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The simultaneous occurrence of direct and inverse magnetostriction in transversely isotropic hexagonal
crystal is theoretically investigated. Particular emphasis is here given to the need of identifying the fourth-order
magnetostriction tensor, as it represents the most primitive object from which all related physical quantities of
interest in micromagnetism are deduced. For hexagonal crystals, the magnetostriction tensor is expressed in
terms of six independent magnetostrictive coefficients whose values are, so far, unknown. Indeed, the existing
literature provides just four independent constraints that are extracted from the expression of the differential
scalar strain in a given direction. In this work, the two extra conditions required to solve this identification
problem are obtained by deducing the explicit functional dependence of the main features characterizing the
motion of a magnetic domain wall along the major axis of a thin magnetostrictive nanostrip placed on the top
of a thick piezoelectric actuator. The results of our analysis reveal that such two conditions may be associated
to the effective anisotropy coefficient and the domain-wall width. To validate our proposal, a comparison with
some recent experimental results is also successfully addressed.
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I. INTRODUCTION

Multifunctional materials for next-generation devices ex-
ploit the control of the magnetic state via electric fields and
vice versa. These materials are attracting a great deal of atten-
tion for their potential applications in several fields, ranging
from spintronic (memory and logic) devices to solid-state
transformers, from magnetic/electric field sensors to electro-
magnetic actuators [1–3]. The success of these devices relies
on the possibility of achieving a relatively large magneto-
electric coupling by encapsulating (gluing or depositing), for
instance, a magnetic nanodevice into a piezoelectric environ-
ment [4–9]. In such artificial composite structures, generally
termed magnetoelectric multiferroics, magnetic and electric
order parameters are simultaneously present and coupled with
each other. Indeed, when a piezoelectric actuator deforms
upon the application of an electric field, it imposes displace-
ments, and thus strains, on the ferromagnetic strip through
the common interface. Owing to magnetoelastic interactions,
such strains induce changes of the overall magnetic anisotropy
field that are, in turn, converted into modifications of the mag-
netic configuration (via the inverse magnetostrictive effect)
[2,4,5,8,9]. At the same time, the ferromagnetic layer is also
subjected to the stress-free strain caused by magnetostriction
so that both direct (Joule) and inverse (Villari) magnetostric-
tive effects take place simultaneously [10–12].

In this context, a key role is played by the crystal sym-
metry of the magnetic material since, as known, it affects
anisotropy, and magnetoelastic and magneostrictive energies
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[10–12]. The need of obtaining sizable magnetoelectric cou-
pling that has, at the same time, good chemical and mechani-
cal properties, is indeed currently pushing the research toward
the study of novel materials. Among the most interesting
and investigated ones, we recall Tb1−xDyxFe2 (terfenol-D),
CoFe2O4, NiFe2O4, Ga-Fe (galfenol) alloys, Co-Pt, Ni-Mn-
Ga, BaFe12O19 and other ferrites and manganites, whose crys-
tal structure belongs, in most cases, to the cubic or hexagonal
classes. In this work, we limit our analysis to the subclass
of hexagonal systems that exhibit transverse isotropy and
that are rather poorly theoretically studied despite their huge
applications.

To properly characterize magnetostrictive and magnetoe-
lastic effects taking place in such materials, the knowledge
of the fourth-order magnetostriction tensor is required. Un-
fortunately, the recent literature has somehow overlooked
its relevance despite it constitutes the most primitive object
which allows to deduce all the related quantities, e.g., the
second-order magnetostrictive strain tensor, the scalar magne-
tostrictive strain in a given direction, and the magnetoelastic
field. This latter represents an additive contribution to the
effective magnetic field that has to be taken into account in a
micromagnetic model when magnetic and mechanical effects
take place simultaneously.

For hexagonal transversely isotropic crystals, the fourth-
order magnetostriction tensor is expressed through six inde-
pendent coefficients which are, so far, unknown. This inde-
terminacy prevents the possibility to carry out an analytical
investigation in the framework of micromagnetism and, in-
deed, theoretical works reduce the analysis to the simplest
case of an isotropic medium [4,6,13–15] or tackle the study
of cubic symmetries, where the magnetostriction tensor is
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fully known [16–22]. In our view, the above gap is generated
by the fact that a former relevant paper [23] focused on the
characterization of the scalar magnetostrictive strain in an
arbitrary direction, a quantity that involves just four indepen-
dent conditions on magnetostrictive coefficients. Therefore,
two additional independent constraints are required to achieve
the full identification of the magnetostriction tensor and, thus,
to directly quantify the magnetoelastic field. This work is an
attempt to fill this gap.

The paper is organized as outlined below. In Sec. II, we
discuss the theoretical background on magnetostriction for
hexagonal crystals. Preliminarily, we recall the concepts of
second- and fourth-order magnetostriction tensors and show
how to deduce the explicit expressions of magnetoelastic
and magnetocrystalline anisotropy fields. At the end of the
section, we focus the attention on some key remarks about
the still-open question on the indeterminacy of the six compo-
nents of fourth-order magnetostriction tensor. In Sec. III, we
address analytical investigations on the domain-wall motion
in a bilayer piezoelectric-magnetostrictive device under the
simultaneous effects arising from magnetic fields, electric
currents, magnetostriction, and applied strains. This study
is finalized at extracting and inspecting the magnetostrictive
dependence of the main features here involved. As a result of
this analysis, we deduce the two extra conditions required to
solve the aforementioned identification problem, as reported
in Sec. III A. In Section. IV, we carry out some numerical
investigations to estimate quantitatively the values of all the
six magnetostrictive coefficients and validate our proposal. To
this purpose, we take into account literature data on cobalt
and cobalt-platinum alloys. Concluding remarks are given in
Sec. V.

II. THEORETICAL BACKGROUND ON
MAGNETOSTRICTION

For a ferromagnetic magnetostrictive material, the in-
finitesimal strain tensor ε, which is compatible since it is
defined as the symmetric part of the displacement gradient
∇u, can be additively decomposed into

ε = εe + εm, (1)

where the two incompatible strain tensors εe and εm are the
elastic and magnetostrictive strains, respectively [16,21,24].
For a linear elastic material, the elastic energy density is
quadratic and expressed as

E e = 1
2 εe : C : εe = 1

2 εe
i j Ci jkl εe

kl , (2)

where C is the fourth-order elasticity (or stiffness) tensor
and “:” denotes the double contraction. The elasticity tensor
C enjoys minor symmetry on both pairs of indices (i.e.,
Ci jkl = C jikl = Ci jlk = C jilk) as well as major symmetry (i.e.,
Ci jkl = Ckli j) (see, e.g., [25–27]). By differentiating the elas-
tic energy E e = Ê e(εe ) with respect to εe and exploiting the
major symmetry of C, we obtain the Cauchy stress as

σ = ∂Ê e

∂εe
(εe ) = C : εe, σi j = ∂Ê e

∂εe
i j

(εe ) = Ci jkl εe
kl . (3)

In the remainder of this work, for the components Ci jkl of
the elasticity tensor C, we adopt Voigt’s compact notation,

through which fourth-order tensors with minor symmetries on
both pairs of indices can be represented by a 6 × 6 matrix.

The hexagonal crystal classes 6̄m2, 6mm, 622, and
6/mmm here investigated exhibit transverse isotropy, i.e.,
invariance under rotations about a given direction, called
direction of symmetry, which we choose to be ez ≡ e3. For
this class, the elasticity tensor C can be expressed in terms
of five independent elastic constants c11, c12, c13, c33, and c44,
such that

[C] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13

c12 c11 c13 [ 0 ]
c13 c13 c33

c44 0 0
[ 0 ] 0 c44 0

0 0 c11−c12
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Using the decomposition (1) and the major symmetry of the
elasticity tensor C, the elastic energy density (2) can be split
into three parts:

E e = 1
2 ε : C : ε − ε : C : εm + 1

2 εm : C : εm. (5)

The first term

E = 1
2 ε : C : ε (6)

is the total strain energy density and is the only contribution
which is implicitly dependent on magnetization, whereas the
other two terms

Eme = −ε : C : εm, (7a)

Ems = 1
2 εm : C : εm (7b)

represent the magnetoelastic energy density and the magne-
tostrictive energy density, respectively, and are both explicitly
dependent on the magnetization configuration m via the mag-
netostrictive strain εm [16,17,20,28].

The presence of magnetization-dependent terms into the
elastic energy E e gives rise to a magnetic field

hme = − 1

μ0M2
S

δÊ e

δm
(m), (8)

commonly referred to as the magnetoelastic field. In Eq. (8),
μ0 is the magnetic permeability of vacuum, MS is the mag-
nitude of the magnetization at saturation, and the differential
operator δ/δm represents the variational derivative defined as

δ

δmi
= ∂

∂mi
− ∂

∂x j

∂

∂mi, j
, (9)

where mi, j ≡ ∂mi/∂x j are the components of the gradient ∇m
in the usual index notation. Therefore, according to (5), hme

can be recast as

hme = − 1

μ0M2
S

∂ (Ême + Êms)

∂m
(m)

= 1

μ0M2
S

(ε − εm ) : C :
∂εm

∂m
(10)

since the magnetostrictive strain εm is independent of ∇m
[16,20,21].
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Equation (10) reveals that the symmetry of the crystal
affects the magnetoelastic field via the elasticity tensor C and
the magnetostriction tensor Z through the magnetostrictive
strain tensor εm = Z : m ⊗ m. The expression of the elasticity
tensor C is well known in the literature for all crystal classes
(see, e.g., [29]). On the other hand, the second-order magne-
tostrictive strain tensor εm is deduced through the knowledge
of a more primitive object, the fourth-order magnetostriction
tensor Z, whose comprehensive characterization for all crystal
classes has been done in our recent work [30]. We recall that
the magnetostriction tensor Z always enjoys minor symmetry

on both pairs of indices, i.e.,

Zi jkl = Z jikl = Zi jlk = Z jilk, (11)

but it does not possess, in general, major symmetry: Zi jkl �=
Zkli j .

For a transversely isotropic material, the fourth-order mag-
netostriction tensor Z is defined through six independent
magnetostriction coefficients Z1111, Z1122, Z1133, Z3311, Z3333,
and Z2323, and its representing 6 × 6 matrix reads as [29,30]

[Z] =

⎡⎢⎢⎢⎢⎢⎣
Z1111 Z1122 Z1133

Z1122 Z1111 Z1133 [ 0 ]
Z3311 Z3311 Z3333

Z2323 0 0
[ 0 ] 0 Z2323 0

0 0 1
2 (Z1111 − Z1122)

⎤⎥⎥⎥⎥⎥⎦. (12)

Let us here stress that expression (12) refers to the general, nonisochoric, case, which is the one taken into account in the
literature [23,31–34]. Once the tensor Z is known, we can compute both [14,21,23,24,30–32] the second-order magnetostrictive
strain tensor εm as

εm = Z : (m ⊗ m), εm
i j = Zi jkl mkml (13)

and the (measurable) scalar magnetostriction λn along a given direction n, i.e.,

λn = (n ⊗ n) : Z : (m ⊗ m) = nin jZi jkl mkml . (14)

By virtue of (12), the magnetostriction strain tensor εm has matrix representation [30]

[εm] =

⎡⎢⎣Z1111m2
x + Z1122m2

y + Z1133m2
z (Z1111 − Z1122)mxmy 2Z2323mxmz

(Z1111 − Z1122)mxmy Z1122m2
x + Z1111m2

y + Z1133m2
z 2Z2323mymz

2Z2323mxmz 2Z2323mymz Z3311m2
x + Z3311m2

y + Z3333m2
z

⎤⎥⎦. (15)

However, some classical papers on hexagonal crystals [31,32], rather than using the above expression for the magnetostrictive
strain tensor, report the differential value measured with respect to the configuration in which the material is magnetized along
its easy direction aeasy. For instance, in MnAs- and Co-based materials, the easy direction of magnetization lies in plane and
normal to plane, respectively. Restricting our attention to Co-based materials, we set aeasy ≡ ez and obtain

[�εm] = [εm] − [εm]|mz=1

=

⎡⎢⎣(Z1111 − Z1133)m2
x + (Z1122 − Z1133)m2

y (Z1111 − Z1122)mxmy 2Z2323mxmz

(Z1111 − Z1122)mxmy (Z1122 − Z1133)m2
x + (Z1111 − Z1133)m2

y 2Z2323mymz

2Z2323mxmz 2Z2323mymz (Z3311 − Z3333)
(
1 − m2

z

)
⎤⎥⎦, (16)

from which we deduce the expression for the differential scalar strain [23]:

�λn = �εm : n ⊗ n = (Z1111 − Z1133)[(mxnx + myny)2 − mznz(mxnx + myny)]

+ (Z1122 − Z1133)
[(

1 − m2
z

)(
1 − n2

z

) − (mxnx + myny)2]
+ (Z3311 − Z3333)

[
n2

z

(
1 − m2

z

) − mznz(mxnx + myny)
]

+ (Z1111 − Z1133 + Z3311 − Z3333 + 4Z2323)mznz(mxnx + myny). (17)

Moreover, to keep the notation on magnetostrictive strains as close as possible to the one used in the consolidated literature, we
recast (15) as in Ref. [32]:

[εm] =
⎡⎣(λA − λB)m2

x − λBm2
z + λB + λ13 (λA − λB)mxmy λE mxmz

(λA − λB)mxmy (λA − λB)m2
y − λBm2

z + λB + λ13 λE mymz

λE mxmz λE mymz λC
(
1 − m2

z

) + λ33

⎤⎦, (18)

014405-3



CONSOLO, FEDERICO, AND VALENTI PHYSICAL REVIEW B 101, 014405 (2020)

where the coefficients λA, λB, λC , λE , λ13, and λ33 are defined by [23,31,32]

λA = Z1111 − Z1133, (19a)

λB = Z1122 − Z1133, (19b)

λC = Z3311 − Z3333, (19c)

λE = 2 Z2323, (19d)

λ13 = Z1133, (19e)

λ33 = Z3333. (19f)

Therefore, the total elastic energy can be expressed as

E = 1
2 c11

(
ε2

xx + ε2
yy

) + c12εxxεyy + c13εzz(εxx + εyy) + 1
2 c33ε

2
zz + 2c44

(
ε2

xz + ε2
yz

) + (c11 − c12)ε2
xy, (20)

whereas the differential magnetoelastic and magnetostrictive energies are given by [35–38]

�Eme = (λA − λB)(c12 − c11)
(
εxxm2

x + εyym2
y + 2εxymxmy

) − [(λA + λB)c13 + λCc33]
(
1 − m2

z

)
εzz

− [λAc12 + λBc11 + λCc13]
(
1 − m2

z

)
(εxx + εyy) − 4c44λE (εxzmx + εyzmy)mz, (21a)

�Ems = (c11 + c12)λB
{[

λBm2
z − (λA − λB)

(
m2

x + m2
y

)]
m2

z + λB + 2λ13
}

+ 1
2 c11(λA − λB)2

(
m2

x + m2
y

)2 + 2c13
[
λC (λB + λ13)

(
1 − m2

z

) + λBλ33
]

+ [
(λA − λB)

(
m2

x + m2
y

) − 2λBm2
z

]{
(c11 + c12)(λB + λ13) + c13

[
λC

(
1 − m2

z

) + λ33
]}

+ 1
2 c33λC

(
1 − m2

z

)[
λC

(
1 − m2

z

) + 2λ33
] + 2c44λ

2
E m2

z

(
m2

x + m2
y

)
. (21b)

From (21a) and (21b), we deduce the components of the magnetoelastic field (10) as

hme
x = 2

μ0M2
S

(
(λA − λB)mx

{
c11

[
εxx − (λA − λB)m2

x + λBm2
z − (λB + λ13)

]
+ c12

[
εyy − (λA − λB)m2

y + λBm2
z − (λB + λ13)

] + c13
[
εzz + λCm2

z − (λC + λ33)
]}

+ 2c44(εxz − λE mxmz )λE mz + (c11 − c12)[εxy − (λA − λB)mxmy](λA − λB)my
)
, (22a)

hme
y = 2

μ0M2
S

(
(λA − λB)my

{
c12

[
εxx − (λA − λB)m2

x + λBm2
z − (λB + λ13)

]
+ c11

[
εyy − (λA − λB)m2

y + λBm2
z − (λB + λ13)

] + c13
[
εzz + λCm2

z − (λC + λ33)
]}

+ 2c44(εyz − λE mymz )λE mz + (c11 − c12)(εxy − (λA − λB)mxmy)(λA − λB)mx
)
, (22b)

hme
z = 2

μ0M2
S

(−λBmz
{
(c11 + c12)

[
εxx + εyy − (λA − λB)

(
m2

x + m2
y

) + 2λBm2
z − 2(λB + λ13)

]
+ 2c13

(
εzz + λCm2

z − λC − λ33
)} − λCmz

{
c13

[
εxx + εyy − (λA − λB)

(
m2

x + m2
y

) + 2λBm2
z − 2(λB + λ13)

]
+ c33

(
εzz + λCm2

z − λC − λ33
)} + 2c44λE [(εyz − λE mymz )my + (εxz − λE mxmz )mx]

)
. (22c)

Let us emphasize that, in the context of micromagnetism, the
crystal symmetry of the ferromagnetic material also affects
the magnetocrystalline anisotropy field which can be deduced
from the corresponding anisotropy energy E ani = Ê ani(m) as

hani = − 1

μ0M2
S

∂Ê ani

∂m
(m), (23)

where the functional dependence of E ani on the magnetization
m is indeed specified by the crystal symmetry.

For hexagonal crystals with easy-axis direction along
ez, the magnetocrystalline anisotropy energy density reads

as

E ani = −KA(m · ez )2, (24)

where KA is the uniaxial anisotropy coefficient so that

hani = 2KA

μ0M2
S

(m · ez )ez. (25)

Remark 1. The magnetostriction tensor (12) refers to the
general case of a transversely isotropic material for which
the magnetostrictive strain is nonisochoric. To account for a
material undergoing isochoric magnetostrictive strains, it suf-
fices to consider the constraints Z1133 = − 1

2 Z3333 and Z3311 =
−(Z1111 + Z1122), as reported in our previous work [30]. As a
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consequence of these constraints, the number of independent
magnetostriction constants (19) reduces to four, i.e.,

λA = Z1111 + 1
2 Z3333, (26a)

λB = Z1122 + 1
2 Z3333, (26b)

λE = 2 Z2323, (26c)

λ33 = Z3333, (26d)

while the other two constants are linearly dependent on (26)
through

λC = −λA − λB, (27a)

λ13 = − 1
2λ33. (27b)

Remark 2. In some works (e.g., [32]), the magnetostric-
tive strain tensor εm given in (18) is described through four
independent constants (λA, λB, λC , and λE ), instead of the
six required by the transversely isotropic hexagonal crystal
class. This should not lead to the erroneous conclusion that
an isochoric magnetostrictive deformation is there assumed,
as one can argue from the lack of the terms λ13 and λ33 (see
Remark 1). This apparent contradiction could be explained by
arguing that, in those works, the authors are representing the
differential strain �εm instead of εm.

Remark 3. In order to compare our results with those
by Mason [23], we have to keep in mind that he defined
the second-order magnetostriction tensor as εm

i j = Mi jkl mimj .
Thus, comparing with our Eq. (13), we note that Mason’s
tensor M is the transpose of our Z, i.e., Mi jkl = Zkli j . This
being said, we noticed a missing factor 1

2 in the expression of
M1212 ≡ Z1212 in Mason’s Eq. (2)4, which we understand is a
misprint, as it has no repercussions in his subsequent calcula-
tions. More importantly, in the expression of the differential
scalar strain �λn, Mason erroneously reports a prefactor 2 for
Z2323, in place of the correct prefactor 4, as can be noticed
by comparing his Eq. (14) with our Eq. (17). This mistake
may not have relevant consequences as far as the analysis
is restricted to the use of differential quantities that, as men-
tioned earlier, require the knowledge of four magnetostriction
constants only, one of which incorporates the term 4 Z2323.
On the contrary, if the investigation involves nondifferential
quantities, as it is the case for the magnetoelastic field (22), a
still unsolved question is how to properly identify all the six
magnetostriction coefficients appearing therein. Indeed, since
the number of linearly independent measurement setups that
can be arranged to compute the differential scalar strain in a
given direction is restricted to four, two additional conditions
are needed to close the system. To the best of our knowledge,
this identification problem has never been addressed before
and, indeed, the values of the magnetostriction constants
for transversely isotropic systems (Z1111, Z1122, Z1133, Z3311,
Z3333, and Z2323) are not available in the literature. We shall
address this point in the next section.

III. STRAIN-MEDIATED DOMAIN-WALL MOTION

The solution of the identification problem presented at
the end of Sec. II requires two additional independent con-
straints on the magnetostrictive coefficients to be found. To
achieve this goal, we need a setup that meets the following

FIG. 1. Schematics of the bilayer piezoeletric-magnetostrictive
(PE-MS) heterostructure, together with the reference frame.

requirements and is also of interest for the scientific com-
munity: (i) both the direct and the inverse magnetostriction
phenomena take place simultaneously; (ii) its mathematical
description allows to deduce, explicitly, the analytical func-
tional dependence of the most relevant (and measurable)
quantities on the magnetostriction coefficients.

A geometry that exhibits all the above features consists
of a thin magnetostrictive (MS) nanostrip deposited or glued
on the top surface of a thick piezoelectric (PE) actuator, as
depicted in Fig. 1. This system is typically used in the liter-
ature to explore and emphasize magnetoelastic effects [4–9].
In such a device, it is assumed that a domain wall (DW) is
initially nucleated at the center of the MS layer characterized
by length L, width w, and thickness d along ex, ey, ez axes,
respectively, with L � w > d . The position of the DW along
the major axis ex is controlled by an external bias magnetic
field hext and/or an electric current density J = Jex, which are
both constant in time and uniform in space. On the other hand,
the PE layer undergoes deformations upon the application
of an electric voltage V (PE) imposed between two lateral
electrodes. These electrodes generate an electric field directed
along the axis ey that, depending on the sign of V (PE), induces
an elongation (contraction) of the bar width accompanied by
a contraction (elongation) in the two orthogonal directions.
Owing to the large thickness of the PE layer, the out-of-plane
normal strain is generally negligible whereas all the shear
strains are disregarded everywhere in the PE layer [4].

The magnetization dynamics occurring in the MS layer
is ruled by the extended Landau-Lifshitz-Gilbert (ELLG)
equation which, in the presence of spin-torque effects, reads
as [39–49]

ṁ = γ heff ∧ m + t stt + td, (28)

where, under the assumption of one-dimensional motion in di-
rection x [42,43,47,48,50–59], the normalized magnetization
vector takes the form m(x, t ) = M(x, t )/MS. In Eq. (28), the
superposed dot denotes partial time derivative, γ = MSμ0γe

is a constant expressed in terms of the magnetic permeabil-
ity of the vacuum μ0 and of the gyromagnetic ratio γe =
ge/me, being g the Landè factor, e the electron charge, and
me the electron mass. The three terms appearing on the
right-hand side of Eq. (28) describe the undamped preces-
sional torque induced by the effective magnetic field heff , the
current-induced spin-transfer torque and the intrinsic damping
torque, respectively. In detail, the effective magnetic field heff
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accounts for external, exchange, demagnetizing, magnetoelas-
tic, and magnetocrystalline anisotropy contributions, i.e.,

heff = hext + hexc + hdmg + hme + hani, (29)

being

hext = hxex + hyey + hzez, (30a)

hexc = A
∂2m
∂x2

, (30b)

hdmg = −Nx(m · ex )ex − Ny
(
m · ey

)
ey − Nz(m · ez)ez,

(30c)

where A = 2Aexc

μ0M2
S

includes the exchange constant of the ma-
terial Aexc whereas the coefficients Nx, Ny, and Nz are the
demagnetizing factors constrained by the normalization con-
dition Nx + Ny + Nz = 1. As known, a direct computation of
the demagnetizing field hdmg at any given point of a sample
is often intractable, except in very simple cases (such as
a uniformly magnetized ellipsoid or an extended system,
such as a thin and elongated nanostrip). In these cases, the
expression (30c) represents a commonly used and accepted
approximation [42,51,53–57,59].

The expressions of hme and hani depend on the crys-
tal symmetry of the MS layer and are given by Eqs. (22)
and (25), respectively. In particular, to properly identify the
magnetoelastic field hme, the six independent components of
the total strain tensor ε have to be also specified. To this
aim, we preliminarily point out that, because of the small
thickness of the magnetostrictive layer, it is reasonable to
neglect strain variations along the z axis. Therefore, for the
proposed bilayer geometry, the total strains acting on the mag-
netostrictive layer may be identified by applying mechanical
boundary conditions at both top and bottom xy surfaces of the
magnetostrictive layer. In detail, at the bottom surface, which
corresponds to the interface between the thick piezoelectric
actuator and the very thin magnetostrictive layer, it is realistic
to assume that the three planar strains (εxx, εxy, and εyy) are
imposed by the piezoelectric layer (via the applied electric
voltage) and fully transferred to the magnetostrictive one.
Consequently, these planar strains do not depend on the mag-
netization. In a previous work [4], the same elastic problem
was studied numerically via COMSOL MULTIPHYSICS and the
results suggested the possibility to neglect the in-plane shear
strain εxy. To identify the remaining three components of the
strain tensor (εxz, εyz, and εzz), we solve traction boundary

conditions σi jn j = ti for the magnetostriction layer at its top
xy surface. These conditions, with n = (0, 0, 1) the normal to
the top surface and t = (0, 0, 0) the null traction acting on this
surface, give rise to the three constraints

σxz = 0, (31a)

σyz = 0, (31b)

σzz = 0, (31c)

which, by virtue of (3) and (18), allow to relate the strains to
the magnetization:

εxz = λE mxmz, (32a)

εyz = λE mymz, (32b)

εzz = −c13

c33
(εxx + εyy) + λC

(
1 − m2

z

) + λ33

+ c13

c33

[
(λA + λB)

(
1 − m2

z

) + 2 λ13
]
. (32c)

The spin-transfer torque t stt consists of the adiabatic and
nonadiabatic contributions that are responsible for the DW
distortion and motion [42,44], respectively,

t stt = −u0J
∂m
∂x

− ηu0J
∂m
∂x

∧ m, (33)

where η is the phenomenological nonadiabatic parameter and
the coefficient u0 = gμBP/(2eMS) is expressed in terms of
the Bohr magneton μB and the polarization factor of the
current P.

Finally, the damping term td in (28) encloses the classical
Gilbert damping torque [40,45] and the nonlinear contribu-
tion arising from a rate-independent dry friction [47,48,60],
namely,

td = (αG + γαD‖ṁ‖−1)(m ∧ ṁ), (34)

where αG and αD are the phenomenological dimensionless pa-
rameters describing the strength of linear and nonlinear dissi-
pation, respectively. The dry-friction dissipation is introduced
to mimic the presence of crystallographic defects and disorder
into the MS layer so that it could also account for pinning
effects due to piezoelectric-induced strains [43,47,48,60].

By adopting spherical coordinates, the magnetization vec-
tor is given by

m = cos ϕ sin θ ex + sin ϕ sin θ ey + cos θ ez, (35)

being θ and ϕ the polar and azimuthal angles, respectively.
Then, after substituting (29), (30), and (33)–(35) into the
ELLG equation (28), we obtain

sin θϕ̇−[αG + γαD(θ̇2 + sin2 θϕ̇2)−1/2]θ̇ = γ

{
− A

∂2θ

∂x2
+ A sin θ cos θ

(
∂ϕ

∂x

)2

− cos θ cos ϕ
(
hx + hme

x + han
x

) − cos θ sin ϕ
(
hy + hme

y + han
y

) + sin θ
(
hz + hme

z + han
z

)
+ sin θ cos θ

[
Nx cos2 ϕ + Ny sin2 ϕ − Nz

]} − u0J sin θ
∂ϕ

∂x
+ ηu0J

∂θ

∂x

× [αG + γαD(θ̇2 + sin2 θϕ̇2)−1/2] sin θϕ̇ + θ̇ = γ

{
A sin θ

∂2ϕ

∂x2
+ 2A cos θ

∂θ

∂x

∂ϕ

∂x

+ (Nx − Ny) sin θ cos ϕ sin ϕ + (
hy + hme

y + han
y

)
cos ϕ − (

hx + hme
x + han

x

)
sin ϕ

}
− ηu0J sin θ

∂ϕ

∂x
− u0J

∂θ

∂x
, (36)
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where the components of the magnetoelastic field (22) read as

hme
x = 2

μ0M2
S

sin θ cos ϕ(λA − λB)

{
cos2 θ

[
(λAc11 + λBc12 − c2

13

c33
(λA + λB)

]
+

[
c11εxx + c12εyy − c2

13

c33
(εxx + εyy − λA − λB − 2λ13) − (λA + λ13)c11 − (λB + λ13)c12

]}
, (37a)

hme
y = 2

μ0M2
S

sin θ sin ϕ(λA − λB)

{
cos2 θ

[
(λAc11 + λBc12 − c2

13

c33
(λA + λB)

]
+

[
c12εxx + c11εyy − c2

13

c33
(εxx + εyy − λA − λB − 2λ13) − (λA + λ13)c11 − (λB + λ13)c12

]}
, (37b)

hme
z = 2

μ0M2
S

cos θλB

(
2c2

13

c33
− c11 − c12

)
{εxx + εyy − (λA + λB + 2λ13) + cos2 θ (λA + λB)}, (37c)

and the anisotropy field hani (25) takes the expression

hani = 2KA

μ0M2
S

cos θez. (38)

By using (37c) and (38), we define the overall anisotropy field along the easy axis ez as

hme
z + hani

z = 2Keff

μ0M2
S

, (39)

where, taking into account (32c), the effective anisotropy coefficient Keff in the saturated case (mz = 1 → θ = 0) is
expressed as

Keff = KA + λB

c13

[
(c11 + c12)c33 − 2c2

13

]
(εzz − λ33). (40)

Let us now investigate DW dynamics occurring in steady and precessional dynamical regimes [61]. As known, the steady
regime is characterized by a rigid motion of the DW along the nanostrip axis ex with constant velocity v, fixed azimuthal angle
ϕ0, and the polar angle satisfying the classical traveling wave ansatz θ = θ (ξ ), being ξ = x − vt [59]. Using these assumptions,
the system (36) reduces to

[αGv − ηu0J]θ ′ + α̂D = γ
{ − Aθ ′′ + (Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz ) sin θ cos θ + (

hz + hme
z + han

z

)
sin θ

− [(
hx + hme

x + han
x

)
cos ϕ0 + (

hy + hme
y + han

y

)
sin ϕ0

]
cos θ

}
, (41a)

(u0J − v)θ ′ = γ
{
(Nx − Ny) sin ϕ0 cos ϕ0 sin θ + (

hy + hme
y + han

y

)
cos ϕ0 − (

hx + hme
x + han

x

)
sin ϕ0

}
, (41b)

where the prime denotes derivative with respect to the traveling-wave variable ξ and α̂D = γαDsgn(vθ ′). This regime takes place
if the strength of the external sources is below the critical Walker breakdown value.

We recast (41b) as

θ ′ = �(sin θ + k), (42)

being

� = γ

2(u0J − v)

[
Nx − Ny + 2

μ0M2
S

(λA − λB)(c11 − c12)(εyy − εxx )

]
sin 2ϕ0, (43a)

k = 2μ0M2
S (hy cos ϕ0 − hx sin ϕ0)[

μ0M2
S (Nx − Ny) + 2(λA − λB)(c11 − c12)(εyy − εxx )

]
sin 2ϕ0

. (43b)

By inserting (42) into (41a) we get

P sin θ + Q cos θ + R sin θ cos θ + G sin θ cos3 θ + V = 0, (44)

where

P = �(αGv − ηu0J ) − γ hz, (45a)

Q = γ (hx cos ϕ0 + hy sin ϕ0 + A�2k), (45b)

R = γ

{
A�2 + Nz − Ny sin2 ϕ0 − Nx cos2 ϕ0 + 2(ψ − KA)

μ0M2
S

}
, (45c)

G = 2γ

μ0M2
S

{(
λ2

A + λ2
B

)
c11 + 2λAλBc12 − (λA + λB)2 c2

13

c33

}
, (45d)

V = k �(αGv − ηu0J ) + α̂D, (45e)
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with

ψ = (λA − λB)[(c11 cos2 ϕ0 + c12 sin2 ϕ0)εxx + (c12 cos2 ϕ0 + c11 sin2 ϕ0)εyy]

+
[
λB(c11 + c12) − (λA + λB)

c2
13

c33

]
(εxx + εyy) + (λA + λB + 2λ13)(λA + λB)

c2
13

c33

− [
λ2

A + λ2
B + λ13(λA + λB)

]
c11 − [2λAλB + λ13(λA + λB)]c12. (46)

The expression of the DW width δ = 1/� is recovered from (45) by setting R = 0:

δ =
√

Aexc

KA − ψ + μ0M2
S

2 (Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz )
. (47)

It is interesting to notice that the traveling-wave solution (42) is formally analogous to the one found in isotropic systems when
one considers the external field to be directed along an arbitrary direction [43].

For simplicity, we assume that the external magnetic field is directed along the ez axis so that k = 0. Under this assumption,
Eq. (42) admits two steady-state solutions that represent the configurations of the two faraway domains corresponding to the
classical Walker profile of a Bloch DW with θ varying between 0◦ and 180◦. The solution of (42) thus takes the classical form

θ (ξ ) = 2 arctan e�ξ . (48)

Then, performing the average of the Eq. (44) over the DW width (i.e., for 0◦ � θ � 180◦), and taking into account that Q = 0
for hx = hy = k = 0, it is possible to derive the explicit expressions for the key features involved in the steady regime. The
steady DW velocity is

v = γ δ

αG
hz + ηu0

αG
J − πδ

2αG
α̂D, (49)

and is non-null if the values of the external sources are above the thresholds

J = 0 �⇒ hTH
z = π

2γ
α̂D, (50a)

hz = 0 �⇒ JTH = πδ

2ηu0
α̂D. (50b)

A further restriction on the DW velocity arises from (43a), which implies the existence of lower and upper Walker breakdown
(WB) conditions:

v1 � v � v2, (51a)

J = 0 �⇒ hWB
z = π

2γ
α̂D + αG

2

∣∣∣Nx − Ny + 2
μ0M2

S
(λA − λB)(c11 − c12)(εyy − εxx )

∣∣∣, (51b)

hz = 0 �⇒
⎧⎨⎩JWB

upper = δ
2|η−αG|u0

[
πα̂D + αGγ

∣∣Nx − Ny + 2
μ0M2

S
(λA − λB)(c11 − c12)(εyy − εxx )

∣∣],
JWB

lower = δ
2|η−αG|u0

[
πα̂D − αGγ

∣∣Nx − Ny + 2
μ0M2

S
(λA − λB)(c11 − c12)(εyy − εxx )

∣∣], (51c)

being

v1 = u0J − γ δ

2

∣∣∣∣Nx − Ny + 2

μ0M2
S

(λA − λB)(c11 − c12)(εyy − εxx )

∣∣∣∣, (52a)

v2 = u0J + γ δ

2

∣∣∣∣Nx − Ny + 2

μ0M2
S

(λA − λB)(c11 − c12)(εyy − εxx )

∣∣∣∣. (52b)

When one of the breakdown conditions is violated, the DW motion occurs via a precessional dynamics characterized by
time-dependent velocity v(t ) and periodic oscillations at microwave frequency with constant angular speed ϕ̇ = ω0. In this case,
the governing system (36) reads as

ω0 sin θ + [
αGv + γαDv

(
v2θ ′2 + ω2

0 sin2 θ
)−1/2 − ηu0J

]
θ ′ = γ

{
[Nx cos2 ϕ + Ny sin2 ϕ − Nz] sin θ cos θ − Aθ ′′

− [(
hx + hme

x + han
x

)
cos ϕ + (

hy + hme
y + han

y

)
sin ϕ

]
cos θ + (

hz + hme
z + han

z

)
sin θ

}}
,[

αG + γαD
(
v2θ ′2 + sin2 θω2

0

)−1/2]
sin θω0 + (u0J − v)θ ′

= γ
{
(Nx − Ny) sin θ cos ϕ sin ϕ + (

hy + hme
y + han

y

)
cos ϕ − (

hx + hme
x + han

x

)
sin ϕ

}
. (53)
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Under the assumption that the traveling-wave profile given by (42) is unchanged, Eq. (53) can be rewritten in the form

ω0 + �
[
αG + γαD

(
v2�2 + ω2

0

)−1/2]
v = γ hz + �ηu0J, (54a)[

αG + γαD
(
v2�2 + ω2

0

)−1/2]
ω0 = �(v − u0J ) + γ sin ϕ0 cos ϕ0

{
Nx − Ny + 2

μ0M2
S

(λA − λB)(c11 − c12)(εyy − εxx )

}
,

(54b)

where all the quantities have been evaluated at the center
of the DW (θ = π

2 ). Then, by performing the average of
the equations (54) over a period of precession, under the
restriction �v  ω0, we deduce the system of equations

ω0 + αG�v = γ hz + �ηu0J, (55a)

αGω0 + γαD = �(v − u0J ), (55b)

and allows to express the precessional DW velocity for hexag-
onal crystals as

v = αGγ δ

1 + α2
G

hz + (1 + αGη)u0

1 + α2
G

J + γ δ

1 + α2
G

αD. (56)

As it can be observed, magnetoelastic effects do not formally
alter the structure of the classical solution obtained in isotropic
systems [43]. However, piezoinduced strains may now affect
the DW mobility under an applied magnetic field (not under
an electric current) as well as the upward shift of the average
DW velocity through the DW width δ only.

Identification of the magnetostrictive coefficients

In this section, we present a possible strategy to obtain an
indirect measurement of all the six components of the fourth-
order magnetostriction tensor of transversely isotropic hexag-
onal crystals. Since four of the six coefficients are known in
the literature (λA, λB, λC , λE ), two extra independent condi-
tions are required for the identification of the remaining two
(λ13, λ33). To achieve this goal, in Sec. III we inspected the
functional dependence of the key dynamical features involved
in the strain-mediated DW motion on magnetostriction.

Results of the investigations carried out in Sec. III showed
that two quantities satisfy the above requirement: the effec-
tive anisotropy coefficient Keff and the DW width δ (or a
quantity directly related to it, such as the DW velocity v

or the DW mobility induced by the applied field ∂v/∂h or
the electric current ∂v/∂J). Indeed, the inspection of their
magnetostriction dependence reveals that Keff = Keff (λB, λ33)
while δ = δ(λA, λB, λ13). Moreover, since Eqs. (40) and (47)
are independent from the four conditions (19a)–(19d), they
provide a possible means to solve the present identification
issue. It is interesting to notice that these two quantities are
quite easily accessible via both experiments and numerical
simulations, which makes the proposed strategy feasible. The
identification procedure can be further simplified by evaluat-
ing these quantities in the absence of applied strains, with the
advantage of reducing measurement errors. In the unstrained
case, Keff reduces to

Keff0 ≡ Keff |ε=0 = KA − λB

c13

[
(c11 + c12)c33 − 2c2

13

]
λ33,

(57)

and δ reduces to

δ0 ≡ δ|ε=0

=
√

Aexc

KA − ψ0 + μ0M2
S

2 (Nx cos2 ϕ0 + Ny sin2 ϕ0 − Nz )
,

(58)

where ψ0 is the value of the parameter ψ of Eq. (46) in the
unstrained case:

ψ0 ≡ ψ |ε=0 = (λA + λB + 2λ13)(λA + λB)
c2

13

c33

− [
λ2

A + λ2
B + λ13(λA + λB)

]
c11

− [2λAλB + λ13(λA + λB)]c12. (59)

Since the material parameters, the elastic constants, and the
magnetostriction constants λA, λB, λC , and λE are known,
the extra conditions (57) and (58) allow to determine the
unknowns λ13 and λ33 and, consequently, all the Zi jkl com-
ponents of the magnetostriction tensor Z of a transversely
isotropic hexagonal crystal via Eqs. (19).

IV. NUMERICAL RESULTS

In Sec. II, we pointed out that, in order to describe mag-
netoelastic effects in hexagonal crystals, the knowledge of all
six components of the magnetostriction tensor Z is required.
Since the number of independent measurements of differential
scalar strain is limited to four, in Sec. III A we presented a pos-
sible strategy to identify all the magnetostrictive coefficients
Zi jkl by considering the two extra constraints arising from
Eqs. (57) and (58). To provide a numerical illustrative solution
of this issue, we refer to the interesting work by Shepley
et al. [6], who provided the values of the effective anisotropy
coefficient Keff and DW velocity in a hexagonal cobalt-based
alloy (Pt/Co/Pt) in the presence and in the absence of voltage-
induced strains (see, in particular, Fig. 1 of that paper). We use
parameters extracted from the literature for CoPt alloys and
Co-based materials, which are reported in Table I.

We preliminarily verify that the above setup is consistent
with experimental data. To this aim, we estimate the variation
of the effective anisotropy constant with the out-of-plane
component of the strain tensor. According to our expression
(40), this quantity is given by

∂Keff

∂εzz
= λB

c13

[
(c11 + c12)c33 − 2c2

13

] = −9.98 × 106 J/m3.

(60)
The resulting decreasing linear dependence confirms the trend
shown in Fig. 1(b) of Ref. [6] and the obtained value is also
in close agreement with the approximated one provided by
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TABLE I. Material parameters used for the hexagonal Co-based
magnetostrictive materials.

Quantity Unit Value Ref.

λA −45 × 10−6 [31,32]
λB −95 × 10−6 [31,32]
λC +110 × 10−6 [31,32]
λE −232 × 10−6 [31,32]
KA J/m3 2 × 105 [6]
μ0MS T 1.63 [6]
Aexc pJ/m 14 [62]
αG 0.01 [63]
c11 GPa 320 [64]
c12 GPa 190 [64]
c13 GPa 265 [64]
c33 GPa 330 [64]
c44 GPa 75 [34,38]
Nx 0.6417 Assumed
Ny 0.0093 Assumed
Nz 0.3490 Assumed
ϕ0 deg 10 Assumed

the same authors and given by 3
2Y λS = −9.45 × 106 J/m3,

with Y = 180 GPa being the average of the Young’s moduli
of bulk Co and Pt and λS = −3.5 × 10−5 the saturation mag-
netostriction [see Eq. (4) of Ref. [6]]. Therefore, by solving
numerically the system (57) and (58) with Keff0 = 210 kJ/m3

and δ0 = 5.3 nm, we obtain λ13 = −580 × 10−6 and λ33 =
1.002 × 10−3 and, using (19), we can deduce all the val-
ues of the components of the fourth-order magnetostriction
tensor Z:

Z1111 = −625 × 10−6, (61a)

Z1122 = −675 × 10−6, (61b)

Z1133 = −580 × 10−6, (61c)

Z3311 = +1.112 × 10−3, (61d)

Z3333 = +1.002 × 10−3, (61e)

Z2323 = −116 × 10−6. (61f)

Finally, by using the above parameters, in Fig. 2 we
represent the behavior of DW width δ [Eq. (47)], effective

anisotropy coefficient Keff [Eq. (40)], and field-driven steady
DW velocity v [Eq. (49)] as a function of the out-of-plane
piezoinduced strain εzz. In addressing the comparison with
experimental data, we consider the out-of-plane strain in the
same range as in Ref. [6], namely, εzz ∈ [−4 × 10−4,+10 ×
10−4]. Moreover, we hypothesize that the dry-friction co-
efficient αD may depend or not on the out-of-plane strain,
i.e., αD = 10−3(1 − νεzz ), with ν = 500 or 0, respectively.
As it can be argued, the increase of strain yields a re-
duction of Keff [see Fig. 2(b)] and an increase of both δ

[Fig. 2(a)] and v [Fig. 2(c)], consistently with experimental
results [6]. Notice that the upward shift of DW velocity with
strain holds independently of the possible dependence of αD

on εzz.

V. CONCLUSIONS

In this work, we analytically investigated magnetostrictive
effects arising in transversely isotropic hexagonal crystals. We
focused our attention on a critical issue concerning the identi-
fication of the six independent components of the fourth-order
magnetostriction tensor. Indeed, despite this tensor constitutes
the primitive object from which all related quantities of inter-
est in micromagnetism are computed, its role has been some-
how overlooked in the recent literature. In particular, the only
available information on such a tensor dated back to Mason’s
work [23] where the explicit expression of the differential
scalar strain in an arbitrary direction was provided in terms of
just four conditions relating the magnetostrictive coefficients.
Therefore, the identification of the magnetostriction tensor
for a hexagonal crystal required two additional constraints,
independent from the previous ones, to be deduced.

In this work, we solved this issue by inspecting the func-
tional dependence of the most relevant physical quantities
involved in the motion of a DW along the major axis of a
thin magnetostrictive nanostrip placed on the top of a thick
piezoelectric actuator. We found that the knowledge of the
effective anisotropy coefficient and the DW width allows
to determine all the six magnetostrictive coefficients and,
consequently, to fully characterize the magnetoelastic field.
As a further advantage of our identification procedure, the
two above quantities can be even measured in the absence
of applied strains. By using the acquired complete setup

FIG. 2. Strain dependence of (a) DW width δ, (b) effective anisotropy coefficient Keff , and (c) field-driven steady DW velocity v. In the
main panel (inset) of (c), it is assumed that the dry-friction coefficient αD depends linearly (does not depend) on strain.
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of parameters, a quantitative agreement with some recent
experimental observations on strain-mediated domain wall
motion in a cobalt-based alloy (Pt/Co/Pt) has been also
achieved.

We believe that the results presented in this work might
be useful for both theoreticians and experimentalists. Our
findings might be exploited by the former to properly account
for the magnetostriction dependence of the physical quantities
characterizing a transversely isotropic crystal, and by the latter
to design more performing multiferroic devices.
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