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Monte Carlo studies of the spin-chirality decoupling in the three-dimensional Heisenberg spin glass
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An extensive equilibrium Monte Carlo simulation is performed on the three-dimensional isotropic Heisenberg
spin-glass (SG) model with the random nearest-neighbor Gaussian coupling, with particular interest in its chiral-
glass (CG) and SG orderings. For this model, the possibility of the spin-chirality decoupling, i.e., the CG order
setting in at a higher temperature than that of the SG order, was suggested earlier but still remains controversial.
We simulate the model up to the maximum size (linear dimension) L = 48 under both periodic and open
boundary conditions (BCs). In locating the CG and SG transition temperatures 7cg and 7sg with the L — oo
extrapolation, a variety of independent physical quantities under both BCs are computed and utilized to get larger
number of degrees of freedom (NDF). Because of the large NDF up to NDF = 43, we succeed in obtaining stable
and accurate estimates of the CG and SG transition temperatures, Teg = 0.142 £ 0.001 and Tsg = 0.13175500.
No sign of the size crossover is observed. For larger L, the CG correlation length progressively outgrows the
SG correlation length at low temperatures. These results provide strong numerical support for the spin-chirality
decoupling. The critical exponents associated with the CG and SG transitions are evaluated using the finite-size
scaling with the scaling correction. For the CG transition, we get the CG exponents, vcg = 1.36 £ 0.10 and
ncg = 0.49 £ 0.10, consistent with the corresponding experimental exponents of canonical SG. Implications for

the chirality scenario of experimental SG ordering are discussed.
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I. INTRODUCTION

Spin glasses (SGs) have been extensively studied as a
prototype of “complex” systems for years, with applications to
wide areas like information science, neural networks and deep
learning, etc. Originally, the term “spin glass” was coined in
the field of magnetism and has intensively been studied there.
SGs as magnets are the type of random magnets possessing
both ferromagnetic and antiferromagnetic couplings and are
characterized by frustration and randomness. Due to these
effects, SGs exhibit nontrivial “glassy” behaviors at low tem-
peratures: see Refs. [1,2] for a review of SGs as magnets.

In as early as 1972, Canella and Mydosh observed that
certain SG magnets, especially the so-called canonical SGs
which are dilute transition-metal-noble-metal alloys, exhibit a
sharp cusplike anomaly suggestive of a thermodynamic transi-
tion [3]. Subsequent experimental studies established that the
SG transition is indeed an equilibrium transition and the SG
state could be a glassy ordered state in thermal equilibrium,
at least in principle [2]. Since then, many experimental and
theoretical efforts have been devoted to understanding the true
nature of the SG transition and the SG ordered state. However,
some of the fundamental questions still remain open.

As in the case of standard magnets, fundamental properties
of the magnetic transition and the magnetic ordered state
can be classified by several basic characteristics, e.g., the
space dimensionality d and the order-parameter symmetry,
or often in magnets the number of spin components n. Or-
dinary bulk SGs are of course a three-dimensional (d = 3)
system, so that the number of spin components, or the type
of magnetic anisotropy, is expected to be important in their
ordering. In many well-studied experimental SGs including
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canonical SGs, the magnetic anisotropy is relatively weak
and can be modeled as an isotropic Heisenberg model with
n = 3-component vector spins, the three-dimensional (3D)
Heisenberg SG. Of course, even in these Heisenberg-like SG
magnets, some amount of anisotropy is inevitable in reality,
which might play an important role in real SG ordering.
Some other SGs possess a significant amount of magnetic
anisotropy, which could be either easy-axis type (Ising-like
with n = 1) or easy-plane type (XY -like with n = 2). Hence,
in order to understand the properties of real experimental
SGs, it would be important to fully understand the ordering
properties of the 3D isotropic Heisenberg SG as a reference
system.

Indeed, the pioneering theoretical work on SGs was put
forward by Edwards and Anderson (EA) in 1975 [4], in which
they proposed a model, now standard in the community and
called the EA model, which is nothing but the isotropic 3D
classical Heisenberg model on the regular lattice with the ran-
dom nearest-neighbor coupling with both ferromagnetic and
antiferromagnetic interactions. EA applied a simple mean-
field treatment, while, in order to get fuller understanding of
the model properties, one needs to go beyond the MF analysis
(the MF analysis itself is already highly nontrivial in SGs,
though). Since then, several types of numerical simulations
have been performed to clarify the ordering properties of the
EA model.

Earlier numerical simulations of the 3D Heisenberg EA
model reported in common that the model did not exhibit the
SG order at any finite temperature, only the zero-temperature
(T = 0) transition, e.g., Monte Carlo (MC) simulations by
Olive, Young, and Sherrington [5], Matsubara, Iyota, and
Inawashiro [6], and Yoshino and Takayama [7], and numerical
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domain-wall renormalization-group (RG) calculations by Ba-
navar and Cieplak [8] and McMillan [9]. It was then argued,
e.g., by Bray, Moore, and Young, that the experimental finite-
temperature SG transition of the Heisenberg-like SG was
driven solely by the weak magnetic anisotropy inherent to
real SG magnets, and the associated anisotropy-driven SG
transition belonged to the universality class of the 3D Ising
SG [10].

In 1992 one of the present authors (H.K.) suggested that
the model might exhibit a finite-temperature transition in its
chiral sector even though the standard SG order did not occur
at any finite temperature, proposing the possibility of the
spin-chirality decoupling, i.e., the chirality exhibits the glass
transition without accompanying the standard SG order, the
chiral-glass (CG) transition, at a finite temperature higher
than the standard SG transition temperature [11]. Chirality
is a multispin variable, defined locally for three neighboring
Heisenberg spins by the scalar x = §; - (§; x S;), and takes
a nonzero value for the noncoplanar spin configurations with
its sign representing the handedness of the noncoplanar spin
structure, i.e., either right- or left-handed.

On the basis of such a spin-chirality decoupling pic-
ture, H.K. proposed the chirality scenario of experimental
Heisenberg-like SG magnets [11], namely, the true order pa-
rameter of a real experimental Heisenberg-like SG is the chi-
rality rather than the spin itself, and the properties of the CG
transition and the CG order, which is “hidden” in the chirality
in the hypothetical spin-chirality-decoupled fully isotropic
system, is “revealed” in the spin in the real Heisenberg-like
SG via the weak random magnetic anisotropy. The chirality
scenario has been further extended since then; see Refs. [2,12]
for details. Concerning the spin-chirality decoupling in the
fully isotropic 3D Heisenberg SG, which forms a basis of the
chirality scenario, some support was subsequently reported
from MC [13-16]. In particular, Hukushima and Kawamura
reported that the CG order exhibited a one-step-like peculiar
replica-symmetry breaking (RSB) [15], quite different from
the full-step or hierarchical RSB discussed in connection with
the 3D Ising SG [1,2].

Concerning the question of the standard SG order setting
in at either 7 = 0 or T > 0, the view of the community has
changed since then, mainly because the progress in the com-
puting capability enabled one to look into the low-temperature
region in more detail. Namely, there now seems to be a
consensus that the SG order of the 3D isotropic Heisenberg
SG sets in at a finite temperature, Tsg > 0, in contrast to the
earlier belief of Tsg = 0 [5-9]. However, whether there occurs
spin-chirality decoupling or not, i.e., whether Tog > Tsg > 0
or Tcg = Tsg > 0, is still at issue.

On the basis of the MC simulation for relative small sizes
of the linear dimension L < 12, Lee and Young claimed that
the model exhibited a simultaneous spin and chiral transition
at Tsg/J = 0.16 = 0.02, so no spin-chirality decoupling (J
is the standard deviation of the Gaussian distribution for
the coupling) [17]. By contrast, Hukushima and Kawamura
suggested [18], by simulating the binary-coupling (+J) model
of L < 20 (a different coupling model from those treated in
Refs. [17,19-25]), that the spin and the chirality were decou-
pled, i.e., while Tgg was either zero or nonzero but less than
Tcg, 1.e., Tsg < Tcg- They also argued that such a decoupling

was visible clearly only on the length scale exceeding a certain
crossover length scale of ~20, simply because the chirality is
locally defined as a composite operator of the spin variables
[18]. Campos et al. claimed, by extending the maximum sys-
tem size up to L = 32 in their MC simulation of the Gaussian-
coupling model, that the model exhibited a simultaneous spin
and chiral transition of the Kosterlitz-Thouless (KT) type, the
system lying close to the lower critical dimension [no explicit
report of the Tsg(= Tcg) value was given] [19]. Criticism of
such an interpretation was subsequently given in Ref. [20],
however. Lee and Young also studied the lattice up to L = 32
for the same model and observed a marginal behavior for
larger sizes, claiming a simultaneous spin and chiral transition
[no explicit report of the Tsg (= Tcg) value was given, though]
[21]. By contrast, Viet and Kawamura claimed on the basis
of the MC simulation for the same model with L < 32 that
the model exhibited the spin-chirality decoupling [22,23], the
estimated transition temperatures being Tog = 0.143 4+ 0.003
and Tsg = O.lZng:ggé [23]. These authors also estimated the
critical exponents associated with the CG transition, i.e., the
CG correlation-length exponent veg = 1.4 £ 0.2 and the CG
critical-point-decay exponent ncg = 0.6 + 0.2, which turned
out to be rather close to the experimentally observed expo-
nents of canonical SG [2]. This agreement favors the chirality
scenario, since in the chirality scenario, the SG exponents
of the real Heisenberg-like SG should be those of the CG
exponents of the fully isotropic Heisenberg SG. Subsequent
MC simulation by Fernandez et al. of the same model for
L < 48, however, suggested that the spin and the chirality
ordered at the same temperature Tsg = Tcg = 0.12070900
[24]. Furthermore, the recent nonequilibrium MC study by
Nakamura with the same model reported a simultaneous spin
and chiral transition at Tsg = Tcg = 0.140 £ 0.002 [25].

Those MC simulations on the 3D isotropic Heisenberg SG
model were performed under periodic boundary conditions
(BCs). In this connection, interesting work was done by
Shirakura and Matsubara, who examined the effect of finite
sizes by imposing a different type of BC, i.e., open BCs, on
the same model, though they did not reach any conclusion
concerning the occurrence of the spin-chirality decoupling
[26].

Evidently, the present numerical situation of the 3D
Heisenberg SG model, especially the occurrence of the
spin-chirality decoupling, remains entangled and controver-
sial. For example, if one cites the works claiming the ab-
sence of the spin-chirality decoupling, some did not give
an explicit estimate of Tsg(= Tcg) value, while even when
reported, the quoted simultaneous spin and chiral transi-
tion temperatures are distributed as Tsg(= Tcg) = 0.16 £
0.02 [17], Tsg = Tcg = 0.12075900 [24], and Tsg = Teg =
0.140 £ 0.002 [25]. In fact, the higher one came rather close
to, or even higher than, the chiral Tcg estimate of Ref. [23],
Teg = 0.143 £ 0.003, claiming the spin chirality decoupling,
and the lower one came close to that of the spin Tsg esti-
mate of Ref. [23], Tsg = 0.1251”8:8(1)?. Obviously, purely from
the numerical viewpoint, the situation needs to be further
clarified.

Furthermore, the chirality scenario based on the spin-
chirality decoupling picture of the 3D isotropic Heisenberg
SG has been rather successful in explaining certain issues
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of experimental SGs, including the issue of the criticality
and the magnetic phase diagram [2,12,27-29]. The scenario
also has obtained a rather direct experimental support from
the Hall measurements of canonical SG [30-34] probing the
chiral response of the SG [35,36]. In view of such a promising
status of the chirality scenario, it would be important to further
clarify the issue of the spin-chirality decoupling in the fully
isotropic 3D Heisenberg SG model.

Under such circumstances, we undertake in the present
paper a new set of MC simulation of the 3D isotropic Heisen-
berg SG model with the random nearest-neighbor Gaussian
coupling, exactly the same model as studied previously by
many authors. Our maximum size is L = 48, the same as
simulated in Ref. [24]. However, we simulate both periodic
and open BCs in parallel, and utilize both data simultane-
ously in locating the transition temperatures 7cg and Tsg. In
addition, we compute and utilize a variety of independent
physical quantities, not only the crossing temperatures of
the correlation-length ratio under periodic BCs utilized in
Refs.[17,19,21,24], but also those under open BCs, and the
crossing temperatures and the dip temperatures of the Binder
ratio as well. Our strategy is to utilize as much independent
information (data points) as possible to get larger number of
degrees of freedom (NDF) in the necessary size extrapolation
to the L — oo limit in order to reduce and control the error
bar. Indeed, we can get the NDF as large as 43. Making use of
the obtained large NDF, we carefully examine the stability of
our estimates of Tcg and Tsg.

Finally, we succeed in obtaining rather stable and accurate
estimates of the CG and SG transition temperatures as Tog =
0.142 £0.001 and Tsg = 0.1317050;. The results provide
strong numerical support for the spin-chirality decoupling.
We also determine the critical exponents associated with the
CG and SG transitions. For the CG transition, we get the CG
exponents, veg = 1.36 = 0.10 and ncg = 0.49 £ 0.10, which
are consistent with the earlier reports and are also consistent
with the corresponding experimental values on canonical SG,
v~ 1.3 —1.4and n >~ 0.4 [2]. This agreement gives support
to the chirality scenario of the experimental SG ordering. The
one-step-like feature of the CG ordering reported earlier is
also confirmed for larger sizes than before.

The rest of the present paper is organized as follows. In
Sec. II we introduce our model and the method employed.
Section III is the main part of the present paper where we
present our Monte Carlo results. We first define various phys-
ical quantities computed in Sec. IIT A. In Sec. III B we present
our MC data of the CG and SG correlation-length ratios and
the CG and SG Binder ratios for both cases of periodic and
open BCs. Making full use of these data, we estimate the
CG and SG transition temperatures in Secs. III C and III D,
respectively. The interrelation between the CG correlation
length £cg and the SG correlation length &5 is examined in
Sec. IIl E, with particular interest in the relative magnitude of
&cg and &sg. The MC data of the chiral overlap distribution
are presented in Sec. III F. In Sec. IV we analyze the critical
properties of the CG and SG transitions in Secs. IV A and
IV B, respectively, using the finite-size scaling taking account
of the scaling correction. Various CG and SG critical expo-
nents are estimated. Finally, Sec. V is devoted to summary
and discussion.

II. THE MODEL AND THE METHOD

We study an isotropic classical Heisenberg model on a 3D
simple-cubic lattice whose Hamiltonian is given by

H=—> UySi-S, (1)
(i)

where S; = (57, Siy, S%) (IS;] = 1) is a three-component unit
vector at the ith site, and the sum over (ij) is taken over all
nearest-neighbor pairs on the lattice. The couplings J;; are
the random Gaussian variables with the mean zero and the
variance unity. We apply the two types of BCs: (1) periodic
BCs in all three directions and (2) open BCs in all three
directions. The lattice contains N = L3 sites, where the lattice
linear dimensionis L = 6, 8, 12, 16, 20, 24, 32, 40, 48 for the
periodic BC, and L = 6, 8, 12, 16, 20, 24, 32, 40 for the open
BC.

Thermodynamic properties of the model are computed by
means of MC simulation based on the standard heat-bath
method and the over-relaxation method, which are combined
with the temperature-exchange technique [37]. One MC step
per spin (MCS) consists of one heat-bath sweep followed by
L successive over-relaxation sweeps. After every MC step,
we perform the temperature-exchange trial, which is made
between the two spin configurations at a pair of neighboring
temperatures. In the temperature range between Ty, and Ty,
Nr distinct temperatures are distributed so that the acceptance
rate of the exchange trial takes a moderate value, say, greater
than ~0.1. The maximum temperature T, is chosen to be
high enough so that the autocorrelation time by the single-
spin-flip dynamics is short enough.

In Table I we show some of the details of our simulation
conditions, including the system size (linear dimension) L,
the number of independent samples (bond realizations) Nj,
the number of temperature points used in the temperature-
exchange process Ny, the minimum and maximum tempera-
tures Tiin and Ty, and the total MCS performed per replica.
The measurement is made over the latter half of Nyc MCS,
while the former half is discarded for thermalization. The
initial spin configuration is taken to be random.

Error bars are estimated via sample-to-sample fluctuations
for linear quantities like the order parameter, and by the
bootstrap method for nonlinear quantities like the Binder ratio
and the correlation-length ratio.

To ensure full thermalization of the system is crucially
important. In particular, special attention needs to be paid to
thermalize the chirality-related quantities at low temperatures,
as the chirality is an Ising-like discrete quantity (i.e., right
or left) with a finite energy barrier to be overcome to flip it.
This point is crucially important in the present task since the
possible poor or insufficient thermalization of the chirality-
related quantities, if it happened, would apparently weaken
the ordering tendency of the chirality and obscure the spin-
chirality decoupling. In the present work, we follow Ref. [23]
to check the thermalization by carefully observing the con-
ditions 1-5 of Ref. [23], namely, (1) all of the “replicas”
move back and forth many times along the temperature axis
during the temperature-exchange process (typically more than
10 times) between the maximum and minimum temperature
points, with sufficiently fast relaxation achieved even without
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TABLE I. Various parameters of the present Monte Carlo simu-
lation. L is the system size (the lattice linear dimension), N; is the
number of samples, Ny is the total number of Monte Carlo steps
per spin (our unit Monte Carlo step consists of one heat-bath sweep
and L over-relaxation sweeps), Th.x and Ty, are the highest and
lowest temperatures used in the temperature-exchange run, and Ny
is the total number of temperature points. Measurements of physical
quantities are made over the latter half of the total Nyc Monte Carlo
steps, while the former half is discarded for thermalization.

Periodic boundary conditions

L Ns NT NMC ’I;nax 7-1"nin

6 2000 32 1 x10° 0.333 0.111

8 2000 32 1x10° 0.333 0.111
12 2000 32 1x10° 0.333 0.111
16 2000 32 1 x10° 0.222 0.121
20 1500 44 1x10° 0.209 0.121
24 1500 44 1.5 x 10° 0.209 0.121
32 344 56 8 x 10° 0.196 0.12583
40 320 72 16 x 10° 0.196 0.12583
48 176 96 24 x 10° 0.190 0.12794

Open boundary conditions

6 2000 32 1 x 103 0.250 0.08

8 2000 32 1 x 10 0.250 0.08

12 2000 32 1x10° 0.250 0.08

16 2000 32 1 x 103 0.250 0.099
20 288 48 1 x 10 0.200 0.111
24 1000 48 1 x10° 0.200 0.111
32 401 48 4% 10° 0.185 0.111
40 192 72 16 x 10° 0.185 0.11468

the temperature exchange process at the highest temperature;
(2) the thermodynamic relation among the energy, the “link
overlap,” and the “spin overlap” expected to hold for the
model with the Gaussian bond distribution in equilibrium is
satisfied; (3) measured physical quantities converge to stable
values as a function of the MC time; (4) the expected sym-
metry of the overlap distribution function holds for each indi-
vidual sample; and (5) the equality between the specific heat
computed via the energy fluctuation and the one computed via
the temperature difference of the energy holds.

III. MONTE CARLO RESULTS

In this section, we present our MC results, with a focus
on the issue of the possible spin-chirality decoupling, i.e.,
whether Tcg and Tsg are different or common. For this
purpose, we concentrate on the two kinds of dimensionless
quantities in the following: the correlation-length ratio &/L
and the Binder ratio g for both the spin and the chirality.

A. Physical quantities

We first give the definitions of the physical quantities we
compute. Let us begin with the chirality-related quantities.
The local chirality x;, at the ith site and in the uth (u =
X, y, z) direction is defined for three neighboring Heisenberg
spins on a line by

Xiw = Site, + (Si X Si-z,), (2)

where ¢, denotes a unit vector along the uth axis. In the
present definition of the chirality, we consider the three spins
(spin-triad) on a line. Let the total number of independent
spin-triads N,. N; = 3N in the case of periodic BC, while
N, = 3L*(L — 2) = 3N — 6L? in the case of open BC.

By considering the two “replicas,” i.e., two independent
systems 1 and 2 with the same bond realization {J;;}, the
chiral overlap g, may be defined by

1
dx = ﬁt Z Xi(;l)Xi(;f)’ (3)
triad
where the summation is taken over all independent spin triads
for which the local chirality is defined. In actual simulations,
we simulate these two replicas 1 and 2 in parallel with using
different spin initial conditions and different random-number
sequences.
The CG susceptibility ycc might be defined via the second
moment of g, by

xce = N[(4;)]. 4)

where (---) represents the thermal average and [---] the
average over the bond disorder {/;;}. The CG Binder ratio is

defined by
4
_1f,_ i) 5
gea=7|3- 755 |- Q)
[{a3)]
The chiral overlap may be extended to the k-dependent
quantity as

! -
ax (k) = 5 D i xj e ©)
! triad

Then the finite-size CG correlation length &cg is defined by

_ 1 [(g,(0)?)]
2sin(km/2) | [{gy (km)?)]

where k,, = 27 /L,0,0) and k,, = |ki,|. We restrict the u
direction in Egs. (6) and (7) to be parallel with k.

For the Heisenberg spin, the overlap becomes a tensor
variable in the spin space, and an appropriate k-dependent spin
overlap may be defined by

-1 N

écc

N
1 -
Gap (k) = D oSSR (@ p=x.y.2. ®

i=1
The associated SG susceptibility is defined by
xs6 =NUg)], ¢k’ = Y lgup®). 9
a,f=x,y,2

The finite-size SG correlation length is defined by

_ 1 [{g5(0)%)]
2sin(km/2)\ [{gs(km)?)]

The CG and SG correlation-length ratios are then defined by

écc/L and &sG /L.
The SG Binder ratio is defined by

[{gs(0)*")] }

1
=—-{11-9
85 2{ [(g:s(0)) 2

&sG -1 (10)

(11

014434-4



MONTE CARLO STUDIES OF THE SPIN-CHIRALITY ...

PHYSICAL REVIEW B 101, 014434 (2020)

05 Hi(a) chirality 06 ]
{ 0.4
AN
045 | L1 1
SN @a48) 02
\g\ ‘%\ (20.40) o
S ' 0.12 0.15 0.18 0.21]
s
up (16,32)
0.35 [ (12,24) o ]
=48 = S periodic
03 [ L=40 = L=16 N ]
31 [=32 ~ =12 ! 3
L=24 ~ L-8 s
[=20 + L[=6 - =
0.25 w \ e
0.135 0.14 0.145 0.15 0.155 0.16
T/J

0.6

0.55

0.12 0.15 0.18 0.21

Sse/L

(12,24)

05t periodic |

L=48 =
L=40 - L=16 X
L=32 ~ L=12 DN
L=24 — [=8 NN S
L=20 + L=

0.45 L - \i\?\\ *

0.13 0.14 0.15
T/J

FIG. 1. The temperature and size dependence of the correlation-
length ratio under periodic BC, (a) for the chirality and (b) for the
spin. Main panel is a magnified view of the transition region, while
the inset represents a wider temperature region.

The SG and CG Binder ratios are normalized so that, in
the thermodynamic limit, they vanish in the high-temperature
phase and give unity in the nondegenerate ordered state. In the
present Gaussian coupling model, the ground state is expected
to be nondegenerate so that both gcg and gsg should take a
value unity at 7 = 0.

B. The Monte Carlo data

Now we present our MC data. First, we show in Fig. 1
the temperature and size dependence of the correlation-length
ratio (a) for the chirality and (b) for the spin in the case of
periodic BC. The corresponding figures for open BC are given
in Figs. 2(a) and 2(b), respectively. In both Figs. 1 and 2, the
main figures exhibit the data in the transition region, while the
wider temperature range is covered in the insets.

A general characteristic of the correlation-length ratio £ /L
is that the data for different L cross with each other, with the
crossing temperature converging to the bulk 7, in the L — oo
limit. As can clearly be seen from the figures, there occurs a
crossing between different sized data in both Figs. 1 and 2, in-
dicative of a phase transition in the chirality and spin sectors.
To identify the bulk CG and SG transition temperature Tcg
and Tsg, one needs to perform an appropriate extrapolation of

(@) chirality

0.12

L=40 = L=16
L=32 1 [=12
L=24 — L-8
006 1=20 « L=6

0.15

- (b)" spin

038 | } ; AN

FIG. 2. The temperature and size dependence of the correlation-
length ratio under open BC, (a) for the chirality and (b) for the spin.
Main panel is a magnified view of the transition region, while the
inset represents a wider temperature region.

finite-L crossing temperatures T;oss(L) to the thermodynamic
limit L — o0.

In both Figs. 1 and 2, comparison of panel (a) for the
chirality and panel (b) for the spin reveals that the temperature
range where the crossing occurs differs somewhat between the
chirality and the spin, the former being higher than the latter
[note the difference in the covered temperature range between
the main figures of panels (a) and (b)]. Of course, one needs
to perform an appropriate extrapolation to the L — oo limit
to locate the bulk CG and SG transition temperatures Tcg
and Tgg. In the next subsection, we try to determine whether
Teg > Tsg or Teg = Tsg by using the data of Tiogs Of both
periodic and open BCs.

Comparison of Fig. 1 for periodic BC and Fig. 2 for open
BC reveals that the crossing temperatures 7.5 for open BC
tends to be lower somewhat than 7o for periodic BC. Since
the missing bonds at the surface tend to reduce the energy
scale, the observed tendency seems to be rather natural as
a surface effect. In the thermodynamic limit, however, since
the bulk transition temperature should not depend on the
applied BC, extrapolations of T¢oss(L) for periodic and open
BCs should converge to a common value, the bulk transition
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FIG. 3. The temperature and size dependence of the Binder ratio
under periodic BC, (a) for the chirality and (b) for the spin.

temperature. We fully utilize this fact in our extrapolation
procedure in the next subsection.

In Fig. 3 the temperature and size dependence of the Binder
ratio is given (a) for the chirality and (b) for the spin in the
case of periodic BCs. The corresponding figures for open
BCs are given in Figs. 4(a) and 4(b), respectively. For both
periodic and open BCs, the CG Binder ratio gcg exhibits a
crossing behavior between different L on the negative side
of gcg, accompanied with a negative dip. This negative dip
tends to deepen with increasing L up to L = 48 for periodic
BC, while the tendency seems not so systematic for open
BC as the dip depth becomes shallower for our largest size
L = 40. As a consequence, the crossing of gcg disappears for
the largest size L = 40 for open BC. Anyway, the crossing and
the dip behavior of gcg is consistent with a finite-temperature
transition in the chiral sector. The crossing temperature T¢;oss
and the dip temperature Ty, should converge to the bulk Tcg
in the thermodynamic limit as long as they persist and can be
used to locate Tcg. We emphasize that the Binder ratio is a
very useful quantity carrying valuable information in spite of
the criticism of Ref. [38], as was demonstrated in Ref. [23].

As can clearly be seen from Figs. 3(b) and 4(b), the
SG Binder ratio gsg does not exhibit any crossing, at least
in the range of sizes studied, although its temperature and
size dependence are quite nontrivial. In particular, gsg gets
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FIG. 4. The temperature and size dependence of the Binder ratio
under open BC, (a) for the chirality and (b) for the spin.

negative at lower temperatures for larger sizes. Since gsg is
expected to converge to unity at 7 = 0 in the L — oo limit,
gsg would exhibit a negative dip as in the case of the CG
Binder ratio gcg, but at a temperature much lower than the
dip temperature of gcg, still lower than the temperature range
covered by our MC simulation. The dip temperature Ty, of
gsg would converge to Tsg in the L — oo limit, and if we
could identify Ty, of gsg, this information would be utilized
in locating Tsg. Unfortunately, Ty, of gsg is too low outside
the investigated temperature range for the sizes studied here
so that we cannot utilize Ty, of gsg. Anyway, the observation
that Ty, of gsg is significantly lower than Ty, of gcg seems to
favor the spin-chirality decoupling.

C. The determination of T¢q

In this and following subsections, on the basis of our MC
data reported in the previous subsection, we try to determine
the CG and SG transition temperatures as accurately as pos-
sible to examine whether the spin-chirality really occurs in
the model or not. In the following, we estimate Tcg and Tyg
separately by performing the L — oo extrapolation.

Generally, the crossing temperature T;.,ss between the data
for the two different sizes L and sL (s > 1) is expected to
converge to the bulk transition temperature 7, in the L — oo
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limit as

=T, +cLr

1
Tiross ~ Tg + CsL7 sleay » 0=-+o, (12)
v

where v is the correlation-length exponent, w the correction-
to-scaling exponent, ¢ = cs(%)g is an s-dependent nonuni-
versal constant, and L,, = %L is the mean of the two sizes
yielding the data crossing. By contrast, the dip temperature
Ty;p is expected to behave as

Tap ~ T, +c"L77, (13)

where ¢” is a nonuniversal constant.

In determining Tcg, we employ the data of Ty of the
CG correlation-length ratio £cg/L under both periodic and
open BCs, abbreviated as Tioss[éca/L, Pl and Tiross[éca/L,
O], Teross of gcg under periodic BC, Teross[gca, P1 (Teross of gca
under open BC is not used due to the absence of the crossing
point for the L = 40 related data), and the dip temperature of
gcc under both periodic and open BCs, Ty;p[P] and Tiip[O].
These data points are plotted in Fig. 5 as a function of the
inverse system size 1/L,, (for Ty of gcg, we put Ly, = L).
The L — oo extrapolation is made on the basis of Eq. (12) for
Tiross» and on the basis of Eq. (13) for T;p. In the extrapolation
of Tioss, We use five distinct s series of s = 2, %, %, ;—‘,
and %. More specifically, s = 2 series contains (6,12), (8,16),
(12,24), (16,32), (20,40), and (24,48), s = % contains (12,20)
and (24,40), s = % contains (8,12), (16,24), and (32,48), s =
% contains (6,8), (12,16), and (24,32), and s :% contains
(16,20) and (32,40). We then perform the combined fit of

cross[éCG/L P], Tcross[%_CG/L O], Terosslgca, P1, each with s =

2, 2 3 3 3,and , Tgip[P] and Td,p[O] The ﬁttlng parameters
are ch,,é v, ¢, for &cg/L (s—2, 3 ‘2, 3, 4) ¢, for gca
(s_za 3 ;, 3 4) al’ldc

If we use all sizes of L > 6 in the combined fit, there are
63 data points (16 from Tiyoss[Ecg /L, P, 16 from Tioss[gcc /L,
P], 14 from Tioss[écg/L, O], nine from Ty;p[P], eight from
14ip[O]), and 20 fitting parameters to be determined, enough
number of degrees of freedom (NDF = 63 — 20 = 43) being
left in the fit. The fit yields Tcg = 0.142 £ 0.001 with the
reduced x? value of 4.57. Since we assume only the leading
scaling form in Eqs. (12) and (13), sizes that are too small
might lie outside the critical regime and are better ruled out
from the fit. In order to examine the possible effect of finite
sizes systematically, we also try the similar combined fits
with varying the minimum lattice size used in the fit, Ly,
increasing Ly, from 6 to larger values. Yet, even if we choose
Lin = 12 or 16, we still obtain Tog = 0.142 £ 0.001 with
the NDF = 27, x? = 0.76 (Lyin = 12), and Teg = 0.142 +
0.001 with the NDF = 16, x2 = 0.83 (Lymin = 16). The x?2
value becomes minimum for Ly, = 12, and the x? value
itself is quite reasonable. We then regard the L, = 12 as
optimal, and the corresponding fit with Ly, = 12 is shown
in Fig. 5. We note that even if we cut the the larger-size
data in the fit, e.g., cut L = 48, the fit still yields almost
identical estimate of Tcg = 0.142 £ 0.001. Thus, our estimate
of Tcg is quite stable, insensitive to the L range considered.
In particular, there is no indication of the size crossover
occurring up to the size L = 48.
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FIG. 5. Estimates of the CG and SG transition temperatures Tcg
and Ty on the basis of the L — oo extrapolation of the crossing tem-
perature Tio. and the dip temperature Ty, The crossing temperatures
are between the two lattice sizes L and sL, with L,, = %L. The fits
are based on Eqgs. (12) and (13) by using L > 12 data (L, = 12).
(a) Tiross of the CG correlation-length ratio &cg/L and Ty, of geg
under both periodic and open BCs, and T, of the CG Binder ratio
gcg under periodic BC, are plotted versus the inverse lattice size
1/L,y. (b) Tiross Of the SG correlation-length ratio £sg/L both under
periodic and open BCs are plotted versus 1/L,,. The extrapolated
CG and SG transition temperatures are Tcg = 0.142 £ 0.001 from
(a), and Tsg = 0.131 = 0.001 from (b), respectively.

The earlier large-scale MC simulations on the model were
made under periodic BCs [17,19,21-24], and the transition
temperature was estimated based only on the periodic-BC
data. In contrast, our present simulation and analysis are
made both under periodic and open BCs. In order to see how
this affects the estimate of Tgg, we also perform the similar
analysis by using only the periodic-BC data. Of course, the
number of data points and the NDF are reduced. Yet
the resulting estimate of T¢g has tuned out to remain almost
the same: for L,;, = 12, our estimate is Tcg = 0.141 £ 0.002
with NDF = 17 and x? = 0.76, quite consistent with our
estimate above based on both periodic and open BCs. In view
of these results, we finally quote Tcg = 0.142 £ 0.001.

This present estimate of T¢g is fully consistent with the
earlier estimate of Ref. [23], Tcg = 0.143 £ 0.003, but largely
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deviates from that of Ref. [24], Tcg = Tsg = 0.1207090. We
shall discuss the possible cause of this deviation later in the
next subsection.

D. The determination of Tsg

We now move on to the estimate of the SG transition
temperature Tsg. As mentioned, the SG Binder ratio does not
exhibit any crossing or a dip in the range of sizes studied so
that the data available to estimate Tgg come only from Tgposs Of
SSG/L’: Teross [SSG/La P] and Teross [SSG/L’ O]. These T¢ross data
are shown in Fig. 5(b). Interestingly, 7. exhibits opposite
size dependence between the two types of BC; namely, with
increasing L, T;oss tends to decrease for periodic BC, while
it tends to increase for open BC, almost saturating for larger
sizes studied.

Based on these data of T¢yss, We perform the fit on the basis
of Eq. (12). The available s series is the same as in the CG
case: s = 2, % %, %, %. If we use all the sizes in the fit,
i.e., if Ly, = 6, the combined fit yields Tsg = 0.132 4+ 0.001
with NDF = 18 and x2 = 3.08. For Ly, = 12, the fit yields
Tsg = 0.131 £ 0.001 with NDF = 10 and x2 = 0.13, while
for Lyin = 16, Tsg = 0.131 £ 0.001 with NDF = 4 and %2 =
0.19. Thus, the fit turns out to be fairly stable also for T5g.

We also perform the similar analysis by using only the
periodic-BC data, although the NDF becomes even smaller.
For L., = 12, our estimate is Tgsg = 0.126 & 0.003 with
NDF = 5 and x? = 0.08 (the x? value seems a bit too small).
This estimate is quite close to the earlier estimate of Ref. [23]
based on the periodic-BC data, Tsg = 0.125100%,,, but lower
somewhat from our present estimate based on both periodic
and open BCs, Tsg = 0.131 £ 0.001. Indeed, the open-BC
data approach Tgg from below in the range of sizes studied,
leading to the higher present estimate of 75g as can be seen
from Fig. 5(b). If this increasing and saturating trend of
Teross versus 1/L,, persists for still larger L, somewhat higher
estimate of Tsg ~ 0.131 would be justified. By contrast, if the
increasing and saturating trend of Ti.s versus 1/L,, would
exhibit a “turnover” to the decreasing trend for still larger
lattices, the lower estimate of Tyg =~ 0.126 might well be
reasonable. In fact, we cannot rule out such a possibility from
our present data. In view of all these, we finally quote Tsg =

0.131f8:88é. This estimate of Tsg is consistent with both the
ones reported in Ref. [23] Tsg = 0.1254_'8:8?2, and in Ref. [24]
0.003
Tsg = 0.129’:0_916. - .
Our final estimate of the transition temperatures is then

Teg = 0.142 £0.001, Tsg = 0.13170008.  (14)

The result strongly supports the occurrence of the spin-
chirality decoupling in the model.

If we compare these estimates with the relatively recent
large-scale MC simulations [22-24], the only sizable dif-
ference arises from the Tcg value reported in Ref. [24],
Teg(= Tsg) = 0.1201“8:%8. We wish to discuss the cause of
this discrepancy. Fernandez et al. simulated the sizes of
L =8,12, 16, 24, 32, and 48 under periodic BC only (the
maximum size is the same as our present one) and employed
the crossing temperatures of the CG correlation-length ratio
with the s series only of s = 2 and 3/2. Setting L,;, = 12 and
applying the fitting form of Eq. (12) to the Ti;oss[éca/L, P]

data with s = 2 and 3/2, Fernandez et al. obtained a negative
Tcg- A negative Teg is clearly problematic because there is
now consensus that the 3D Heisenberg SG exhibits a finite-
temperature transition with the noncoplanar order character-
ized by the nonzero chirality, even if the presence of the spin-
chirality decoupling might still be at issue. Then these authors
forced the relation Tcg = Tsg by assuming the absence of the
spin-chirality decoupling, and by combining their CG and SG
correlation-length ratios data with a common 7, obtained an
estimate quoted above.

Since our present data yield quite a stable estimate of
Teg = 0.142 £ 0.001 as detailed above, an unphysical nega-
tive Tcg reported in Ref. [24] looks strange to us, and we try to
further clarify the situation. If we repeat the same fit by using
the Tiross[€ca /L, P] data reported in Ref. [24] with Ly, = 12,
we get Tog = —4 £ 600 with the NDF = 1 and x2 =0.16.
As reported in Ref. [24], a negative Tcg value certainly comes
out, but the associated error bar is unusually large, and nothing
can actually be concluded concerning the presence or absence
of the spin-chirality decoupling. To check whether such a
large error bar is originated just from the small NDF(= 1), we
try the same type of fit by using our own data of Ti;oss[Ecc/L,
P] with Ly, = 12, to obtain Teg = 0.145 £ 0.001, which is
positive and turns out to be close to the 7¢g value obtained
from our full analysis. We find that such a large difference in
the estimates of 7¢g comes, not just from the difference in the
NDF, but also from the difference in the T, values related to
the largest size L = 48, i.e., Teross = 0.142(1) for (24,48) (s =
2) in Ref. [24] versus 0.145(2) in our present computation,
while 0.138(3) for (32,48) (s = %) in Ref. [24] versus 0.145(3)
in our present computation. Hence, the L = 48-related Tioss
of Ref. [24] is lower than our present values by 2-3¢. This
difference, which may not necessarily be a contradiction in
the numerical sense, is combined with the small NDF(= 1)
and is causing a negative Tcg estimate with quite a large error
bar mentioned above, and eventually the large difference in
the final estimate of Tcg.

In any case, in view of the stability of our estimate of
Tcg and Tsg against not only the lattice sizes but also several
distinct types of independent physical quantities and BC, we
believe that our present estimates of Tcg and Tsg are trustable
and present a strong numerical evidence of the spin-chirality
decoupling.

E. The &cg versus &g relation

In the previous subsections, we have established that Tcg >
Tsg, i.e., the spin-chirality decoupling. This means, in the ther-
modynamic limit L — oo, the CG correlation length £cg
outgrows the SG correlation length &5 « slightly above Tcg,
£cG.00 > &sG.00- For a finite-size system, this inequality does
not necessarily hold. In fact, for smaller sizes L, the opposite
inequality £cg 1 < &sg.r usually holds. This is quite natural
since at a shorter length scale the chirality is a composite
of spins, the chiral order being parasitic to the spin order.
Indeed, Viet and Kawamura observed in Ref. [23] that the
inequality £cg . < &sg.r always held in the investigated tem-
perature range for L < 32, although the ratio &cg.1/&sG.L
monotonically increased with increasing L toward unity. In
our present calculation, we simulate larger lattices than those
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FIG. 6. The temperature and size dependence of the ratio of the
CG correlation length and the SG correlation length, £cG 1./&sG 1, in
the transition region under periodic BC. For larger sizes L = 40 and
48, the ratio exceeds unity at low temperatures. The inset represents
a wider temperature range.

in Ref. [23], L =40 and 48, and it might be interesting to
plot the ratio £cg.r/&sc.. in the same way as in Ref. [23].
The resulting figure under periodic BC is given in Fig. 6. One
can see from the figure that the ratio £cg 1. /£sG,. now exceeds
unity at lower temperatures for L = 40 and 48, i.e., the CG
correlation length outgrows the SG correlation length. The
temperature at which the ratio exceeds unity tends to increase
as L increases. The crossing temperature of L = 48 already
exceeds Tsg. We emphasize that nothing special happens
when the ratio exceeds unity with increasing L and lowering
T, i.e., the CG correlation length simply outgrows the SG
correlation length without any “hesitation,” i.e., no sign of
merging nor saturation. The result gives a strong support for
the spin-chirality decoupling really taking place in the model.
We note that the similar “outgrowth” of &cg . over &sg 1
was observed in the 3D XY SG with two-component spins
in Ref. [39], where &cg . outgrew &sg ;. at low temperatures
for the largest size studied L = 40 (L = 48, data not available
there).

F. The nature of the RSB in the chiral-glass state

After establishing the existence of the spin-chirality de-
coupling and the CG state, we now wish to investigate the
nature of the CG ordered state itself, the nature of the possible
RSB in particular. Some time ago, Hukushima and Kawamura
proposed on the basis of MC simulation that the CG ordered
state might exhibit a peculiar one-step-like RSB in the chiral
sector [15], in sharp contrast to the Ising SG exhibiting the
hierarchical RSB a la Parisi. The proposal was supported also
by the later simulation for the model [18,23]. Interestingly,
in the chirality scenario, this observation means that the SG
order of real weakly anisotropic Heisenberg-like SG including
canonical SG also exhibits the one-step-like RSB. Indeed,
some support was already reported from off-equilibrium prop-
erties of the weakly anisotropic Heisenberg-like SG either
numerically [40] or experimentally [41,42].

100 T T
100 T T
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80 | T/J=0.133 o | f‘\ 1
periodic ol ‘ jﬁ_ ]
'\RGO’ L=48 = £ 20 | 1]
S | il o
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FIG. 7. The chiral overlap distribution function in the CG state
under periodic BC at a temperature 7 = 0.133 for various lattice
sizes. The one at 7 = (0.128 is shown in the inset for the largest size
L =48.

In order to get further information on the issue, we compute
the chiral-overlap distribution P(q, ), which is defined by

P(d)) = [(3(d, — ¢)]- (15)

The computed P(g, ) in the CG state under periodic BC is
shown in Fig. 7. In the main panel, the size dependence
of P(g,) is shown at a temperature 7 = 0.133 lying in the
CG state. There exists an eminent central g, = 0 component,
which grows sharply with the system size L, suggestive of
the one-step-like feature of the CG ordered state. In addition,
symmetric side peaks or shoulders appear at g, = +qtq
corresponding to the long-range CG order (gE8 represents
the EA order parameter associated with the CG order). In
the inset, P(g,) for the largest size L = 48 is shown at a
lower temperature 7 = 0.128 close to the SG phase boundary,
where the side peaks become clearer. Thus, our present data
further strengthen the one-step-like RSB character of the
CG order of the model. Such a one-step-like feature is also
consistent with the observed negative Binder ratios gcg and
gsc at lower temperatures: see Figs. 3(b) and 4(b).

It should be noticed that the computed P(g,) is also
consistent with a continuous plateau part characteristic of
the full-step RSB superimposed on the g, = 0 central peak
characteristic of the one-step RSB and the ¢, = +q&g peaks.
If that is the case, the RSB associated with the CG order
might be the combination of the pure one-step (g, = 0 central
peak) and the full-step (continuous plateau spanning between

qy = iqgé)

IV. THE CRITICAL PROPERTIES

In this section, on the basis of the Tcg and Tsg values
determined in the previous section, we wish to examine the
critical properties associated with the CG and SG transitions.
Periodic BC is better suited for this purpose, since the open-
BC data are complicated by the possible contribution from
the surface critical phenomena. Hence, we concentrate on the
periodic-BC data in this section. We consider the effect of the
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FIG. 8. Finite-size-scaling plots, (a) of the CG correlation-length
ratio £cg/L and (b) of the CG susceptibility xcg, under periodic
BC where the correction-to-scaling effect is taken into account. The
CG transition temperature is fixed to Tcg = 0.142 as determined in
Sec. III C. The best fit for &cg/L is obtained with vcg = 1.36 and
wcg = 0.38, while that for ycg is obtained with ncg = 0.49.

correction-to-leading scaling by introducing the correction-
to-scaling exponent w in the analysis. In estimating critical
exponents, we employ the Baysian scaling analysis [43].

A. Chiral-glass critical properties

We begin with the critical properties associated with the
CG transition at T = Teg. As can clearly be seen from
Fig. 1(a), the crossing temperatures of the CG correlation-
length ratio £cg /L exhibit the non-negligible size dependence,
indicating the necessity to consider the correction term to
properly account for the CG critical properties. The appro-
priate scaling form with the correction term might be given
by

&TG = Xco[(T — Teg)Les |(1 + agL™9<%), (16)
where ag is a numerical constant. We put Tcg = 0.142 as
determined above and try to fit the data to Eq. (16) by
adjusting vcg and weg. The best fit is obtained for veg = 1.36
and wcg = 0.38, which is shown in Fig. 8(a).

We also try a similar finite-size scaling analysis for the CG
susceptibility xcg taking account of the correction term. The
appropriate scaling form is given by

xcG = L " ¥eG[(T — TCG)Lé](l +a L), (A7)

where a, is a numerical constant. We put Tcg = 0.142, veg =
1.36, and wcg = 0.38 as determined above and try to fit the
data to Eq. (17) by adjusting ncg. The best fit is obtained for
ncg = 0.49, which is shown in Fig. 8(b). By examining the
dependence of the resulting exponents on the choice of Ly,
and on the uncertainty of TG, we estimate the error bars as

Vcg = 1.36 + 010, neG = 0.49 + 010,
wcg = 0.387030. (18)

The obtained CG exponents vcg = 1.36 and ncg = 0.49 are
rather close to the values previously reported in Ref. [23],
veg = 1.4 £ 0.2 and ncg = 0.6 £ 0.2. With use of the scaling
and hyperscaling relations, other exponents are estimated as

acg =—2.1£03, Beg=10=x0.1, 19)

veg =2.14£02, Scg =3.0£0.3. (20)

B. Spin-glass critical properties

Next, we move to the SG critical properties. The SG
transition temperature was estimated to be Tsg = 0.1317000¢
in the previous section. First, we set the Ty value to our best
estimate Tgsg = 0.131, and try to scale the SG correlation-
length ratio based on the scaling form,

5o _ Xsa[(T — TSG)Lé](I + a L7, (21)
L

In the fit, we employ the data lying in the temperature range
T < 0.142 = Teg to avoid the possible influence of the CG

transition on the SG critical properties. Then the best fit

is obtained for vsg = 1.20 and wsg = 1.32, as shown in

Fig. 9(a).

Similar scaling analysis is made also for the SG suscepti-
bility based on the scaling form,

xs6 = L7556 [(T — Tso)L%6 |(1 + @, L), (22)

By fixing vsg = 1.20 and wsg = 1.32 as determined above,
nsc is determined to be nsg = —0.22, and the corresponding
best fit is given in Fig. 9(b). Note that, unlike ncg, nsg takes
a negative value, whereas vgg =~ 1.20 is not so different from
veg =~ 1.36.

As detailed in the previous section, our estimate of Tsg has
a larger error bar on the lower-temperature side because the
use of only periodic-BC data yields a lower estimate of Tgg =~
0.126. In view of this uncertainty, we also examine the finite-
size scaling by assuming 7sg = 0.126. From the scaling of
&sg/L, we get vsg = 1.19 and wsg = 0.75, and nsg = —0.31
from the scaling of xsg.

In view of these observations, and also examining the
dependence on the choice of Ly,;,, we finally quote as the SG
critical exponents

vsg = 1.240.1, nsg = —0.25 % 0.10,
wsg = 1.32 %+ 0.40. (23)
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FIG. 9. Finite-size-scaling plots, (a) of the SG correlation-length
ratio £sg/L and (b) of the SG susceptibility xsg, under periodic
BC where the correction-to-scaling effect is taken into account. The
SG transition temperature is fixed to Tsg = 0.131 as determined in
Sec. III D. The best fit for &sg/L is obtained with vsg = 1.20 and
wsg = 1.32, while that for xsg is obtained with nsg = —0.22.

With use of the scaling and hyperscaling relations, other
exponents are estimated as

asg = —1.6 0.3, Bsg =0.45=£0.05, 24)

vsg =2.74+03, 8sg=7.0=%1.1. (25)

If we compare these SG exponents with the corresponding CG
exponents determined above, v and « are rather close, while 7,
B, and § are significantly different. For 1, the sign is opposite.
For B, the SG B is about half the CG g, whereas for § the SG
d is about twice the CG §.

V. SUMMARY AND DISCUSSION

A. Summary of the present results

In the present paper, we performed an extensive MC sim-
ulation for the 3D isotropic Heisenberg SG model with the
random nearest-neighbor Gaussian coupling, the same model
as studied previously by many authors. Our maximum size
was L = 48, the same as the largest size studied before, but
we simulated both periodic BC and open BC in parallel, and

utilized the both data in locating the transition temperatures
Tcg and Tsg. In addition, we computed and utilized a variety
of independent physical quantities, not only the crossing
temperatures of the correlation-length ratio under periodic BC
utilized in Refs. [17,19,21,24], but also those under open BC,
and the crossing temperatures and the dip temperatures of
the Binder ratio as well. Our strategy was to utilize as many
independent information (data points) as possible to get larger
NDF in the necessary size extrapolation to the L — oo limit
in order to reduce and control the error bar. Indeed, we could
get the NDF as large as 43. Making use of the obtained large
NDF, we carefully examined the stability of our estimates of
TCG and TSG-

Finally, we succeeded in obtaining rather stable and ac-
curate estimates of the CG and SG transition temperatures
as Tcg = 0.142 £0.001 and Tsg = 0.1317000¢. The results
provide strong numerical support for the spin-chirality decou-
pling. The relative magnitude of the finite-size CG correlation
length &g, and the corresponding SG one &5, was also
studied. It was found that, on increasing L, &g, 1 progressively
outgrew &sg at low temperatures. As already shown in
Ref. [18], the CG correlation time outgrew the SG correlation
time for larger sizes and at lower temperatures. Hence, for
larger systems, the CG correlation exceeds the SG correla-
tion both in time and length at lower temperatures, strongly
suggesting the occurrence of the spin-chirality decoupling.
We also determined the critical exponents associated with the
CG and SG transitions. For the CG transition, we got the
CG exponents, vcg = 1.36 £0.10 and ncg = 0.49 £ 0.10,
consistent with the earlier reports and with the corresponding
experimental values on canonical SG. This agreement gives
support to the chirality scenario of the experimental SG or-
dering. The one-step-like feature of the CG ordering reported
earlier was also confirmed for larger sizes than before.

B. Relation to other numerical simulation

As was already introduced, a simultaneous spin and chiral
transition was claimed in several MC works on the same
model [19,21,24,25], and we wish to discuss and summarize
here how those authors reached a different conclusion from
our present conclusion in order to further clarify the situation.
Since the system size needs to exceed the crossover-length
scale of, say, 15-20, we take up in the following only large-
scale MC simulations with their maximum size L > 32.

Campos et al. computed both the CG and SG correlation-
length ratios up to L =32, and observed that the chiral
&cg/L curves cross at temperatures which are only weakly L-
dependent while the spin &g /L curves cross at progressively
lower temperatures as L increases [19]. Campos et al. claimed
that the chiral and spin sectors undergo simultaneously a
Kosterlitz-Thouless (KT) transition with massive logarithmic
corrections. However, the investigated temperature range 7 2
0.144 was limited to only above T¢g, which largely restricted
the information available in discussing the ordering. The
analysis and the interpretation of a simultaneous spin and
chiral KT-type transition with massive logarithmic corrections
was criticized in Refs. [20,23].

Lee and Young also computed the same quantities up to
L = 32 down to lower temperatures 7 > 0.121 and observed
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a marginal behavior both for the spin and the chirality [21].
Comparison of their écg/L and &g /L data of L = 32 with our
corresponding data reveals that their L = 32 data were smaller
than ours by about 4o for the chirality (in unit of our o) and
by about 30 for the spin (their L = 24 data agree with our
data both for the chirality and the spin). We then suspect that
the marginal behavior reported in Ref. [21] was simply due to
the too small value of & /L for their largest size L = 32 at low
temperatures.

Fernandez et al. computed and analyzed &écg/L and &sg /L
up to the size L = 48 and claimed a simultaneous spin and chi-
ral transition at Tog = Tsg = 0.12Of8:(1’(1)8 [24]. In fact, when
they tried to fit their £cg /L data to locate T¢g, they obtained an
unphysical negative Tcg value (when we repeat the same fit by
using their data, we indeed get Tcg = —4 =+ 600). The Teg(=
Tsg) value reported in Ref. [24], 0.1204_'8:(1)(1)8, was obtained
from both &cg/L and &5 /L by forcing Tog = Tsg, excluding
the possibility of the spin-chirality decoupling. So nothing
can actually be concluded concerning the presence or absence
of the spin-chirality decoupling from their data themselves.
As was examined in detail in Sec. III C, this largely am-
biguous situation was originated from their L = 48 &cg/L
data, which were smaller than our data by modest amount,
only by 1-1.50, the associated crossing temperatures being
smaller than ours by 2-30. These relatively minor difference,
though they themselves are not necessarily contradiction, are
combined with the small NDF=1 available in their data fit
and eventually lead to an almost meaningless fitting result,
Tcg = —4 £ 600. By contrast, their L = 48 spin &sg/L data
agree well with ours together with the associated Tgoss Values,
and their estimate of Tsg = 0.129100% agrees well with our
present estimate of Tgg = 0.131f8388é.

Nakamura recently performed the nonequilibrium MC
study on the same model up to the larger size of L = 256,
and claimed a simultaneous spin and chiral transition at Tsg =
Tcg = 0.140 £ 0.002 [25]. Although the nominal size was
very large, the probed length was much shorter than L. In this
nonequilibrium method, the system was quenched from the
high temperature, and the subsequent time growth of the SG
and CG correlations was analyzed. In this method, the system
at lower temperatures of our interest was not fully thermalized
at any finite time ¢ and at any length scale. In order to get ac-
cess to equilibrium properties, one needs to take the long-time
limit ¢t — o0. As was criticized in detail in Ref. [18], however,
safely taking the long-time limit t+ — oo toward equilibrium
in hard-relaxing systems like SG is quite a tough issue and
appears to be uncontrolled in this nonequilibrium method.
In Ref. [25] Nakamura computed the “dynamical correlation
length” defined via the time-dependent nonequilibrium CG
and SG correlation functions and observed that, at the es-
timated simultaneous spin and chiral transition temperature
T = 0.140, the CG one grew only to ~5 lattice spacings dur-
ing the nonequilibrium MC simulation, while the equilibrium
CG correlation length should eventually diverge there. This
length is much shorter than the finite-size correlation lengths
&cc,r in full equilibrium, which were estimated in the present
paper with the help of the scaling form Eq. (16) as §cg 43 =~ 20
for our largest size L = 48, and as &cg 256 =~ 130 for the size
of Ref. [25] L = 256. The extrapolation from the value of
Ref. [25], égé“amml ~ 5, to the equilibrium value &g >~ 130

(and eventually to co in the L — oo limit) is highly nontrivial,
especially in the situation where the crossover length into the
spin-chirality decoupling regime, 15-20, is to be expected in
between.

Nakamura mentioned that the equilibrium simulation spent
most of the CPU time in thermalizing the lattice boundary
region, which was unnecessary and inefficient, claiming the
superiority of the nonequilibrium method [25]. We disagree
with such a view. In nonequilibrium simulations, the dynam-
ical correlation grows from zero after the quench, i.e., each
different region completely uncorrelated initially, to a certain
finite length ¢ at time ¢, indicating that the size-¢ block is
somehow correlated or frozen in its interior. But this does not
necessarily mean that the system is fully equilibrated even on
the length scale < £. Assembly of blocks of size £ actually
forms an interacting network, and their states need to be
optimized by adjusting to the randomly frustrated interaction
between blocks, leading to the block of the size 2¢. Such
an adjustment or optimization among size-£ blocks would
occur primarily via the interface between these blocks, but it
necessarily also gets back to the interior of each size-¢ block
modifying the state even within the size-¢ blocks. This pro-
cedure continues as £ — 2¢ — 3¢ — - ... Of course, blocks
and the associated boundaries are somewhat arbitrary inside
the lattice for homogenously random systems like the present
SG model. Such boundaries between blocks become most
eminent at the lattice surface of the length scale L (no free
space left), and this might be the reason why the long CPU
time appears to be required to thermalize the lattice-boundary
region, as Nakamura noticed. However, an essentially similar
thermalization process is likely to be occurring at any time
and at any length scale ¢ everywhere on the lattice, not just
at the lattice boundary, but is somehow obscured inside the
lattice. To control such a nontrivial thermalization process at
all length scales in systems with frustration and randomness
constitutes the toughest but most essential part of the SG
problem. As such, extreme care needs to be taken in the
t — oo limit in the nonequilibrium method in hard-relaxing
systems like SG. In our opinion, the orthodox way to go is,
after all, to perform an equilibrium simulation on finite-size
systems and carefully control the finite-size effect, always
fully equilibrating the system at each size.

C. Other related systems

Now we wish to discuss several related systems with
some possible relevance to the present issue, especially the
spin-chirality decoupling. Our first example is the 3D XY
SG with two-component vector spins, which has also been
studied for years. It has relevance not only to easy-plane-type
random magnets but also to ceramic superconductors with
anisotropic pairing symmetry such as cuprates [2,12,44]. This
system has many common features with the 3D Heisenberg
SG. Especially, it possesses a nontrivial Z, chiral degrees of
freedom where the chirality is defined by the vector product
of the two neighboring XY spins as [S; x S;];. In contrast
to the chirality for the Heisenberg spin which is cubic in
the spin variables and time-reversal odd, the chirality for the
XY spin is quadratic in the spin variables and time-reversal
even.
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The research on the 3D XY SG followed more or less
similar path to that of the Heisenberg SG. Initial studies
including both MC simulation [45] and numerical domain-
wall RG calculation [46] indicated that the 3D XY SG did not
exhibit any finite-temperature transition. In 1991, Kawamura
and Tanemura suggested that the system might exhibit a finite-
temperature transition in its chiral sector even though the con-
ventional SG transition occurred only at T = 0, i.e., the spin-
chirality decoupling [47]. Since then, many works have been
done on this model with particular interest in the presence or
absence of the spin-chirality decoupling. Mentioning some of
large-scale MC simulation on the model, Kawamura and Li
simulated the model with the £J coupling of the lattice size
L < 16 and observed the spin-chirality decoupling, Tcg >
Tsg, together with the one-step-like RSB for the chirality
[48]. By contrast, Pixley and Young simulated the model with
the Gaussian coupling up to the size L = 24, and claimed
a simultaneous spin and chiral transition [38]. Obuchi and
Kawamura simulated the same model extending the lattice
size up to L = 40 and reported the spin-chirality decoupling
with the estimates, Tog = 0.313%0¢13 and Tsg = 0.2757000
[39]. These authors also estimated both the CG and SG

critical exponents at each transition, vcg = 1.36f8é§ and

ncg = 0.267032 for the CG transition, and vsg = 1.22103
and nsg = —0.541’8:?3 for the SG transition. These exponent
values are not far from the corresponding exponents of the
3D Heisenberg SG determined in the present paper, and the
relation between the two poses an interesting question.

Our second example is the Heisenberg SG in different
spatial dimensions, e.g., in two and four dimensions. In two
dimensions both the spin and the chirality order only at 7 = 0.
Yet, the CG correlation-length exponent vcg appears to be
larger than the SG one vgg by factor of about two [49]. Al-
though the transition temperatures are common at 7 = 0 for
the spin and the chirality, this actually means the spin-chirality
decoupling in the sense that this 7 = 0 transition possesses
two distinct length scales, violating the standard one-length
scaling. In three dimensions our present work has shown that
the spin and the chirality are decoupled, with mutually dis-
tinct nonzero transition temperatures Tog > Tsg > 0. In four
dimensions, by contrast, Kawamura and Nishimura suggested
that the spin and the chirality appeared to be coupled in the
sense that both ordered at a common finite temperature with a
common correlation-length exponent veg =~ vsg = 1.0 £ 0.1
[50].

Thus, the spin and chiral ordering of the Heisenberg SG
depends heavily on its spatial dimensionality. For high enough
dimensions d > 4, the spin-chirality decoupling seems not
to occur, suggesting that fluctuation effects are crucial to
realize it. On the other hand, if fluctuations are too strong,
they simply wash out any finite-temperature transition. In this
sense, three dimensions happen to be the most interesting case
where the strength of fluctuations are balanced to realize the
spin-chirality decoupling at finite temperatures.

In this connection, it might be useful to point out that simi-
lar spin-chirality decoupling phenomenon has been discussed
in regularly frustrated XY model in two dimensions. For this
model, after some controversy, a consensus now exists that
the spin-chirality decoupling indeed occurs, i.e., the chirality
orders at a temperature slightly higher than that of the spin,

though only with a small difference of 1% order [51,52]. Since
there is an empirical observation that the random system often
behaves similarly to the corresponding regular system with
less spatial dimension (the so-called dimensional reduction),
the occurrence of the spin-chirality decoupling in three dimen-
sions might not be so surprising in view of the now established
spin-chirality decoupling in 2D regularly frustrated systems.

Our last example has an apparent connection with the
above-mentioned systematic variation of the SG and CG
ordering behavior with respect the spatial dimensionality d.
An interesting observation has been made on certain one-
dimensional (1D) SG model with long-range power-law in-
teraction, J;; o< 1/r7;, that varying the power of the long-
range interaction o might correspond to varying the space
dimensionality d of the short-range model. If this is the case,
since the 1D model can be simulated to very large lattice size
L even under the long-range interaction, it might shed further
light on the issue of the SG and CG order in d-dimensional
Heisenberg SG.

Mentioning some of large-scale MC simulations on the
1D Heisenberg SG model with the long-range power-law
interaction, Viet and Kawamura simulated a random exchange
model with the Gaussian coupling up to the size L = 4096, to
find that this 1D model exhibited the spin-chirality decoupling
of Tecg > Tsg = 0 in the range 0.8 < o < 1.1 [53]. Sharma
and Young dealt with a different type of randomness where
the interaction between distant spins were diluted according
to the power law. By simulating the model up to the size L =
16384, the authors observed the spin-chirality decoupling
Tcg > Tsg > 0 at o = 0.85 [54].

In this way, the problem of the spin and chiral ordering
in the 3D Heisenberg SG has rich connections to many other
problems and systems.

D. Relation to experiments

Finally, we wish to turn to our original problem, i.e., the
chirality scenario of the ordering of real Heisenberg-like SG.
The crucial ingredient of the scenario is the spin-chirality
decoupling in the hypothetical fully isotropic Heisenberg SG.
Weak random magnetic anisotropy, which inevitably exists in
real SG magnets, “recouples” the spin into the chirality, and
the CG transition and the CG order manifest themselves as the
SG transition and the SG order via the weak random magnetic
anisotropy.

The scenario already got some experimental supports. The
first support comes from the critical exponents of Heisenberg-
like SG. The chirality scenario predicts that the SG exponents
of weakly anisotropic Heisenberg-like SG including canonical
SG are nothing but the CG exponents of the hypothetical
fully isotropic Heisenberg SG [2,12]. Here, for completeness,
we elaborate how such an equivalence of the experimentally
observable SG exponents of real Heisenberg-like SG magnets
to the CG exponents of the fully isotropic Heisenberg SG is to
be expected in the framework of the chirality scenario.

In the fully isotropic case, the system is invariant under
both the proper spin rotation SO(3) and the time-reversal
(the spin-inversion) Z,, §; — —S;. While the Heisenberg spin
S; is accordingly transformed under the both operations, the
chirality x remains invariant under SO(3) but changes its sign
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under Z,. Let us introduce the pseudospin S; by the relation
S; = x;S:. Though §; transforms as a vector under SO(3),
it remains invariant under Z, in contrast to the original spin
S;. The spin-chirality decoupling then means that SO(3) and
Z, are decoupled on long length scales, leading to separate
CG and SG transitions, each associated with the sponta-
neous breaking of the Z, and SO(3) symmetries. Under the
spin-chirality decoupling, the SG correlation function would
behave in the long-distance limit as

gs(rij) = [(S; 'Sj>2]
= [{x:S; - ngj>2]
=~ [Oax )1 % [(Si - 85)°]
= gy (rij)gs(rij). (26)

In the CG ordered state of the isotropic Heisenberg SG,
the chiral g, takes a nonzero value even at [r;;| — oo,
while the spin gg decays to zero since gg decays to zero
due to the unbroken SO(3), and the standard SG order does
not arise. In the presence of the weak random magnetic
anisotropy which inevitably exists in real Heisenberg-like SG,
the Hamiltonian symmetry decreases from Z, x SO(3) to only
Z,,no longer SO(3) symmetry left. The chirality scenario then
claims that the only thermodynamic transition occurring in
such weakly anisotropic system is the one associated with
the Z,-symmetry breaking, i.e., the CG one, at which the
SG order is simultaneously induced parasitic to the CG order
via the random magnetic anisotropy reflecting the absence of
the SO(3) symmetry (“spin-chirality recoupling” [2,12]). The
character of the Z,-symmetry breaking would essentially be
the same as that of the CG transition of the fully isotropic
system, since the broken symmetry, chiral Z,, is the same,
with SO(3) being decoupled. Due to the absence of the SO(3)
symmetry at the Hamiltonian level, g5 in the long-distance
limit takes a nonzero constant. Hence, at the CG (and simulta-
neously SG) transition of the weakly anisotropic SG, gg takes
anonzero value A at |[r| — oo even at and above the transition
temperature, while g, exhibits the critical behavior described
by the CG exponents of the isotropic system, e.g., vcg and
nce as determined in the present paper. Then one expects from
Eq. (26)

gs(rij) =~ Agy(rij), for |ri;| — oo, 27)

indicating that the experimentally observable spin critical
properties of the realistic Heisenberg-like SG magnets like
canonical SG should be those of the CG critical properties
of the fully isotropic system.

The critical properties of canonical SG are well studied,
various measurements providing mutually consistent esti-
mates, o >~ —2.0, 8 ~ 1.0, y ~2.0-2.2, § ~3.0-3.3, v =~
1.3-1.4, and n ~ 0.4 [2]. These values are indeed quite close
to our present estimates of the CG exponents o >~ —2.1, f >~
1.0,y ~2.1,§ =~ 3.0, v >~ 1.36, and n >~ 0.49.

If one compares the experimental exponents with the SG
exponents of the decoupled SG transition estimated in the
present paper, ¢ >~ —1.6, B ~0.45, y ~2.7, § ~7.0, v >~
1.2, and n ~ —0.25, some exponents are not too different, but
some other exponents, e.g., 8, 8, and n, differ considerably.
Hence, the decoupled SG transition of the Heisenberg SG,

even though it occurs at nonzero temperature, cannot explain
the experimental exponents of Heisenberg-like SG properly.
By contrast, the chirality scenario is capable of explaining
the experimental exponents quantitatively as the CG ones.
We also note that the exponents of the 3D Ising SG, which
were believed in the earlier view to govern the asymptotic
criticality of the weakly anisotropic Heisenberg-like SG in-
cluding cannical SG [10], are also far from the experimental
exponent values, e.g., y of the 3D Ising SGis y = 6.0-6.5 in
contrast to the experimental value of canonical SG, y ~ 2 [2].
By contrast, for the Ising-like SG magnet Fe,Mn;_,TiOs, the
experimentally observed exponent, y =~ 4, is much larger than
that of canonical SG and is indeed close to the theoretically
determined value of the 3D Ising SG model [2,55].

The second and most direct experimental evidence of the
chirality scenario comes from the Hall measurements. Ex-
perimentally, the measured Hall coefficient of canonical SG,
the Hall resistivity divided by the magnetization, exhibits a
cusplike anomaly at the SG transition [30-34]. The effect
is neither the normal Hall effect nor the usual anomalous
Hall effect and can be ascribed to the topological Hall effect
originating from the chiral order. In fact, the Hall coefficient
was shown to correspond to the “chiral susceptibility” of
canonical SG [35,36], and the detection of the strong singu-
larity is a direct experimental demonstration of the CG order.
Estimating the CG critical exponents from the Hall signal is a
challenging task. The only report so far made concerns with
4. Taniguchi reported § = 2.5 = 0.8 [31], which is consistent
with the value expected from the chirality scenario dcg =~ 3.
Experimental determination of other critical exponents from
the Hall measurements would be highly desirable for the
future task.

The third experimental evidence of the chirality scenario
concerns with the in-field SG ordering and the magnetic phase
diagram of Heisenberg-like SG [2,12,56]. Often, in-field tran-
sition lines appear in the phase diagram in the magnetic field
(H) versus temperature (7") plane, which have widely been
interpreted in terms of the mean-field (MF) theory and are
usually called the “AT line” and the ‘GT line,” the former
sometimes further divided into the “low-field AT line” and
the “high-field AT line” [56]. The behavior of the GT and
AT phase boundaries in the H-T phase diagram, H ~ |T —
T,|*, is characterized by the exponents x = 1/2 and 3/2,
respectively. While the experimentally observed exponents
describing the behavior of the in-field phase boundary agree
well with the corresponding MF exponents, the coefficient
of the low-field AT line has been known to largely deviate
from the MF value, say, by factor of 30, whereas no such
deviation is observed for the GT line and the high-field AT
line [2,12,56]. This failure of the MF theory remains to
be explained. In addition, concerning the exponent values
themselves, the MF theory usually gives poor numerics, and
the reason why it gives rather accurate exponent values only in
the case of the in-field phase boundaries sounds a bit odd (for
example, the zero-field critical exponents such as y largely
deviate from the MF value as usual, i.e., ¥ >~ 2 in canonical
SG versus ¥ = 1 in MF). The chirality scenario presents a
completely different explanation of the apparently MF-like
behavior of the in-field phase boundaries [2,12]. The scenario
is also capable of explaining the deviation of the coefficient of
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the low-field AT line [12]. Further details about the magnetic
phase diagram of the Heisenberg-like SG and the chirality
scenario will be published elsewhere [57].

Finally, as the fourth experimental support of the chi-
rality scenario, we wish to touch upon the RSB structure
of the SG ordered state. In SG magnets below T,, while
full thermalization is usually not possible, various intriguing
off-equilibrium phenomena such as aging arise there [2,58].
In such off-equilibrium situation, it has been realized that
the breaking pattern of the fluctuation-dissipation relation
held in equilibrium gives information about the RSB pattern
of the SG order. Indeed, the seminal experiment by Héris-
son and Ocio on Heisenberg-like insulating SG thiospinel
CdCr 7Ing3S4 gave information on its RSB pattern [41,42].
Due to the difficulty in taking the long waiting-time limit,
the result was not necessarily conclusive, but it favored a
one-step-like RSB [42] as expected in the chirality scenario.
On the theoretical side, the off-equilibrium MC simulation
on the weakly anisotropic 3D Heisenberg-like SG model
of Ref. [40] gave some evidence of the one-step-like fea-
ture of the “fluctuation-dissipation ratio,” consistent with the
chirality scenario. Furthermore, the experimentally observed
“effective temperature” of the SG state, ~1.97, [41,42], is
rather close to the corresponding theoretical value of ~27,
[40].

Thus, the chirality scenario provides a quite promising
framework in systematically understanding the ordering of
Heisenberg-like SG. The spin-chirality decoupling in the fully
isotropic Heisenberg SG is the basis of the scenario, and our
present result strengthens the validity of the hypothesis.

SG is a hard-relaxing system, and one might wonder if its
full thermalization might be limited to rather short length scale
even above T, in real SG. Since the spin-chirality decoupling
is a phenomenon in equilibrium arising over the crossover-
length scale of 15-20 lattice spacings, the target SG system
needs to be thermalized at least over this length scale above 7.
In this connection, Lévy and Ogielski reported for canonical
SG AgMn that the equilibrium SG critical properties were
measurable above T, on the length scale of a few hundred
lattice spacings [59]. This is far more than the crossover length
scale, indicating that the spin-chirality decoupling could play
arole and could be “seen” in real SG ordering.

From the computational viewpoint, it seems not so easy
within the present methodology to go much beyond L = 48
in equilibrium simulations. We most probably need some new
methodology to go much beyond this size. On the other hand,
to fill the gap with experiments, i.e., increasing the present
L ~ 48 toward a few hundred keeping equilibrium has a real
physical significance and is not just an academic issue. Thus,
further numerical efforts in this direction would deserve a
serious challenge.
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