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Tuning entanglement by squeezing magnons in anisotropic magnets
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We theoretically study the entanglement between two arbitrary spins in a magnetic material where magnons
naturally form a general squeezed coherent state in the presence of an applied magnetic field and axial
anisotropies. Employing concurrence as a measure of entanglement, we demonstrate that spins are generally
entangled in thermodynamic equilibrium, with the amount of entanglement controlled by the external fields and
anisotropies. As a result, the magnetic medium can serve as a resource to store and process quantum information.
We furthermore show that the entanglement can jump discontinuously when decreasing the transverse magnetic
field. This tunable entanglement can be potentially used as an efficient switch in quantum-information processing
tasks.
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I. INTRODUCTION

Entanglement [1,2] is a measure of how much quantum
information is stored in a quantum state and is one of the
most fundamental properties that distinguish a quantum phe-
nomenon from its classical counterpart. It was under severe
skepticism, however, since the discovery of quantum me-
chanics [3] due to its nonlocality that appeared to violate
the local-realism view of causality. Following the derivation
of Bell’s inequalities, which rendered the nonlocal features
of quantum theory accessible to experimental verification,
numerous experiments in different systems have been carried
out, including photons, neutrinos, electrons, molecules as
large as buckyballs, and even small diamonds, unequivocally
demonstrating the existence of quantum entanglement [4–10].
In parallel with these developments, quantum entanglement
has come to be recognized as a valuable resource in quantum-
information processing [11]. For example, a quantum com-
puter can be much faster and more powerful than a classical
one for certain computational tasks by taking advantage of
the superposition and entanglement in a quantum system [12].
Moreover, we can realize several quantum protocols, such as
teleportation, exclusively with the help of entangled states
[13]. These merits of entanglement in quantum-information
science stimulate the research trying to coherently prepare and
manipulate it in various systems.

A magnon Bose-Einstein condensate (BEC) [14], where
quanta of spin waves condense into a single state, may be
taken as a platform to look for controllable entanglement [15]
since particles in a condensate are distributed over space in a
coherent way. A magnon BEC is attractive in practice, as it can
be driven by microwave [16–22] or electronic [23,24] pump-
ing in an insulating ferromagnet through a quasiequilibration
process at room temperature. Without magnon pumping, we
can also achieve a magnon BEC in equilibrium by introducing
an easy-plane anisotropy in the magnetic system [25]. As we
show in this paper, magnons condense by forming a general
squeezed coherent state when the system is subjected to

external magnetic fields and anisotropies. A squeezed coher-
ent state [26], akin to a coherent state, is a minimum uncer-
tainty state but with uncertainties of conjugate operators being
different. This state has been investigated extensively in quan-
tum optics, resulting in many applications. For example, it can
be used to improve the precision of atom clocks [27,28] and
quantum-information processing in the continuous-variables
regime [29].

In this paper, we study the entanglement of two arbitrary
spins in a magnetic system (assuming the number of spin sites
is N0), utilizing the concurrence C [2,30] as a measure of
entanglement, where magnons are condensed into a general
squeezed coherent state. The average number of condensed
magnons in such a state can be tuned by the external field
and magnetic anisotropies [26]. We distinguish between two
types of magnons: coherent magnons related to a uniform
order-parameter tilting and squeezed magnons related to the
anisotropic squeezing effect [see Eq. (11) below]. From nu-
merical analysis, we find that the system transits abruptly to
a highly entangled state from an unentangled state when we
decrease the number of coherent magnons (denoted by Nc)
across a critical value that is determined by the number of
squeezed magnons (denoted by Ns):

Nc =
√

2N0Ns. (1)

This can potentially be used as a switch in quantum-
information processing tasks. Whereas a simple coherent state
has no entanglement, a squeezed vacuum state is entangled
with concurrence

C = 2

N0

√
Ns√

Ns + 1 + √
Ns

. (2)

This concurrence will increase as the number of squeezed
magnons rises. Resembling squeezed light in quantum optics
[29,31,32], our squeezed coherent magnetic states can also
serve as an essential resource to realize continuous-variables
protocols for quantum communication, unconditional quan-
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tum teleportation, and one-way quantum computing. Apart
from this, we also discuss the entanglement when the con-
densate is in a Fock state, and we match our result with the
entanglement of Dicke states [33], which has been well un-
derstood in quantum spin squeezing [34–36]. In contrast to the
entanglement between macroscopic building blocks of cavity
magnetomechanical systems [37,38], we are considering the
intrinsic spin entanglement within a quantum medium.

The paper is structured as follows: In Sec. II, we introduce
the model and discuss the ground state in terms of coherent
squeezing. In Sec. III, an entanglement measure known as
the entanglement formation is briefly reviewed, along with its
relation to concurrence [30]. In Sec. IV, we derive the main
results of this paper, namely, the entanglement of a general
squeezed coherent magnetic state, including its two special
cases: coherent states and squeezed vacuum states. The en-
tanglement of Fock states and the distance dependence of
entanglement in the thermodynamic limit are also examined.
A summary and outlook are offered in Sec. V.

II. MODEL

Our model system is a set of localized spins interacting
through a nearest-neighbor exchange coupling on a three-
dimensional lattice, with axial anisotropies and a tilted mag-
netic field, according to the following Hamiltonian [39]:

H = −J
∑
〈i, j〉

Si · S j − B ·
∑

i

Si + H1 + H2, (3)

H1 = K

w

∑
〈i, j〉

(
Sx

i Sx
j − Sy

i Sy
j

)
, (4)

H2 = −h ·
∑

i

Si. (5)

Here, Si = σ i/2 is the spin operator on the ith site (σ are Pauli
matrices, and we have set h̄ = 1 for simplicity), w is the lattice
coordination number (for example, w = 6 for a simple cubic
lattice), J > 0 is the exchange constant of a simple Heisenberg
magnet (J � B, |K|), |K| is the anisotropy strength, 〈i, j〉
stands for all nearest-neighbor pairs, and B = B ẑ, h = h x̂ are
the external fields (absorbing all constant factors). We will
restrict our discussion to the case B > |K|, so that quantum
spin fluctuations can be expanded around the z axis.

We will focus on the low-temperature limit, T � J , where
thermal magnons are dilute. It is convenient to switch from
the SU(2) spin algebra to the bosonic algebra: S+

i = ai, Sz
i =

1/2 − a†
i ai, where a†

i , ai are the magnon creation and annihi-
lation operators in real space that obey bosonic commutation
relations. This transformation is exact, when complemented
with the hard-core repulsion for magnons [40]. In the dilute
limit, where the average magnon density is small 〈a†

i ai〉 � 1,
as in our case of J � B > |K|, we can relax the hard-core
repulsion constraint, and as a result, the Hamiltonian H can
be linearized and rewritten as

H =
∑

k

(2Jk2 + B)a†
kak + K

2

∑
k

(a†
−ka†

k + aka−k )

− h
√

N0

2
(a† + a) + · · · . (6)

Here, a ≡ aq=0, the ellipsis represents nonlinear terms, and
N0 is the total number of sites in the system. Note we have set
the lattice constant to be 1, which means all quantities with
a length dimension will be measured in units of the lattice
constant. The above Hamiltonian can be diagonalized by
applying Bogoliubov transformations [41,42] and rewritten as

H =
∑
k �=0

ω(k)b†
kbk + ωb†b, (7)

where b†, b and b†
k, bk are bosonic operators, ω(k) =√

(2Jk2 + B)2 − K2, and ω ≡ ω(k = 0). The operators b and
bk are related to a and ak via

b = D(α)S(r)aS†(r)D†(α), (8)

bk = S(φk/2)akS†(φk/2), k �= 0. (9)

S(φk/2) = e(aka−k−a†
ka†

−k )φk/2 is a two-mode squeezing operator
[43,44], and φk is determined by tanh φk = K/(2Jk2 + B).
S(r) = e[a2−(a† )2]r/2 is a squeezing operator [26] with r =
φk=0/2. D(α) = eαa†−α∗a is a displacement operator with α =
h
√

N0e−2r/2ω.
The ground state |ψ〉 is given by b|ψ〉 = 0, bk|ψ〉 = 0 for

all k, and thus,

|ψ〉 = [D(α)S(r)|0〉] ⊗
⎛
⎝∏

k �=0

S(φk/2)|0〉
⎞
⎠, (10)

where |0〉 is the Fock vacuum defined by ak|0〉 = 0 for any
wave number k. The average number of magnons in the
ground state is

〈a†
kak〉 = δk,0|α|2 + sinh2 φk

2
. (11)

In the large-exchange-coupling limit with the size of the
system being finite, the effect of nonzero-wave-number modes
is negligible, and the ground state reduces to the so-called
squeezed coherent state |ψ〉 = D(α)S(r)|0〉. Under the cir-
cumstances, 〈a†

kak〉 = δk,0(|α|2 + sinh2 r). We refer to the
part related to the coherent parameter α as coherent magnons
and the part related to the squeezing parameter r as squeezed
magnons, denoted by

Nc ≡ |α|2, Ns ≡ sinh2 r, (12)

respectively.
Staying in the large-J limit, when we turn off both the

anisotropy K and the in-plane magnetic field h so that r =
α = 0, the ground state is the Fock vacuum of operators ak,
corresponding to all spins aligned along B. If we turn on the
in-plane magnetic field h and keep the anisotropy off, there
are a finite number of magnons in the q = 0 mode, forming a
coherent state |ψ〉 = D(α)|0〉, where all spins deviate from the
B direction uniformly [see Fig. 1(a)]. The number of magnons
(the degree of the deviation) is determined by the magnitude
of h via Nc = N0h2/4B2, which is much smaller than N0

in the dilute limit. We emphasize that this is a minimum
uncertainty state and equally balanced between Sx and Sy with
�Sx = �Sy = 1/2 [45]. If we turn on the anisotropy and keep
the in-plane magnetic field off, the ground state is a squeezed
vacuum state |ψ〉 = S(r)|0〉, where spins align along B on
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FIG. 1. (a) A general coherent state |α〉 = D(α)|0〉, where
D(α) ≡ exp αa† − α∗a is a displacement operator with α = |α|eiθ ,
is the minimum uncertainty state (�Sx = �Sy = 1/2). All spins de-
viate from the B ∝ ẑ direction coherently. (b) The general squeezed

vacuum state S(ζ )|0〉, where S(ζ ) ≡ e[ζ∗a2−ζ (a† )2]/2 is the squeezing
operator with a squeezing parameter ζ = reiφ , is also a minimum
uncertainty state with uncertainties being squeezed (blue ellipse)
compared with the vacuum uncertainties (green disk). The direction
of the squeezing (the orientation of the semiminor axis of the ellipse
with respect to the Sx axis) is φ/2. The length of the semiminor
axis is e−r/2, and the length of the semimajor axis is er/2. The
average direction of the spin in such that the state is along B.
(c) For the general squeezed coherent state D(α)S(ζ )|0〉, the degree
of the deviation from ẑ is determined by the parameter α, and the
degree of squeezing of the uncertainty is determined by the squeezing
parameter ζ .

average by noting that 〈Sx〉 = 〈Sy〉 = 0 but with a finite num-
ber of condensed magnons Ns = sinh2 r [see Fig. 1(b)]. The
uncertainty is also minimized in this state but is not equally
balanced between Sx and Sy. This is also implied by the
Hamiltonian H1 where the in-plane U(1) symmetry is broken
explicitly, which is the crucial ingredient for the presence of
entanglement. The degree of this squeezing is measured by the
squeezing factor r, more explicitly, �Sy/�Sx = e2r . When
both anisotropy and in-plane magnetic field are present, all
spins deviate from B on average, and the uncertainties in Sx

and Sy have the same behavior as the squeezed vacuum state.
The average number of condensed magnons is N = Ns + Nc,
consisting of coherent magnons and squeezed magnons [see
Eq. (11)]. The entanglement between two arbitrary spins is
determined by the interplay between those parts. In other
words, we can tune the entanglement by varying the param-
eters, such as the anisotropy and the in-plane magnetic field
which determine Nc and Ns. Note that we refer to this global
tilting state as a condensed state since the number of magnons
in the q = 0 mode remains finite under any spin rotation in the
spin space.

In the thermodynamic limit, the contribution to the en-
tanglement due to the q = 0 mode is negligible, and the
effective ground state is the squeezed vacuum state |ψ〉 =∏

k �=0 S(φk/2)|0〉. There are only squeezed magnons because
the uniform magnetic field couples with only the q = 0 mode.

The entanglement in this case is distance dependent since |ψ〉
involves finite-wave-number modes. This will be addressed in
Sec. IV E. Before delving into that, let us introduce the entan-
glement measure we employ in our analysis: the concurrence.

III. ENTANGLEMENT MEASURES

The problem of measuring entanglement is a vast field
of research on its own [1,2]. Numerous different meth-
ods have been proposed to that end. For a pure bipartite
state ρAB = |ψAB〉〈ψAB|, we usually adopt the von Neu-
mann entropy as the entanglement measure: S(|ψAB〉) ≡
−TrρA ln ρA = −TrρB ln ρB. For a general mixed state ρAB,
this von Neumann entropy is no longer a good measure since
the classical mixture in ρAB will also contribute to the von
Neumann entropy. Therefore, many new measures have been
introduced, such as entanglement of formation, distillable
entanglement, and entanglement cost, which all reduce to
the von Neumann entropy when evaluated on pure states. In
this paper, we will use the entanglement of formation as the
entanglement measure as we can accomplish some analytic
results for problems we are interested in.

The entanglement of formation is defined as

EF (ρAB) ≡ min
∑

i

pi S
(∣∣ψ i

AB

〉)
, (13)

where the minimum is taken over all possible decompositions
of ρAB = ∑

i pi|ψ i
AB〉〈ψ i

AB| and S(|ψ i
AB〉) is the von Neumann

entropy of the pure state |ψ i
AB〉. Physically, EF (ρAB) is the

minimum amount of pure state entanglement needed to create
the mixed state. This is extremely difficult to evaluate in
general since we need to try all the decompositions. Quite
remarkably, an explicit expression of EF (ρAB) is given when
both A and B are two-state systems (qubits). This exact
formula is based on the often used two-qubit concurrence,
which is defined as [30]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (14)

where λi’s are, in decreasing order, the square roots of the
eigenvalues of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), where ρ∗ is
the complex conjugate of ρ. The entanglement of formation is
then given by

EF (ρ) = h

(
1 + √

1 − C2

2

)
, (15)

h(x) = −x log2 x − (1 − x) log2(1 − x). (16)

EF (ρ) is monotonically increasing and ranges from 0 to 1 as
C(ρ) goes from 0 to 1, so that one can take the concurrence
as a measure of entanglement in its own right. We include two
examples in Appendix A, and we will use the result of the
second example in our following analysis. In the next section,
we explore the entanglement between two arbitrary spins for
various states we discussed in Sec. II.

IV. ENTANGLEMENT QUANTIFICATION

In Secs. IV A–IV D, we discuss the entanglement due to
the q = 0 mode in a finite-size sample with large exchange
coupling where this mode dominates the quantum fluctuation.
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In Sec. IV E, entanglement and its distance dependence are
examined in the thermodynamic limit, where finite-wave-
number modes must be taken into account.

A. Fock states

We start by investigating the concurrence between two
spins in Fock states |N〉, where N is the number of magnons
in the zero-momentum mode. For the Fock vacuum |0〉, the
concurrence is zero since this is a product state |↑ ↑ · · · ↑〉.
When there is a finite number of magnons, invoking the
reduced density matrix (A5), which is simplified for this
specific case, we show the concurrence [Eq. (14)] between
two arbitrary spins is given by

CFock = 2 max{0, |〈σ+
i σ−

j 〉| −
√

〈k+
i k+

j 〉〈k−
i k−

j 〉 }

≈ 2
N

N0
(1 −

√
1 − 1/N ). (17)

Note that the upper bound of the concurrence is 2/N0, which is
known as the tight bound for symmetric sharing of entangle-
ment [46]. The concurrence reaches its maximum value when
there is only one magnon, corresponding to the state | ↓↑
· · · ↑〉 + |↑ ↓ · · · ↑〉 + |↑ ↑ · · · ↓〉. This is a generalization
of the Bell state |
+〉 ∼ |↑ ↓〉 + | ↓↑〉 and thus maximally
entangled. Another feature we should pay attention to is that
the concurrence is a decreasing function of N and approaches
1/N0 as N → ∞. This is consistent with the analysis of the
Dicke state [33] |N0/2, M〉 in quantum optics, which describes
a system consisting of N0 two-level systems (spin-1/2 parti-
cles) and is a pure symmetric (with respect to permutations)
state. N0/2 − M is the number of excited two-level systems
(i.e., the flipped spins). The concurrence of such a Dicke state
is given by [34–36]

CDicke =
N2

0 − 4M2 −
√(

N2
0 − 4M2

)
[(N0 − 2)2 − 4M2]

2N0(N0 − 1)

≈ CFock, (18)

where we have identified N = N0/2 − M and specialized to
the case N � N0 by noting that the number of excited two-
level systems is exactly the number of magnons in our context.
It should be clear from our discussion above that we must
invoke the one-magnon state |N = 1〉 to produce a maximally
entangled configuration.

In Ref. [47], it was found that the entanglement between
two spins increases with the number of condensed magnons
N , which is contrary to what we discussed above. This dis-
crepancy can be traced to the second term in Eq. (17), which,
despite being comparable to the first term, was omitted in
Ref. [47]. In particular, we see that the entanglement vanishes
in the thermodynamic limit, N0 → ∞, in the Fock state |N〉
with any N , in agreement with the tight bound for symmetric
sharing of entanglement. At a finite temperature T , when two
spins sit at a distance smaller than the thermal de Broglie
wavelength λT ∝ √

J/T , we expect the concurrence to be
inversely proportional to the total number of sites within the
corresponding volume: C ∝ 1/λ3

T (crossing over to C ∝ 1/N0

as T → 0 and λT exceeds the system size). Beyond the
thermal de Broglie wavelength λT , the entanglement should

decay exponentially, ∼e−R/λT , with the distance R between
two spins, which agrees qualitatively with the analysis of
Ref. [47].

B. Coherent states

Let us turn on the in-plane magnetic field, which will lead
to a coherent state |α〉 ≡ D(α)|0〉 as the ground state. We
evaluate the elements of density matrix (A5) in the coherent
state and obtain

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) ∝ 14×4. (19)

This implies the entanglement between any two spins is zero
and there is no quantum correlation stored in spins according
to the definition of the concurrence Eq. (14). Indeed, this is
not surprising, and it has been shown any bosonic coherent
state is unentangled [15]. It is true as well for spin coher-
ent states since |θ, φ〉 = ⊗Ns

l=1[ cos θ
2 | ↓〉l + eiφ sin θ

2 |↑〉l ] is a
product state, where θ and φ specify the direction of spins.
Coherent states have minimum uncertainty which is equally
balanced between Sx and Sy with �Sx = �Sy = 1/2. Further-
more, any classical mixture of coherent states, such as ρ̂ =∫

d2α Pα|α〉〈α|, with Pα > 0 being the probability density in
|α〉, can only increase the uncertainty and also has zero entan-
glement since classical correlations do not contribute to the
entanglement. Such states are known as classical light states
in the quantum optics [48]. One typical nonclassical light state
is squeezed states, and we will examine the entanglement of
those states below.

C. Squeezed vacuum magnetic states

By turning on the anisotropy in Hamiltonian H1 and
keeping the in-plane magnetic field off, we can generate the
squeezed vacuum state |ψ〉 = S(r)|0〉 as the ground state,
where the uncertainty in Sx is below the vacuum level. There
must be quantum correlations in such states since they can
never be achieved by mixing coherent states. We show that
the concurrence (14) between two spins is given by

C = 2

N0

√
Ns√

Ns + 1 + √
Ns

, (20)

where Ns = sinh2 r is the number of magnons in the squeezed
vacuum state. In contrast to the Fock state, the concur-
rence of the squeezed vacuum state increases as we increase
the number of magnons. This can be understood by not-
ing that increasing Ns corresponds to squeezing the vacuum
more. Namely, the degree of squeezing, �Sy/�Sx = e2r =
(
√

Ns + 1 + √
Ns)2, equals unity when Ns = 0, which corre-

sponds to zero entanglement. �Sy/�Sx approaches infinity
as Ns rises, where the vacuum is infinitely squeezed and has
maximum concurrence 1/N0, which is half of the tight bound
for symmetric sharing of entanglement [46]. We remark that
this reduction in the entanglement is due to the odd parity
missing in the wave function.

D. Squeezed coherent magnetic states

Now let us turn on both the anisotropy and the in-plane
magnetic field, resulting in the squeezed coherent state |ψ〉 =
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(a)

(b)

FIG. 2. (a) Concurrence C as a function of the number of
squeezed magnons Ns = sinh2 r for different numbers of coherent
magnons Nc = |α|2. |α| = 0 corresponds to the squeezed vacuum
state [see Eq. (20)], where the maximal concurrence is 1/N0. As we
increase the number of coherent magnons, the physics is dominated
by the coherent part when the number of squeezed magnons is
small. As a result, the concurrence is zero. However, the presence
of the coherent part can increase the upper bound of the concurrence
once the number of squeezed magnons is above some critical value
sinh2 rc, which depends on the amount of coherent magnons we put
into the system. (b) Critical values (Ns)1/4 = √

sinh rc as a function
of |α|, which can be fitted using a linear relation. When the number
of coherent magnons is larger than

√
2N0Ns, the coherent part

dominates the physics, and the concurrence is zero. Otherwise, we
have a finite concurrence. In the numerical study, we set N0 = 108.

D(α)S(r)|0〉 as our ground state. We will see that in contrast
to the coherent states that retain their (trivial) entanglement
character under displacement, displacing a squeezed state
does have a nontrivial effect. Unlike the states we discussed
above, however, it is difficult to obtain an analytic expression
for the concurrence in this case. Therefore, we obtain the
concurrence C numerically by plotting it as a function of r for
different values of |α| [see Fig. 2(a)], where we assume the
anisotropy K > 0 without loss of generality. While increasing
the value of |α| from zero, we have zero concurrence under
a critical value of rc = rc(|α|) [see Fig. 2(b)] and nonzero
concurrence above rc. The maximal concurrence will increase
to 2/N0 from 1/N0 as we increase the number of coherent
magnons. Thus, we can see that the coherent magnons will
unlink the quantum correlations between spins established by
a small number of squeezed magnons. This is because the
coherent magnons dominate the physics when the number
of squeezed magnons is small. However, coherent magnons
will be beneficial for information storage when the number of

squeezed magnons is large. The upper bound of the concur-
rence rises since the coherent part involves states with both
parities, unlike squeezed vacuum states which only involve
even-parity states {|2k〉}, and thus increases the upper bound.
We remark that, in contrast to the discussion in Sec. IV B,
where the displacement operation does not yield entanglement
since it is acting on a trivial state (Fock vacuum state), the
displacement operator here results in nontrivial entanglement
behavior as it acts on a squeezed state which is entangled.

To determine this transition, we study the critical value
N1/4

s = √
sinh rc numerically and plot it as a function of |α|

which can be fitted well with a linear relation [see Fig. 2(b)].
We conclude that there is no entanglement when

Nc �
√

2N0Ns. (21)

Otherwise, we have nonzero entanglement. This transition is
discontinuous, as implied by Fig. 2(a). When |α| is large, N0C
is a step function of r, which can be potentially used as an
efficient switch in quantum-information processing tasks.

E. Thermodynamic limit

In the thermodynamic limit, one can see that the entan-
glement between two arbitrary spins due to the q = 0 mode
vanishes from our discussion above. Under the circumstances,
nonzero-wave-number modes should be taken into account,
and we can show that the concurrence between a spin at Ri

and a spin at R j in d dimension is given by

Ci j = max{0, T (γ , λ, η)}, (22)

where

T (γ , λ, η) ≈ 1

(2π )d

∣∣∣∣
∫

B.Z.
dd q

η cos(γ R̂ · q)√
(1 + 2λ2q2)2 − η2

∣∣∣∣
+ 1

(2π )d

∫
B.Z.

dd q

[
1 − 1 + 2λ2q2√

(1 + 2λ2q2)2 − η2

]
.

(23)

The derivation is given in Appendix B. Here, γ = |R| =
|Ri − R j | and λ = √

J/B are the distance between two spins
and the exchange length. η = |K|/B < 1 is a dimensionless
parameter, and R̂ = (Ri − R j )/|R|. B.Z. represents the Bril-
louin zone. Figure 3(a) visualizes the distance γ dependence
of concurrence Ci j in dimensions d = 1, d = 2, and d = 3.
It suggests that Ci j is smaller when the dimension is higher.
From Fig. 3(b), we can see that, keeping other parameters
fixed, Ci j will decrease to zero as we increase the distance
γ to a critical value γc, which is proportional to the exchange
length λ. In other words, spins within the exchange length can
communicate and entangle with each other. Note that, in the
limit of diverging exchange length λ → ∞, the overall value
of concurrence will vanish even though spins can entangle
with each other over a long distance.
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(a)

(b)

FIG. 3. (a) Concurrence as a function of the distance γ between
two spins in dimensions d = 1, d = 2, and d = 3. The overall value
of the concurrence will decrease as we increase the dimension of
our system. In a given dimension, the concurrence is finite but will
decrease as we increase the distance between these two spins within a
critical distance γc, beyond which the concurrence vanishes. We have
set λ = 10, η = 0.5, and R̂ = x̂ in higher dimension. (b) Critical
distance γc as a function of the correlation length λ, which can be
fitted well with a linear relation. We have set η = 0.5.

F. Remarks

Let us modify H1 and H2 to allow for more general
squeezed coherent states,

H1 = K

w

∑
〈i j〉

[
cos θ1

(
Sx

i Sx
j − Sy

i Sy
j

) + 2 sin θ1Sx
i Sy

j

]
, (24)

H2 = −h cos θ2

∑
i

Sx
i − h sin θ2

∑
i

Sy
i . (25)

Comparing (24) and (25) with the original Hamilto-
nian (3), we have rotated the in-plane magnetic field
and anisotropy by θ2 and θ1/2, respectively, H1 →
U (θ1/2)H1U (θ1/2)† and H2 → U (θ2)H2U (θ2)†, with U (θ ) =∏

i e−iθSz
i being the rotation operator. Therefore, the entan-

glement should depend on only the physical angle θ2 − θ1/2.
The ground state of this Hamiltonian, in the large-exchange-
coupling limit (so that we can neglect nonzero-wave-
number modes [49]), is given by |ψ〉 = D(α)S(ζ )|0〉, with
ζ = reiθ1 and α = √

N0h[eiθ2 cosh 2r − ei(θ1−θ2 ) sinh 2r]/2ω,
where ω = √

B2 − K2 and r is determined by tanh 2r = K/B.
We recover what we have obtained before [see Eq. (10)] when
θ1 = θ2 = 0, as expected. We point out that, by taking this an-
gle dependence into account, the behavior of the concurrence

FIG. 4. Concurrence as a function of one angle (setting the other
angle to zero). For the pink dashed curve, we plot the concurrence as
a function of the angle φ and set θ = 0. For the black solid curve, we
plot the concurrence as a function of the angle θ and set φ = 0. We
find that concurrence is periodic with period 2π in φ and π in θ . In
both cases, we set Ns = sinh2 4, Nc = 9 × 104, and N0 = 108.

does not get modified qualitatively since its angular variation
is much smaller than the absolute value (see Fig. 4).

The above Hamiltonian realizes the general squeezed co-
herent state D(α)S(ζ )|0〉, with α = |α|eiθ and ζ = reiφ being
complex valued, where D(α) = eαa†−α∗a is the displacement
operator and S(ζ ) = e[ζ ∗a2−ζ (a† )2]/2 is the squeezing operator.
The entanglement in such states depends on only |φ/2 − θ |
instead of depending on these two angles separately. This
is implied by Fig. 1(c), where the only physical angle is
|φ/2 − θ |. More explicitly, we have D(|α|eiθ )S(reiφ )|0〉 →
D(|α|ei(θ−φ/2))S(r)|0〉 under a gauge transformation a →
aeiφ/2, which will not alter any physics of the system.
We find numerically the concurrence is periodic with pe-
riod 2π in φ (the pink curve in Fig. 4) and π in θ (the
black curve in Fig. 4). This is consistent with what we dis-
cussed above where ζ = reiθ1 and α = √

N0h[eiθ2 cosh 2r −
ei(θ1−θ2 ) sinh 2r]/2ω. Under the gauge transformation, we
have the ground state D(αe−iθ1/2)S(r)|0〉, where αe−iθ1/2 =√

N0h[ei(θ2−θ1/2) cosh 2r − e−i(θ2−θ1/2) sinh 2r]/2ω, and thus,
the entanglement depends on only the physical angle θ2 −
θ1/2.

A few ways were recently proposed to store and control
quantum information in magnetic systems. For example, topo-
logical defects can be used as quantum information carriers
[50], and two spins can be coupled via the spin-superfluid
mode harbored by an antiferromagnetic domain wall [51].
Our discussion can also be applied to entangle two distant
spin qubits (see Fig. 5). Let us consider the situation where
two spin qubits are placed in the vicinity of a ferromagnetic
insulator. Then, we turn on the coupling J̃ between spin qubits
and the insulator strong enough so that the two spins are
entangled as if they are part of the magnetic insulator. Upon
the sufficiently rapid turnoff of the coupling, we can obtain the
isolated system of the two spin qubits that remain entangled.

V. SUMMARY AND OUTLOOK

The purpose of this paper was to investigate the entan-
glement generation and entanglement control in a magnetic
system. In the low-temperature regime T � J , magnons form
a general squeezed coherent state, which is a minimum
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FIG. 5. Spins A and B are placed above a ferromagnetic insulator
subjected to magnetic fields h, B and anisotropies, which realizes the
Hamiltonian that we discussed in Sec. II. We turn on the coupling
J̃ (t ) between spins and the insulator adiabatically so that these spins
behave like a part of the insulator, and thus, the concurrence CAB

grows correspondingly. This entanglement remains even after the
coupling J̃ is turned off as long as this turnoff process is rapid
enough.

uncertainty state with the quantum noise in one observable
reduced below its vacuum level with the sacrifice of en-
hanced uncertainties in the other observable. We showed these
squeezed states can be fully controlled by tuning applied
external fields and in-plane anisotropies. Utilizing the entan-
glement of formation, or, more specifically, the concurrence,
as a measure of entanglement, we illustrated that in the large
exchange-coupling limit, a general squeezed coherent state,
including its special case of a squeezed vacuum state, exhibits
a high degree of entanglement between two arbitrary spins, as
opposed to a coherent state which is not entangled. Therefore,
a magnetic system can serve as a resource for storing quan-
tum information and processing quantum information, such
as quantum teleportation, a quantum network, and quantum
logical encoding.

As temperature rises, we expect a thermal crossover from
the squeezing-dominated regime to simply the Fock-coherent
regime discussed in Sec. IV A. A more systematic study
of the temperature dependence of entanglement is left for
future work. In our analysis, we ignored the dipole-dipole
interaction. For the uniform mode, the dipolar interactions
would simply contribute a shape-dependent demagnetizing
field, which can be absorbed into our anisotropy constants
[52]. For the large-k modes, the effective anisotropies would
become k dependent, which would modify the quantitative
details of our analysis. At this point, for simplicity, we
are focusing on the materials where dominant anisotropies
are crystalline. Two-mode squeezing arises naturally also in
Heisenberg antiferromagnets [53], resulting in a large entan-
glement between two antiparallel magnetic sublattices even in
the absence of magnetic anisotropies. It may be interesting to
study the spatial distribution of this entanglement as well as
its possible tunability by external parameters.

In the thermodynamic limit, the entanglement attributable
to the zero-wave-number mode vanishes due to the existence
of the tight bound for symmetric sharing of entanglement

2/N0. Thus, nonzero-wave-number modes should be taken
into account, and we studied the distance dependence of the
concurrence. The tight bound exists because we are consid-
ering the entanglement between two spins. How will the en-
tanglement bound change if we consider the entanglement be-
tween two regions (which can contain many spins separately
in general) instead of just two spins? This scaling property of
the entanglement is well understood when the bipartite system
is a gapped ground state of a local Hamiltonian and is known
as the entanglement area law [54]. Its constant correction is
known as the topological entanglement entropy [55] charac-
terizing many-body states that possess topological order. For
a mixed state, however, as in our case, the scaling property
is far from being well understood. Nevertheless, we would
expect the upper bound of the entanglement to increase as
we consider the entanglement between two regions in general
since the Hilbert space is larger than in the two-spin case.
Therefore, it can potentially store more quantum information,
with the exact scaling behavior remaining to be explored.
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APPENDIX A: EXAMPLES OF CONCURRENCE

1. Two qubits

Before delving into many-body states, let us try out the
concurrence for a two-qubit system. Assume the density ma-
trix is given by

ρ = (1 − p)|↑ ↑〉〈↑↑ | + p|singlet〉〈singlet|, (A1)

with probability 1 − p in state |↑ ↑〉 and p in state |singlet〉 ≡
(|↑ ↓〉 − |↓ ↑〉)/

√
2. In the basis of |↑ ↑〉, |↑ ↓〉, |↓ ↑〉, |↓ ↓〉,

ρ =

⎡
⎢⎣

1 − p 0 0 0
0 p/2 −p/2 0
0 −p/2 p/2 0
0 0 0 0

⎤
⎥⎦. (A2)

We would expect the concurrence to increase as we in-
crease p since |↑ ↑〉 is not entangled but |singlet〉 is entan-
gled. We can compute the square roots of the eigenvalues
of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) exactly, and we have
λ1 = p, λ2 = 0, λ3 = 0, λ4 = 0; thus,

C(ρ) = max{0, p} = p, (A3)

which is exactly what one might expect.

2. N qubits

For an N-qubit system whose dynamics is governed by a
Hamiltonian H , assuming the system is in thermal equilib-
rium, we can calculate the entanglement between two arbi-
trary qubits i and j. The reduced density matrix of those two
qubits is obtained by tracing out other degrees of freedom and
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is given by

ρi j = 1

4

∑
α,β

pαβσ α
i ⊗ σ

β
j , (A4)

where σα = {I, σ x, σ y, σ z} and pαβ = 〈σα
i ⊗ σ

β
j 〉 =

Tr(e−βHσα
i ⊗ σ

β
j )/Z is real. Z is the partition function

and β = 1/kBT . In the same basis as Eq. (A2), the explicit

form of ρi j is given by [47,56]

ρi j =

⎡
⎢⎢⎣

〈k+
i k+

j 〉 〈σ−
i k+

j 〉 〈k+
i σ−

j 〉 〈σ−
i σ−

j 〉
〈σ+

i k+
j 〉 〈k−

i k+
j 〉 〈σ+

i σ−
j 〉 〈k−

i σ−
j 〉

〈k+
i σ+

j 〉 〈σ−
i σ+

j 〉 〈k+
i k−

j 〉 〈σ−
i k−

j 〉
〈σ+

i σ+
j 〉 〈k−

i σ+
j 〉 〈σ+

i k−
j 〉 〈k−

i k−
j 〉

⎤
⎥⎥⎦, (A5)

where k± = (1 ± σz )/2, σ± = (σ x ± iσ y)/2 and we have
dropped the tensor product symbol. We are now ready to
evaluate the concurrence once the Hamiltonian is specified.

APPENDIX B: CONCURRENCE IN THE THERMODYNAMIC LIMIT

Here, we sketch the derivation of Eq. (22) [Eqs. (17) and (20) are similar]. In state |ψ〉 = ∏
k �=0 S(φk/2)|0〉, where S(φk/2) =

e(aka−k−a†
ka†

−k )φk/2 is the two-mode squeezing operator and φk is determined by tanh φk = K/(2Jk2 + B), we evaluate the reduced
density matrix Eq. (A5) for a spin at Ri and a spin at R j in d dimension and obtain

ρi j =

⎡
⎢⎢⎢⎣

1 − 2〈a†
i ai〉 + 〈a†

i aia
†
j a j〉 0 0 〈a†

i a†
j〉

0 〈a†
i ai〉 − 〈a†

i aia
†
j a j〉 〈a†

j ai〉 0
0 〈a†

i a j〉 〈a†
j a j〉 − 〈a†

i aia
†
j a j〉 0

〈aia j〉 0 0 〈a†
i aia

†
j a j〉

⎤
⎥⎥⎥⎦. (B1)

Here, we have used the fact that the expectation value of any product of an odd number of magnon creation or annihilation
operators vanishes (this is true for any squeezed vacuum state), for example, 〈ψ |a†

i aia j |ψ〉 = 0. Then one can determine the
explicit form of ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) and show that the concurrence Eq. (14) is given by

C(ρi j ) = 2 max{0, |〈a†
i a†

j〉| − 〈a†
i ai〉 + 〈a†

i aia
†
j a j〉}. (B2)

Invoking identities

〈ψ |a†
qa†

k|ψ〉 = −δq,−k sinh
φk

2
cosh

φk

2
, (B3)

〈ψ |a†
qak|ψ〉 = δq,k sinh2 φk

2
, (B4)

we obtain the explicit expression of the concurrence

C(ρi j ) = max{0, T }, (B5)

where

T = 1

(2π )d

∣∣∣∣
∫

B.Z.
sinh

φq

2
cosh

φq

2
eiq·(Rj−Ri ) dd q

∣∣∣∣ − 1

(2π )d

∫
B.Z.

sinh2 φq

2
dd q. (B6)

Here, B.Z. represents the Brillouin zone. Considering tanh φk = K/(2Jk2 + B) and introducing parameters γ = |R| = |Ri −
R j |, λ = √

J/B, η = |K|/B, and R̂ = (Ri − R j )/|R|, we can rewrite Eq. (B6) and obtain Eq. (22):

T (γ , λ, η) ≈ 1

(2π )d

∣∣∣∣
∫

B.Z.
dd q

η cos(γ R̂ · q)√
(1 + 2λ2q2)2 − η2

∣∣∣∣ + 1

(2π )d

∫
B.Z.

dd q
[

1 − 1 + 2λ2q2√
(1 + 2λ2q2)2 − η2

]
. (B7)

Applying Wick’s theorem to 〈a†
i aia

†
j a j〉 and using |〈a†

i a†
j〉| ∼ O(η/λ2), |〈a†

i a j〉| < 〈a†
i ai〉 ∼ O(η2+d/2/λd ), which are all small,

we see that the quartic correlator can be neglected.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[2] M. B. Plbnio and S. Virmani, Quantum Inf. Comput. 7, 1
(2007).

[3] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[4] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.
Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).

[5] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J.
Briegel, and J.-W. Pan, Nature (London) 430, 54
(2004).

[6] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao,
C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, Nat. Photonics
6, 225 (2012).

[7] J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss,
Phys. Rev. Lett. 117, 050402 (2016).

014416-8

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://dl.acm.org/doi/10.5555/2011706.2011707
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nature02643
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1038/nphoton.2011.354
https://doi.org/10.1103/PhysRevLett.117.050402
https://doi.org/10.1103/PhysRevLett.117.050402
https://doi.org/10.1103/PhysRevLett.117.050402
https://doi.org/10.1103/PhysRevLett.117.050402


TUNING ENTANGLEMENT BY SQUEEZING MAGNONS IN … PHYSICAL REVIEW B 101, 014416 (2020)

[8] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S.
Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C.
Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham,
D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R.
Hanson, Nature (London) 526, 682 (2015).

[9] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw,
and A. Zeilinger, Nature (London) 401, 680 (1999).

[10] K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K.
Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim,
D. England, D. Jaksch, and I. A. Walmsley, Science 334, 1253
(2011).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th ed. (Cambridge University Press,
Cambridge, 2011).

[12] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[13] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and

W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[14] Y. M. Bunkov and V. L. Safonov, J. Magn. Magn. Mater. 452,

30 (2018).
[15] C. Simon, Phys. Rev. A 66, 052323 (2002).
[16] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov,

A. A. Serga, B. Hillebrands, and A. N. Slavin, Nature (London)
443, 430 (2006).

[17] V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov,
and A. N. Slavin, Phys. Rev. Lett. 99, 037205 (2007).

[18] V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov,
and A. N. Slavin, Phys. Rev. Lett. 100, 047205 (2008).

[19] V. E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G.
Schmitz, G. A. Melkov, and S. O. Demokritov, Phys. Rev. Lett.
101, 257201 (2008).

[20] O. Dzyapko, V. E. Demidov, M. Buchmeier, T. Stockhoff, G.
Schmitz, G. A. Melkov, and S. O. Demokritov, Phys. Rev. B
80, 060401(R) (2009).

[21] S. M. Rezende, Phys. Rev. B 79, 174411 (2009).
[22] S. M. Rezende, Phys. Rev. B 81, 020414(R) (2010).
[23] S. A. Bender, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. Lett.

108, 246601 (2012).
[24] S. A. Bender, R. A. Duine, A. Brataas, and Y. Tserkovnyak,

Phys. Rev. B 90, 094409 (2014).
[25] B. Flebus, S. A. Bender, Y. Tserkovnyak, and R. A. Duine,

Phys. Rev. Lett. 116, 117201 (2016).
[26] R. Loudon, The Quantum Theory of Light (Oxford University

Press, Oxford, 2000).
[27] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev.
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|1〉i i〈1|. The appropriate spin operators, S+

i = ai and Sz
i =

1/2 − a†
i ai, are then, in fact, expressed in terms of these pro-

jected operators. Upon substituting these into the Hamiltonian,
however, we can drop the projection operators at the expense of
introducing the hard-core repulsion. In the dilute-magnon limit,
furthermore, the latter can simply be disregarded.

[41] N. N. Bogoljubov, Nuovo Cimento 7, 794 (1958).
[42] A. Kamra and W. Belzig, Phys. Rev. Lett. 116, 146601 (2016).
[43] Y.-X. Ping, Z. Cheng, B. Zhang, and Z.-Z. Cheng, Commun.

Theor. Phys. 49, 1013 (2008).
[44] T. Hiroshima, Phys. Rev. A 63, 022305 (2001).
[45] We use the standard notation �Sx =

√
〈(Sx − 〈Sx〉)2〉, and

the minimum uncertainty relation is given by �Sx�Sy =
|〈[Sx, Sy]〉|/2 = Sz/2 ≈ 1/4 when the average magnon density
is small.

[46] M. Koashi, V. Bužek, and N. Imoto, Phys. Rev. A 62, 050302(R)
(2000).

[47] H. Y. Yuan and M.-H. Yung, Phys. Rev. B 97, 060405(R)
(2018).

[48] B. C. Sanders, J. Phys. A 45, 244002 (2012).
[49] A similar argument can be made for nonzero-wave-number

modes. The parameter in the two-mode squeezing operator will
become complex valued.

[50] S. Takei and M. Mohseni, Phys. Rev. B 97, 064401 (2018).
[51] B. Flebus and Y. Tserkovnyak, Phys. Rev. B 99, 140403(R)

(2019).
[52] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,

Hoboken, NJ, 2004).
[53] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas,

W. Belzig, and A. Sudbø, Phys. Rev. B 100, 174407 (2019).
[54] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277

(2010).
[55] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[56] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110

(2002).

014416-9

https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1038/44348
https://doi.org/10.1126/science.1211914
https://doi.org/10.1126/science.1211914
https://doi.org/10.1126/science.1211914
https://doi.org/10.1126/science.1211914
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1016/j.jmmm.2017.12.029
https://doi.org/10.1016/j.jmmm.2017.12.029
https://doi.org/10.1016/j.jmmm.2017.12.029
https://doi.org/10.1016/j.jmmm.2017.12.029
https://doi.org/10.1103/PhysRevA.66.052323
https://doi.org/10.1103/PhysRevA.66.052323
https://doi.org/10.1103/PhysRevA.66.052323
https://doi.org/10.1103/PhysRevA.66.052323
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1103/PhysRevLett.99.037205
https://doi.org/10.1103/PhysRevLett.99.037205
https://doi.org/10.1103/PhysRevLett.99.037205
https://doi.org/10.1103/PhysRevLett.99.037205
https://doi.org/10.1103/PhysRevLett.100.047205
https://doi.org/10.1103/PhysRevLett.100.047205
https://doi.org/10.1103/PhysRevLett.100.047205
https://doi.org/10.1103/PhysRevLett.100.047205
https://doi.org/10.1103/PhysRevLett.101.257201
https://doi.org/10.1103/PhysRevLett.101.257201
https://doi.org/10.1103/PhysRevLett.101.257201
https://doi.org/10.1103/PhysRevLett.101.257201
https://doi.org/10.1103/PhysRevB.80.060401
https://doi.org/10.1103/PhysRevB.80.060401
https://doi.org/10.1103/PhysRevB.80.060401
https://doi.org/10.1103/PhysRevB.80.060401
https://doi.org/10.1103/PhysRevB.79.174411
https://doi.org/10.1103/PhysRevB.79.174411
https://doi.org/10.1103/PhysRevB.79.174411
https://doi.org/10.1103/PhysRevB.79.174411
https://doi.org/10.1103/PhysRevB.81.020414
https://doi.org/10.1103/PhysRevB.81.020414
https://doi.org/10.1103/PhysRevB.81.020414
https://doi.org/10.1103/PhysRevB.81.020414
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevLett.108.246601
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevLett.116.117201
https://doi.org/10.1103/PhysRevLett.116.117201
https://doi.org/10.1103/PhysRevLett.116.117201
https://doi.org/10.1103/PhysRevLett.116.117201
https://doi.org/10.1103/PhysRevLett.104.250801
https://doi.org/10.1103/PhysRevLett.104.250801
https://doi.org/10.1103/PhysRevLett.104.250801
https://doi.org/10.1103/PhysRevLett.104.250801
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1088/1367-2630/12/6/065032
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1126/science.282.5389.706
https://doi.org/10.1126/science.282.5389.706
https://doi.org/10.1126/science.282.5389.706
https://doi.org/10.1126/science.282.5389.706
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1002/lapl.200710073
https://doi.org/10.1002/lapl.200710073
https://doi.org/10.1002/lapl.200710073
https://doi.org/10.1002/lapl.200710073
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1103/PhysRevA.68.033821
https://doi.org/10.1103/PhysRevA.68.033821
https://doi.org/10.1103/PhysRevA.68.033821
https://doi.org/10.1103/PhysRevA.68.033821
https://doi.org/10.1140/epjd/e20020045
https://doi.org/10.1140/epjd/e20020045
https://doi.org/10.1140/epjd/e20020045
https://doi.org/10.1140/epjd/e20020045
https://doi.org/10.1088/1367-2630/ab3508
https://doi.org/10.1088/1367-2630/ab3508
https://doi.org/10.1088/1367-2630/ab3508
https://doi.org/10.1088/1367-2630/ab3508
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745585
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1088/0253-6102/49/4/42
https://doi.org/10.1088/0253-6102/49/4/42
https://doi.org/10.1088/0253-6102/49/4/42
https://doi.org/10.1088/0253-6102/49/4/42
https://doi.org/10.1103/PhysRevA.63.022305
https://doi.org/10.1103/PhysRevA.63.022305
https://doi.org/10.1103/PhysRevA.63.022305
https://doi.org/10.1103/PhysRevA.63.022305
https://doi.org/10.1103/PhysRevA.62.050302
https://doi.org/10.1103/PhysRevA.62.050302
https://doi.org/10.1103/PhysRevA.62.050302
https://doi.org/10.1103/PhysRevA.62.050302
https://doi.org/10.1103/PhysRevB.97.060405
https://doi.org/10.1103/PhysRevB.97.060405
https://doi.org/10.1103/PhysRevB.97.060405
https://doi.org/10.1103/PhysRevB.97.060405
https://doi.org/10.1088/1751-8113/45/24/244002
https://doi.org/10.1088/1751-8113/45/24/244002
https://doi.org/10.1088/1751-8113/45/24/244002
https://doi.org/10.1088/1751-8113/45/24/244002
https://doi.org/10.1103/PhysRevB.97.064401
https://doi.org/10.1103/PhysRevB.97.064401
https://doi.org/10.1103/PhysRevB.97.064401
https://doi.org/10.1103/PhysRevB.97.064401
https://doi.org/10.1103/PhysRevB.99.140403
https://doi.org/10.1103/PhysRevB.99.140403
https://doi.org/10.1103/PhysRevB.99.140403
https://doi.org/10.1103/PhysRevB.99.140403
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevA.66.032110

