

[10] C. Chappert, H. Bernas, J. Ferre, V. Kottler, J.-P. Jamet, Y.
Chen, E. Cambril, T. Devolder, F. Rousseaux, F. Mathet, and
H. Launois, Science 280, 1919 (1998).

[11] R. Bali, S. Wintz, F. Meutzner, R. Hubner, R. Boucher, A. A.
Unal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast,

014436-6

https://doi.org/10.1002/adma.200900809
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/s41598-018-29191-2
https://doi.org/10.1038/s41598-018-29191-2
https://doi.org/10.1038/s41598-018-29191-2
https://doi.org/10.1038/s41598-018-29191-2
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1063/1.2969795
https://doi.org/10.1063/1.2969795
https://doi.org/10.1063/1.2969795
https://doi.org/10.1063/1.2969795
https://doi.org/10.1063/1.4856775
https://doi.org/10.1063/1.4856775
https://doi.org/10.1063/1.4856775
https://doi.org/10.1063/1.4856775
https://doi.org/10.1063/1.5029367
https://doi.org/10.1063/1.5029367
https://doi.org/10.1063/1.5029367
https://doi.org/10.1063/1.5029367
https://doi.org/10.1126/science.280.5371.1919
https://doi.org/10.1126/science.280.5371.1919
https://doi.org/10.1126/science.280.5371.1919
https://doi.org/10.1126/science.280.5371.1919


ZERO-FIELD PROPAGATION OF SPIN WAVES IN … PHYSICAL REVIEW B 101, 014436 (2020)

S. Facsko, J. Lindner, and J. Fassbender, Nano Lett. 14, 435
(2014).

[12] F. Roder, G. Hlawacek, S. Wintz, R. Hübner, L. Bischoff, H.
Lichte, K. Potzger, J. Lindner, J. Fassbender, and R. Bali, Sci.
Rep. 5, 16786 (2015).

[13] K. Vogt, F. Y. Fradin, J. E. Pearson, T. Sebastian, S. D. Bader,
B. Hillebrands, A. Hoffmann, and H. Schultheiss, Nat. Comm.
5, 3727 (2014).

[14] C. L. Ordonez-Romero, Z. Lazcano-Ortiz, A. Drozdovskii,
B. Kalinikos, M. Aguilar-Huerta, J. L. Dominguez-Juarez,
G. Lopez-Maldonado, N. Qureshi, O. Kolokotsev, and G.
Monsivais, J. Appl. Phys. 120, 043901 (2014).

[15] C. Bayer, J. Jorzick, B. Hillebrands, S. O. Demokritov, R.
Kouba, R. Bozinoski, A. N. Slavin, K. Y. Guslienko, D. V.
Berkov, N. L. Gorn, and M. P. Kostylev, Phys. Rev. B 72,
064427 (2005).

[16] B. Obry, P. Pirro, T. Brächer, A. V. Chumak, J. Osten, F.
Ciubotaru, A. A. Serga, J. Fassbender, and B. Hillebrands,
Appl. Phys. Let. 102, 202403 (2013).

[17] J. Fassbender, J. von Borany, A. Mucklich, K. Potzger, W.
Moller, J. McCord, L. Schultz, and R. Mattheis, Phys. Rev. B
73, 184410 (2006).

[18] L. Flajšman, M. Urbánek, V. Křižáková, M. Vaňatka, I. Turčan,
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