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A low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet
Cu(en)(H2O)2SO4 (en = C2H8N2) was performed down to 0.45 K. This compound orders antiferromagnetically
at 0.9 K. The analysis of the resonance data within the hydrodynamic approach allowed us to identify anisotropy
axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns
out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance
modes and its nonmonotonous dependence on the applied frequency were observed below 0.6 K in all three
field orientations. Several models are discussed to explain the origin of the nontrivial splitting, and the existence
of inequivalent magnetic subsystems in Cu(en)(H2O)2SO4 is chosen as the most probable source.
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I. INTRODUCTION

Low-dimensional antiferromagnets are one of the focus
topics of modern magnetism. Low dimensionality of the spin
system enhances the role of thermal and quantum fluctuations,
retarding magnetic ordering in these systems to the lower tem-
peratures TN � � (here � is a Curie-Weiss temperature) or
even fully suppressing it. This yields the extended temperature
range of the spin-liquid behavior where short-range spin-spin
correlations determine the dynamics of the disordered spin
system. “Freezing” of this spin liquid under the effect of weak
coupling between the low-dimensional subsystems, additional
further-neighbor or anisotropic interactions, external field, or
applied pressure is of interest since the competing weaker
interactions sometimes give rise to complex magnetic phase
diagrams or to the appearance of the unusual (e.g., spin-
nematic) phases [1–5].

Two-dimensional (2D) antiferromagnets are also of interest
due to the occurrence of topological excitations induced by
the magnetic field and/or the easy-plane spin anisotropy
[6,7]. A crossover between the low- and high-temperature
regimes of the spin dynamics appears in the vicinity of the
topological Berezinskii-Kosterlitz-Thouless (BKT) transition
accompanied by the formation of the bound pairs of vortex-
antivortex excitations [8].

The recently studied antiferromagnet Cu(en)(H2O)2SO4

[here (en) = C2H8N2] is an example quasi-2D system. The
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combination of the thermodynamic measurements [9,10] and
first-principles calculations [11] proved that its spin subsys-
tem can be envisioned as a three-dimensional (3D) array of
coupled zigzag square lattices with the strongest in-plane
exchange coupling constant J/kB � 3.5 K and the interplane
coupling J ′ < 0.03J [9]. Cu(en)(H2O)2SO4 orders antiferro-
magnetically at TN = (0.91 ± 0.02) K; the ordering is accom-
panied by a sharp λ-like anomaly in the specific heat and
by the appearance of the strong anisotropy in the magnetic
susceptibility. The (H − T ) phase diagram was discussed in
the context of a field-induced BKT transition [9,12]. Ob-
served enhancement of the field-induced transition temper-
atures qualitatively follows predictions for the field-induced
BKT transition [6]; this feature is characteristic of quasi-2D
antiferromagnets [13].

In this paper we report the results of the low-temperature
electron spin resonance study of the magnetic ordering in
Cu(en)(H2O)2SO4 down to 0.45 K. Magnetic resonance spec-
troscopy of the ordered phase probes the q = 0 magnon
spectrum with high energy resolution (a routine resolution of
1 GHz corresponds to 0.005 meV), thus giving insight into the
structure of the magnetic phase, type of magnetic ordering,
magnetic phase transitions, etc. Our observations confirmed
collinear ordering in Cu(en)(H2O)2SO4 and allowed us to
unambiguously identify the anisotropy axes and to determine
the anisotropy parameters of the ordered phase. Observed
anisotropy can be successfully described by dipole-dipole
interaction. We also observed splitting of the resonance lines
in the ordered phase, indicating the presence of inequivalent
antiferromagnetic subsystems below the Néel temperature.
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II. EXPERIMENTAL DETAILS, SAMPLES,
AND CRYSTAL STRUCTURE

Electron spin resonance (ESR) experiments were per-
formed using a set of homemade transmission-type spectrom-
eters covering a frequency range from 4 to 120 GHz; some
of the spectrometers were equipped with 3He-vapor pumping
cryostats, allowing us to reach a temperature as low as 0.45 K.
Magnetic fields up to 12 T were created by compact supercon-
ducting cryomagnets. Resonance absorption was recorded as
dependence of the transmitted microwave power on the slowly
swept magnetic field.

For most of our experiments samples were mounted on
the bottom of the cylindrical (above 20 GHz) or rectangular
(9–20 GHz) multimode microwave cavity. A small sapphire
block was used as a heat link for the sample orientations,
preventing plane-on-plane sample mounting. Low-frequency
ESR experiments at frequencies of 4–8 GHz were performed
in H||b orientation only with the help of a quasitoroidal
resonator.

Cu(en)(H2O)2SO4 (CUEN) crystals were grown by
the same technique as the samples used in Ref. [9].
Cu(en)(H2O)2SO4 crystallizes in the base-centered mono-
clinic space group C6

2h. The (bc) planes are stacked in the
(1/2, 1/2, 0) direction. The primitive unit cell contains two
copper ions; positions of these ions are linked by inversion.
The second-order rotational axis is parallel to the b axis and
passes through the copper ions. A fragment of the crystal
structure of CUEN is shown in Fig. 1. As-grown crystals
of Cu(en)(H2O)2SO4 are blue-colored elongated thin plates
with the long edge parallel to the a direction and the sample
plane normal to the b direction. Sample shape allowed easy
positioning of the sample at H||a, b, c∗.

The formation of 2D planes of exchange-coupled spins
was confirmed by the characteristic behavior of the specific
heat and magnetization and by first-principles calculations
[9–11]. Relevant exchange bonds are shown in Fig. 1. The
in-plane coupling values are (in the notations of Fig. 1 and
Ref. [11]) J4 = 3.4–3.7 K and J6 = 0.35J4 [9]. Inversion cen-
ters in the middle of in-plane copper-copper bonds forbid the
in-plane Dzyaloshinskii-Moriya (DM) interaction. However,
the interplane DM coupling is possible along the J1 and J2

bonds [9,14]. The same inversion symmetry ensures the same
orientation of g-tensor axes for two copper ions within the
primitive unit cell.

III. EXPERIMENTAL RESULTS

Above the Néel point we observed a single-component
paramagnetic resonance line with the g factor values deter-
mined from 10–120-GHz measurements as ga = 2.28 ± 0.02,
gb = 2.06 ± 0.02, and gc∗ = 2.07 ± 0.02. The g factor values
found are in agreement with the earlier results [10,14]. No
splitting of the ESR line was observed at T > TN both in all
principal field orientations and in the control experiment with
rotation of the applied field in the (ac∗) plane performed at the
microwave frequency of 72.7 GHz (with the resonance fields
around 24 kOe).

The antiferromagnetic transition point is marked by the
shift of the resonance absorption from the paramagnetic
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FIG. 1. (a) Fragment of the Cu(en)(H2O)2SO4 crystal structure
projected on the (bc) plane. Only copper ions are shown; thicker
lines correspond to the strongest in-plane couplings. Layers shown
by different shades of color are formed by atoms with a fractional
x coordinate of 0, 0.5, and 1.0. Relevant in-plane and interplane
couplings are shown according to Ref. [11]. Ions within the adjacent
(ab) planes coupled by the DM interaction are marked as A, B1, and
B2 (α, β1, and β2). Schemes of (b) antiferromagnetic and (c) ferro-
magnetic stacking of the antiferromagnetically ordered (bc) planes;
blue and red arrows show ordered magnetic moment orientation, and
green arrows show elementary translation T = (a + b)/2 linking the
neighboring planes.

position (see Fig. 2). The direction of the shift depends on
the orientation of the applied field (Fig. 3), indicating the
presence of anisotropy in the ordered phase. For the simple
easy-axis antiferromagnet [15,16], the resonance frequency
is f =

√
(γ H )2 ± �2 (here γ is a gyromagnetic ratio, and

� is a gap in the magnon spectrum) for the field applied
perpendicular to the easy axis and along the easy axis above
the spin-flop field, respectively. Thus, the observed increase in
the resonance field for H||b confirms earlier identification of
this axis as the easy axis of anisotropy [9].

To compare resonance field shifts H (T ) for different field
orientations and different microwave frequencies we have
calculated the apparent gap:

�(T ) =
√

| f 2 − (γ H )2| = γ

√∣∣H2
pm − H2

∣∣, (1)

where Hpm = f /γ is the paramagnetic resonance field above
the Néel temperature. The shift of the resonance field below
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FIG. 2. Temperature evolution of the resonance absorption in
Cu(en)(H2O)2SO4 at low temperatures. f = 11.6 GHz, H||b.

the transition temperature is smooth (see Fig. 3), which in-
dicates continuous development of the order parameter and
confirms the second-order phase transition. The apparent gap
temperature dependence differs for H||a and H||c∗, which
indicates that anisotropy is biaxial. The transition temperature
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FIG. 3. Left: Temperature dependencies of the resonance field
for three principal field directions, f = 14.3 GHz. Horizontal dashed
lines mark the paramagnetic resonance field for the g factor values
for corresponding field directions. Right: Temperature dependencies
of the apparent gap for three principal field directions. Symbols show
the experimental data; solid lines show phenomenological fits of
the temperature behavior of the gap below the transition point as
described in the text. The vertical bar shows the error estimate.
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FIG. 4. Frequency-field diagrams of resonance absorption at the
base temperature T = 0.45 K. The top row shows low-frequency
and low-field parts of f (H ); the bottom row shows higher-frequency
or higher-field f (H ) for principal field directions. Symbols show
experimental data, solid lines show low-field theory as described in
the text, and the dashed line shows the high-field fit as described in
the text. Numbers at data points x1, x2, and x3 show the number of
split components observed below 0.6 K at a particular frequency.

determined from the ESR experiment is TN = (0.92 ± 0.02)
K; it is in agreement with the known results.

For H||a, c∗ (perpendicular to the easy axis) the apparent
gap is proportional to the order parameter [16]. To quantify the
determined order parameter temperature dependence we fitted
�(T ) data by the phenomenological law � ∝ (1 − T/TN )β in
the full temperature range from the base temperature of 0.45 K
to TN ; the phenomenological exponent values are 0.40 ± 0.02
and 0.31 ± 0.03 for H||a, c∗, respectively. The obtained ex-
ponent values are close to the critical exponent values for the
3D Ising model β

(3D)
Ising ≈ 0.327 [17], 3D XY-model β

(3D)
XY =

0.3485 [18], and 3D Heisenberg model β ≈ 0.36 [19]. All
three models could be relevant for CUEN at various fields and
temperatures: magnetization studies at 0.5 K [9] revealed the
effect of intrinsic spin anisotropies for all field orientations at
H < 2 kOe, which corresponds to the Ising model; at higher
fields the potential prevalence of the field-induced easy-plane
anisotropy can be expected, resulting in the preference of the
XY model at the lowest temperatures, while at some higher
temperatures, a crossover to isotropic Heisenberg behavior
occurs [12]. Similar interpretation of the �(T ) dependence at
H||b is not possible: within the mean-field model the position
of the resonance absorption for the field applied along the
easy axis depends not only on the magnon gap but also on the
temperature-dependent longitudinal susceptibility [15], which
has unusual temperature dependence in CUEN [9]. However,
our data can be reasonably fitted by the phenomenological law
with β = 0.50 ± 0.07.

We have collected the resonance absorption curves at the
base temperature of 0.45 K for different frequencies for
H||a, b, c∗. The final frequency-field diagrams are shown in
Fig. 4. The observed f (H ) dependencies are in qualitative
agreement with the known case of a two-sublattice antifer-
romagnet with two axes of anisotropy [15].
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Besides the monotonous shift of the resonance absorption
below TN , development of a certain “fine structure” of the
resonance line was observed on cooling below approximately
0.6 K (Fig. 2). This splitting of the resonance line was ob-
served in all three field orientations studied; its magnitude is
up to 100–150 Oe and is much smaller than the resonance field
value. The possible origin of this splitting will be discussed in
the following sections; note, however, that the standard model
of antiferromagnetic resonance in a collinear antiferromagnet
does not allow such a splitting.

IV. DISCUSSION

A. Frequency-field diagram analysis

Magnetic resonance spectroscopy is a sensitive and in-
formative method to study antiferromagnetic ordering. At
the transition point the single-mode paramagnetic resonance
absorption spectrum transforms into a multimode antiferro-
magnetic resonance (AFMR) absorption spectrum with non-
linear f (H ) dependence. For a collinear antiferromagnet there
are always only two low-energy modes [15,16,20], while for
a noncollinear antiferromagnet there should be three low-
energy modes [20] with completely different f (H ) diagrams
(see, e.g., [21–28]). We observe (save for the small splitting
of resonance lines which will be addressed later) only two
modes of antiferromagnetic resonance (Fig. 4) with f (H )
dependencies typical of a collinear antiferromagnet. Thus, we
can definitely conclude that the antiferromagnetic ordering in
Cu(en)(H2O)2SO4 is collinear.

Softening of one of the resonance modes in H||b at ap-
proximately 2 kOe marks a spin-flop transition observed pre-
viously in a low-temperature magnetization study [9]; this ob-
servation proves that the b axis is the easy axis of anisotropy.

Distinct f (H ) and �(T ) dependencies for H||a, c∗ (Figs. 3
and 4) indicate that the anisotropy is biaxial. The f (H ) de-
pendencies for the biaxial collinear antiferromagnet (see, e.g.,
Ref. [15]) are characterized by two zero-field gaps �1 > �2.
Identification of the anisotropy axes from the AFMR data
is model independent: For the field applied exactly along
the hard or second-easy axis one of the eigenmodes is field
independent. The field-dependent AFMR mode corresponds
to the oscillations of the order parameter from its equilibrium
position along the easy axis toward the field direction and back
[15,16]. Since the energy cost is smaller for the deviations
toward the second-easy axis, the field-dependent mode starts
from the lower gap �2 for the field applied along the second-
easy axis (close to H||a in our case). Consequently, the hard
axis of anisotropy (the less favorable orientation of the order
parameter) is close to the c∗ axis.

Quantitative analysis of the AFMR f (H ) curves was per-
formed within the hydrodynamic approach framework [20].
This approach is valid well below the saturation field; this
condition is fulfilled for most of our data (Hsat ≈ 70 kOe for
CUEN). Low-energy spin dynamics of the collinear antifer-
romagnet at T = 0 is described as the uniform oscillations of
the order parameter vector field with the Lagrangian density:

L = χ⊥
2γ 2

(l̇ + γ [l × H])2 − UA, (2)

where unit vector l is the collinear AFM order parameter
(which is the normed vector of the staggered magnetization
for the sublattices model), γ is the gyromagnetic ratio, χ⊥
is the transverse susceptibility, and UA(l) is the anisotropy
energy depending on the order parameter orientation:

UA = a1

2
l2
X + a2

2
l2
Y + ξχ⊥(lH)laHa, (3)

where the first two terms describe conventional biaxial
anisotropy, a1 > a2 > 0, with X and Y being the directions
of the hard (X ) and second easy (Y ) axes, and the last term
describes axial g factor anisotropy (within the mean-field
approach ξ = �g/g [29]) with the g-tensor principal axis
coinciding with the a axis [14]. Due to the low symmetry
of Cu(en)(H2O)2SO4 only one axis (easy axis Z) is pinned
to the only second-order crystallographic axis b, while the
orientation of the hard and second easy axes in the (ac)
plane is arbitrary. A detailed model description is given in the
Appendix.

This model was then used to fit the f (H ) data for all
orientations simultaneously using the least-squares method.
The GNU OCTAVE [30] software, with its standard minimiza-
tion routines, was used for the fitting procedure; the OCTAVE

script used for the AFMR frequencies calculations is available
in Ref. [31]. The resulting best fit is shown in Fig. 4 as a
solid line. It well describes our experimental data; the best fit
parameters are the gaps �1 = γ

√
a1/χ⊥ = (13.6 ± 0.1) GHz

and �2 = γ
√

a2/χ⊥ = (5.37 ± 0.05) GHz, the gyromagnetic
ratio γ = (2.88 ± 0.01) GHz/kOe (corresponding to g =
2.06), the g factor anisotropy parameter ξ = (0.10 ± 0.02),
and the angle between the hard axis and the c∗ axis |φ| =
(18 ± 2)◦. We cannot determine the direction of rotation from
the hard axis toward the c∗ axis (clockwise or counterclock-
wise) from our data. The value of �2 is close to the value of
0.3 K (6.3 GHz) predicted in Ref. [9] from the analysis of
low-temperature magnetization curves.

Besides the low-field resonance absorption, we observed
a high-field absorption signal at H||a (Fig. 4). Taking into
account that for H||a the field is applied at the angle φ from
the second easy axis, we fit the f (H ) dependence for the
softening mode as (see Appendix)

f = �eff

√
1 − (H/Hsat )2, (4)

where �eff (φ) =
√

�2
1 sin2 φ + �2

2 cos2 φ (�eff = 13.1 GHz
for the H||a experiment).

The best-fit value for the saturation field Hsat = (74 ± 1)
kOe is slightly larger than the value of 63 kOe determined
from the phase diagram of Refs. [9,12]. This overestimation
of the saturation field is quite natural for the quasi-low-
dimensional magnet. The mean-field sublattice model [16]
assumes a linear magnetization process up to the saturation
field with the maximal magnetization M0 = χ⊥Hsat. The mag-
netization process of low-dimensional magnets is nonlinear
with positive curvature at high fields [1], as observed for
CUEN as well [9]; hence, the real saturation field is less than
M0/χ⊥.
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B. Microscopic contributions to the anisotropy of the ordered
phase and interplane ordering pattern

Experimental identification of the anisotropy axes differs
from the predictions of Refs. [9,14]. We will discuss below
possible microscopic contributions to the anisotropy of the
antiferromagnetically ordered state of Cu(en)(H2O)2SO4 and
will demonstrate that accurate accounting for dipolar coupling
explains this controversy and allows us to determine the
interplane ordering pattern.

Within the mean-field approach the AFMR gaps are �1,2 =
γ
√

2HA1,A2HE , where HE = Hsat/2 and HA1,A2 represent ex-
change and anisotropy fields [16,32]. The effective fields for
CUEN are HE = 32 kOe, HA1 = 0.35 kOe, and HA2 = 0.054
kOe. While the effective fields are determined with approxi-
mately 20% uncertainty, keeping in mind the aforementioned
nonlinearity of the magnetization process of two-dimensional
CUEN [9], the ratio HA1/HA2 = (�1/�2)2 = 6.41 ± 0.07 is
determined much more reliably since it does not depend on
the exact exchange field value.

Three possible contributions to the anisotropy of the
ordered phase can be considered: dipole-dipole interac-
tion, symmetric anisotropic spin-spin coupling (anisotropic
exchange interaction), and Dzyaloshinskii-Moria coupling.
The symmetric anisotropic interaction was analyzed in
Refs. [9,14] as the possible source of the anisotropy of
static magnetization and of the anisotropic ESR resonance
field shift. Since both g-tensor anisotropy and the sym-
metric anisotropic coupling originate from the same spin-
orbit coupling, one can conclude [9,15] that the symmetric
anisotropic coupling favors easy-plane anisotropy with the
main axis of the g tensor (a axis) being the hard axis.
The estimate of the anisotropic symmetric coupling constant
〈G〉 � 0.02 K [14] corresponds to the effective anisotropy
field HA � 〈G〉/(2μB) � 0.15 kOe (taking into account only
four in-plane neighbors).

Estimates in Ref. [14] indicated that nearest-neighbor dipo-
lar coupling could provide a remarkable contribution to this
total anisotropy. To verify this conjecture, first, we calcu-
lated the dipolar contribution to the anisotropy energy of
the coupled magnetic layers with intraplane collinear anti-
ferromagnetic order. The strength of the dipolar coupling for
nearest neighbors can be estimated as μ2

B/(kBd3
min ) � 4.3 mK

(0.063 kOe in terms of effective field); here dmin = 5.27Å
is the shortest Cu-Cu distance for CUEN. We consider two
possible patterns of magnetic (bc) layer stacking: antiferro-
magnetic and ferromagnetic stacking of adjacent magnetic
planes (Fig. 1). Here the terms ferro- and antiferromagnetic
describe the change in the ion magnetization on the elemen-
tary translation T = (a + b)/2. Dipolar energy was calculated
as a function of the order parameter orientation assuming
fully saturated magnetization per ion and taking into account
known uniaxial g factor anisotropy [14]. Neighbors at a dis-
tance up to 100 Å from the given ion were included in the
dipolar sum. A further increase in the cutoff distance to 150 Å
did not change the result. Results are shown in Fig. 5.

Clearly, the ferromagnetic ordering pattern reproduces well
the observed anisotropy: The b axis with the minimum dipolar
energy is the easy axis, the second-easy axis is within 10◦ of
the a axis, and the hard axis is close to the c and c∗ axes.
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FIG. 5. Dependence of the dipolar coupling energy per spin (in
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magnetic (blue circles) and antiferromagnetic (red squares) stacking
of adjacent (bc) planes. Symbols show computed values, and curves
show the fit of the computed values by A + B cos[2(ϕ + δ)]; the
shift δ is set to zero for the (ba)-plane rotation and is used as a fit
parameter for the (ac)-plane rotation.

The anisotropy energy per spin is U (dip) = U0 + μH (dip)
A1 l2

X +
μH (dip)

A2 l2
Y (here μ is the magnetization per ion, X and Y

are the hard and second easy axes, and H (dip)
A1 > H (dip)

A2 > 0),
with H (dip)

A1 = 0.51 kOe, H (dip)
A2 = 0.027 kOe. The obtained

ratio H (dip)
A1 /H (dip)

A2 ≈ 19 is almost threefold higher than the ex-
perimentally measured value; therefore, the dipolar coupling
alone cannot fully describe the observed anisotropy.

Interplane exchange couplings calculated from first princi-
ples [11] prefer the antiferromagnetic interplane stacking: the
mean-field energy of the antiferromagnetic stacking pattern is
5.6 μeV per spin less (0.96 kOe in terms of the effective field).
However, the dipolar contribution to the anisotropy for the
antiferromagnetic stacking pattern completely disagrees with
the experiment: The b axis would be the hard axis (Fig. 5).

From the above estimates one can see that the dipolar cou-
pling and interplane exchange couplings could be competing
in CUEN. In particular, above the spin-flop transition the order
parameter is confined to the (ac) plane, and the dipolar energy
is minimized for the antiferromagnetic interplane stacking
(Fig. 5). This could result in the rearrangement of the inter-
plane stacking pattern above the spin-flop transition

Next, we consider interplane Dzyaloshinskii-Moriya cou-
plings. ESR linewidth analysis at high temperatures [14,33]
demonstrated that only about a quarter of the total high-
temperature linewidth is due to dipole-dipole couplings (cal-
culated explicitly for CUEN [33]), while the remaining 75%
of the linewidth is more likely due to interplane DM coupling.
The combination of inversion centers and rotational axes
creates a particular pattern of DM vectors which cancels
out effects of DM interaction within the mean-field model.
Inversion symmetry forbids DM coupling on all bonds except
for the J1 and J2 bonds (Fig. 1). The J1 bond couples ions
within the (ab) plane. Two neighboring (ab) planes (these
planes contain the ions marked as A, B1, and B2 and α, β1,
and β2, respectively, in Fig. 1) are linked by the inversion,
which makes DM vector patterns within these planes exactly
opposite: DAB1 = −Dαβ1, DAB2 = −Dαβ2. Within the same
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(ab)-plane projection of the DM vector on the second-
order axis b alternates: DAB1 = (DX , DY , DZ ), DAB2 =
(DX , DY ,−DZ ), where we use the same XYZ basis, with the Z
axis along the b axis and X and Y axes within the (ac) plane.
When summed over all bonds within the mean-field model,
this pattern of DM vectors cancels out exactly and yields no
additional anisotropy. The J2 bond couples next-nearest layers
(x = 0 and x = 1 layers in Fig. 1); due to inversion symmetry
the DM vectors on bonds originating from the B1 and β1 ions
are opposite, which, again, yields no additional anisotropy.

Now we can sum up the dipolar contribution and the
contribution of the symmetric anisotropic coupling:

U = U0 + μH (sym)
A l2

a + μH (dip)
A1 l2

X + μH (dip)
A2 l2

Y , (5)

where la is the projection of the order parameter on the a
axis and H (sym)

A > 0. Neglecting the deviation of the second
easy axis Y from the a axis, we found that H (sym)

A ≈ (0.055 ±
0.002) kOe reproduces the experimentally determined ratio of
the resulting anisotropy fields. We can estimate the anisotropic
symmetric coupling constant zS2G = μH sym

A , where z = 4
is the number of seemingly equally contributing in-plane
neighbors and S = 1/2. This estimate corresponds to G �
3.7 mK, which is in reasonable agreement with the conven-
tional estimate of the symmetric anisotropic coupling constant
as (�g/g)2J . The total anisotropy fields are then 0.51 and
0.08 kOe; these values are 30% larger than the values directly
estimated from the AFMR experiment (HA1 = 0.35 kOe and
HA2 = 0.054 kOe). This scaling can be partially due to the
uncertainties in the exchange field definition.

Thus, we can conclude that the dipolar interaction plays
the dominant role in the determination of the anisotropy in the
ordered phase of Cu(en)(H2O)2SO4 and that the AFMR data
can be interpreted in favor of ferromagnetic ordering of the
nearest planes.

C. AFMR line splitting

Observed splitting of the AFMR absorption line below
approximately 0.6 K is not expected for the collinear anti-
ferromagnet. Splitting magnitudes are listed in Table I and
are shown in Fig. 6; the maximal splitting amplitude is
about 100–150 Oe. The largest splitting is observed at the
frequencies close to the magnon gaps. Whatever the splitting
mechanism is, the later observation is quite natural: The slope
of the AFMR frequency-field dependence df /dH approaches
zero close to the magnon gaps; thus, the small variation of
the resonance frequency could result in a substantial change
of the resonance field. Several splitting mechanisms can be
considered which could be responsible for the aforementioned
splitting.

First, we have to consider the possibility of the sample
twinning. To produce experimentally observed splitting values
the sample should consist of a mosaic of crystallites rotated
by ∼10◦. However, the polarized light microscopy of our
samples at room temperature does not show any presence of
different blocks in the samples. The optical reflectometry at
room temperature [34,35] does not reveal features that could
be ascribed to sample twinning. The angular dependencies of
the ESR absorption at T > TN measured at 9 GHz [14] and at
72 GHz (present work) also give no indication of the crystal

TABLE I. Observed splitting of the AFMR line at different
field orientations and microwave frequencies measured at a base
temperature of 0.45 K

f (GHz) average Hres (kOe) �H (kOe)

H||a
9.6 2.689 0.014 ± 0.005
11.6 3.824 0.041 ± 0.005
11.6 36.15 0.32 ± 0.04
14.3 3.157 0.13 ± 0.015

H||b
4.64 0.75 0.059 ± 0.015
9.6 3.821 0.019 ± 0.005
11.6 4.546 0.123 ± 0.010
14.3 5.280 0.037 ± 0.007
14.3 5.280 0.053 ± 0.007
17.4 6.368 0.023 ± 0.008
31.6 11.194 0.021 ± 0.005

H||c
14.3 1.560 0.16 ± 0.04
17.4 3.792 0.063 ± 0.015
21.7 5.912 0.051 ± 0.015

twinning, while the small linewidth of the ESR absorption
(10–20 Oe at 4.2 K) and g factor anisotropy would make 10◦
rotation of crystallites clearly apparent. Thus, sample twining
as the source of the AFMR line splitting in CUEN can be ruled
out decisively.

Another possibility arises from the quasi-two-
dimensionality of Cu(en)(H2O)2SO4. The two-dimensional
Heisenberg antiferromagnet orders only at T = 0; however,
the presence of Ising-type anisotropy results in ordering
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FIG. 6. Frequency dependence of the observed splitting of the
AFMR resonance absorption line at the base temperature of 0.45 K
(symbols). Solid curves show the model of two decoupled anti-
ferromagnets with slightly different anisotropy parameters and the
change in the anisotropy parameters above the spin-flop transition as
described in the text. This model includes the 2◦ tilt of the magnetic
field at the nominal H||b orientation. The dotted curve in the middle
panel represents the same model assuming zero tilt at H||b. The
dashed curve corresponds to the model without a change in the
anisotropy parameters above the spin-flop transition.
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at finite temperature. Thus, in the extreme limit of very
weak interplane coupling, the quasi-two-dimensional
antiferromagnet can be considered a stack of equivalent
antiferromagnetically ordered layers weakly coupled
by interlayer Heisenberg exchange interactions. The
eigenfrequencies of this system would split similarly to
the known textbook problem of coupled oscillators. Such an
effect was reported for another quasi-2D antiferromagnet,
RbFe(MoO4)2 [36,37]. For the case of field applied along
the symmetry axis, split components of resonance absorption
correspond to the in-phase and out-of-phase oscillations of the
coupled layers. However, the out-of-phase oscillations of the
order parameters correspond to the out-of-phase oscillations
of the uniform magnetization of individual layers, which
strongly decouples this oscillation mode from the uniform
microwave field. At the same time, the experiment (Fig. 2)
shows that the split components have approximately the same
integral intensity. This means that corresponding resonance
modes are comparably coupled to the microwave field, which
rules out the Heisenberg interlayer coupling as the source of
the observed splitting.

Finally, we tried a semiphenomenological model assuming
that below TN two practically decoupled antiferromagnetic
systems are formed within the Cu(en)(H2O)2SO4 lattice. We
can recall here the known case of formation of completely
different ordering patterns in the neighboring layers of an-
other quasi-two-dimensional antiferromagnet, KFe(MoO4)2,
with independent spin dynamics of these layers [38,39]. We
will describe these antiferromagnetic subsystems in CUEN
phenomenologically by anisotropy parameters a1,2 slightly
different from those in Eq. (3):

a(±)
1,2 = a1,2(1 ± δ1,2). (6)

The difference in AFMR resonance fields for two anti-
ferromagnets with slightly different anisotropy constants was
calculated numerically using best-fit values from Sec. IV A as
starting parameters. We have found that δ1 �= δ2 is required,
and the satisfactory description of the data in Fig. 6 is achieved
for δ1 = 0.012 and δ2 = 0.005.

However, this parameter set fails completely to describe
splitting at the H||b orientation above the spin-flop transition
(see the dashed line in Fig. 6). This can be fixed by assuming
that the system-to-system variation of the small anisotropy
constant a2 increases almost tenfold in the fields exceeding
the spin-flop transition field HSF and can be described now
by δ

(H>HSF )
2 = 0.04. The increase of the splitting close to the

second magnon gap can be accounted for by a 2◦ tilt of the
magnetic field, which is plausible for our experimental setup.
The change in the effective anisotropy parameter after the
spin-flop transition was previously reported for the square-
lattice antiferromagnet Cu(pz)2(ClO4)2 [40] and discussed as
a possible effect of dipolar forces [41]. We recall here the
possibility discussed in the previous section that the interplane
ordering pattern is rearranged above the spin-flop transition
due to the difference in dipolar coupling energy; such a
rearrangement will surely result in the change in anisotropy
constants.

From our results we cannot reliably conjecture about the
origin of the possible formation of two decoupled slightly in-
equivalent magnetic systems at low temperature. One possible

reason is a weak alternation of the crystal structure due to the
magnetoelastic coupling leading to the inequivalence of odd
and even layers. Verification of this hypothesis requires either
a high-resolution structural analysis or a low-temperature
NMR experiment to check the number of inequivalent copper
ions in the antiferromagnetically ordered Cu(en)(H2O)2SO4.

D. Spin dynamics above the Néel point

The phase diagram of Cu(en)(H2O)2SO4 was previously
discussed in the context of the field-induced BKT transition
[9,12]. The applied magnetic field effectively creates an XY
anisotropy as the short-range antiferromagnetic correlations
develop at T < �CW . This field-induced anisotropy competes
with thermal effects. In the case of CUEN a crossover from
the Heisenberg to XY regime takes place below TN for fields
lower than 10 kOe, while for higher fields the crossover
temperature rises, reaching 1.5 K at 20 kOe [12].

A 2D magnet with XY anisotropy undergoes a BKT
transition; free vortex dynamics above the BKT transition
temperature can affect the ESR linewidth, leading to charac-
teristic exponential temperature dependence [42]. Thus, one
could expect that the ESR linewidth temperature dependence
in CUEN would change from critical behavior at low fields
(below 10 kOe) to some combination of critical and XY
behavior at higher fields, while pure XY behavior in a suffi-
ciently large temperature interval above TN could be expected
above 40 kOe. However, to distinguish these regimes the ESR
linewidths have to be measured very accurately, and even
then, both scenarios are found to describe experimental data
qualitatively well, and the preferable scenario can be chosen
only after quantitative comparison of model parameters with
the theoretical predictions [42].

To check for these effects we have measured ESR ab-
sorption above the Néel temperature at different microwave
frequencies corresponding to resonance field values from 3 to
40 kOe; the latter value is about 2/3 of the saturation field.
Accurate determination of ESR linewidth is handicapped in
our experimental setup by the inhomogeneity of the magnetic
field from a compact cryomagnet and distortions of the ESR
line shape at high frequencies. We observed ESR linewidth of
20–30 Oe at 1.7 K, which broadens up to approximately 200
Oe at TN . We did not observe a strong qualitative difference
in temperature evolution of the ESR linewidth at different
resonance fields, which can be interpreted as switching on
the additional (vortex) channel of spin relaxation in the field-
induced XY regime.

V. CONCLUSIONS

We have performed a detailed low-temperature ESR study
of the quasi-2D antiferromagnet Cu(en)(H2O)2SO4. Our re-
sults confirm that transition to the magnetically ordered state
at 0.9 K is continuous; the ordered phase is a collinear
antiferromagnetic state with the easy axis aligned along the
crystallographic b axis and the second easy axis aligned in the
(ac) plane at approximately 18◦ from the a axis. The observed
anisotropy of the ordered phase can be largely described by
dipolar coupling of copper spins; on the basis of this analysis
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the ferromagnetic ordering pattern of the two-dimensional
planes is favored.

We have observed additional splitting of the antiferromag-
netic resonance absorption spectra, which can be interpreted
as the coexistence of the two ordered antiferromagnets with
slightly different anisotropy parameters. The microscopic ori-
gin of formation of these antiferromagnetic systems is unclear,
and additional high-resolution structural or NMR experiments
are required to get insight into the equivalence or inequiva-
lence of two-dimensional magnetic subsystems of CUEN and
the formed interplane ordering patterns.
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APPENDIX: EQUATIONS FOR ANTIFERROMAGNETIC
RESONANCE FREQUENCIES

We use the macroscopic (hydrodynamic) approach of
Ref. [20]. For the collinear antiferromagnet Lagrangian den-
sity is

L = χ⊥
2γ 2

(l̇ + γ [l × H])2 − UA, (A1)

where l is the collinear antiferromagnetic order parameter, γ

is the gyromagnetic ratio, and UA is the anisotropy energy. In
the case of the monoclinic crystal with the easy axis Z locked
onto the only second-order axis, the anisotropy energy can be
written as

UA = a1

2
l2
X + a2

2
l2
Y , (A2)

where a1 > a2 > 0 and X and Y are the directions of the hard
and second easy axes, respectively.

The uniaxial g factor anisotropy (following Ref. [14]) can
be included in the anisotropy energy [29]:

UA,g = ξχ⊥(l · H)laHa; (A3)

within the mean-field model ξ = �g/g, la and Ha are
the projections of the order parameter and magnetic field
on the g-tensor principal axis [which is the a axis for
Cu(en)(H2O)2SO4]. For H||a this term results in the scaling
of the gyromagnetic constant to γ 2

eff = γ 2(1 + 2ξ ).
Eigenfrequencies of the order parameter oscillation can

be found from the linearized Euler-Lagrange equations. This
yields two zero-field magnon gaps, �1,2 = γ

√
a1,2/χ⊥, �1 >

�2. At H||b the spin-flop transition takes place at HSF =
�2/γ .

The resonance frequencies for H||b are

f 2
1,2 = γ 2H2 + �2

1 + �2
2

2

±
√

2
(
�2

1 + �2
2

)
γ 2H2 + �2

1 − �2
2

4
(A4)

for H < HSF and

f 2
1 = �2

1 − �2
2, f 2

2 = γ 2H2 − �2
2 (A5)

for H > HSF .
For H ⊥ b (H||a, c∗) the secular equation is∣∣∣∣∣ γ 2

effHX HY − f 2 + �2
2 + γ 2

effH
2
Y

f 2 − �2
1 − γ 2

effH
2
X −γ 2

effHX HY

∣∣∣∣∣ = 0, (A6)

where γeff = γ for H||c∗ and γeff = γ
√

1 + 2ξ for H||a.
At high fields one of the AFMR modes asymptotically

approaches Larmor frequency γ H , and the frequency of the
other AFMR mode remains small (it does not exceed the
larger gap �1) and softens at the saturation field [16]. While
the hydrodynamical approach is not directly applicable at
high fields, it can be shown that at high fields the angular
dependence of the low-frequency AFMR mode resonance
frequency is a universal function for a given antiferromagnet
[43]. Thus, we can calculate the asymptotic frequency of
the low-frequency mode within the low-field hydrodynamic
approach for the field H ⊥ Z:

�eff (φ) =
√

�2
1 sin2 φ + �2

2 cos2 φ, (A7)

where the angle φ is counted from the hard axis. Combining
Eq. (A7) with the predictions of the sublattices model [16],
one obtains the resonance frequency of the low-frequency
AFMR mode:

f = �eff

√
1 − (H/Hsat )2. (A8)
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