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Itinerant ferromagnetism and intrinsic anomalous Hall effect in amorphous iron-germanium
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The amorphous iron-germanium system (a-Fe,Ge;_,) lacks long-range structural order and hence lacks a
meaningful Brillouin zone. The magnetization of a-Fe,Ge;_, is well explained by the Stoner model for Fe
concentrations x above the onset of magnetic order around x = 0.4, indicating that the local order of the
amorphous structure preserves the spin-split density of states of the Fe-3d states sufficiently to polarize the
electronic structure despite k being a bad quantum number. Measurements reveal an enhanced anomalous Hall
resistivity pi}“ relative to crystalline FeGe; this pf;,“ is compared to density-functional theory calculations of
the anomalous Hall conductivity to resolve its underlying mechanisms. The intrinsic mechanism, typically
understood as the Berry curvature integrated over occupied k states but shown here to be equivalent to the density
of curvature integrated over occupied energies in aperiodic materials, dominates the anomalous Hall conductivity
of a-Fe, Ge|_, (0.38 < x < 0.61). The density of curvature is the sum of spin-orbit correlations of local orbital
states and can hence be calculated with no reference to k space. This result and the accompanying Stoner-like
model for the intrinsic anomalous Hall conductivity establish a unified understanding of the underlying physics

of the anomalous Hall effect in both crystalline and disordered systems.

DOI: 10.1103/PhysRevB.101.014402

I. INTRODUCTION AND BACKGROUND

The anomalous Hall effect [1] (AHE) refers to a nonzero
transverse voltage in zero applied magnetic field. Its under-
lying physical mechanisms are an enduring topic of research,
due both to the insight provided into the effects of electronic
structure and impurity scattering on conduction and to the
potential spintronic applications of materials hosting a large
AHE. Specifically, the AHE shares its microscopic origins
with the spin Hall effect (SHE), which generates a pure spin
current essential for semiconductor spintronics, including the
spin-transfer torque manipulation of spin valves, leading to
intense experimental interest in materials hosting large AHE
as a gateway to large SHE [2].

The measured Hall resistivity is the sum of two contribu-
tions: the ordinary Hall effect (OHE), a potential difference
across the sample due to carrier deflection by the Lorentz
force, and the AHE, which is proportional to the magneti-
zation M,(H) and stems from a combination of asymmetric
scattering and band structure effects unique to magnetically
ordered materials [3]. We write this phenomenologically as

[4]
pry(H) = p'(H) + p'(H) = RoH + RsM(H), (1)
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where M,(H) is the z component of the magnetization mea-
sured with the field H perpendicular to the plane of the
sample, and Ry and Rg are the ordinary and anomalous
Hall coefficients, respectively. ng contributes a linear-in-H
“background” whose slope shares the sign of the carriers in
the sample, while p\" adopts the shape of M, (H ).

As understanding of the AHE deepened, analytical focus
shifted from the anomalous Hall resistivity ,ofyﬁ to the more

fundamental anomalous Hall conductivity (AHC) o, which

when p is small relative to the longitudinal conductivity
Pxx 18 given by UQH ~ pf;H /p>.. The AHC originates from
a combination of three mechanisms: skew-scattering, side-
jump scattering, and the intrinsic mechanism. Skew-scattering
refers to asymmetric scattering of spin-polarized carriers by
spin-orbit-coupled impurities [5] while side-jump scattering
refers to the transverse velocity deflection caused by the
opposite electric fields experienced by spin-polarized carriers
upon approaching and leaving a spin-orbit-coupled impurity
[6]. The intrinsic contribution is proportional to the integral
over occupied states of the Berry curvature 2(k), which can
be written as a summation over eigenstates [7]:

- ([ VieH |n) (| ViH )
Q(k) - lz (8n - 8n’)2 '
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Equation (2) emphasizes that this intrinsic contribution to the
AHC depends only on the topology of the band structure and
not on the details of scattering in the material [8,9].

The relative importance of these three mechanisms has
long been disputed, but some clarity has come from a unified
theory, originally proposed by Onoda et al. [10] and elabo-
rated upon by Liu er al. [11], which separates systems into
three regimes based on longitudinal conductivity o,, = p_!:
a high conductivity “clean” limit where oy, = 106 (Q cm) ™!
and UQH X 0y, indicating that the AHC is dominated by
skew scattering; an intermediate “good metal” regime where
10* S oy S 10°(Q2cm) ™! and o7 is independent of oy,
indicating that the intrinsic mechanism dominates the AHC;
and a low conductivity regime where o,, < 10* (Q cm)~!,
which was less well understood. At the time of Onoda et al.’s
work, this last regime was described empirically as having
U;;H ~ o)., with y ranging between 1.6 — 1.8; Onoda et al.
recovered the scaling ¥ = 1.6 in the hopping regime, and Liu
et al. found 1.33 < y < 1.76 by studying multiple hopping
processes which typically occur deep in the low conduc-
tivity regime [0, < 10% (2 cm)~!], demonstrating that the
microscopic origin of the AHE determines its scaling in this
insulating regime.

Recent experimental results from Karel ef al. [12] explored
the high conductivity edge of the low conductivity regime,
employing an empirical scaling argument based on the in-
trinsic AHC in crystalline Fe to suggest that the AHC in the
low conductivity metal amorphous iron-silicon (a-Fe,Si;_y)
is dominated by the intrinsic mechanism. This conclusion
is intially surprising, because perturbative expressions such
as Eq. (2) indicate that the intrinsic AHE is maximized
when the spin-orbit interaction splits band dispersions to
create anticrossing points with a small gap near the Fermi
level, which resonantly enhances the integral in question
[10] by enhancing the momentum-space Berry curvature at
these points. However, full-band calculations on crystalline
materials have called into question assumptions based on per-
turbative treatments of anticrossings near the Fermi level [13];
in addition, for an amorphous system, k is no longer a good
quantum number due to the absence of lattice periodicity. We
will instead introduce the energy-resolved density of Berry
curvature [13,14] for an amorphous system and show that it
supplants a typical Brillouin-zone integral to allow a more
general expression of the electronic origins of the intrinsic
AHC. In a quite distinct but relevant approach, Marrazzo and
Resta [15] reformulated the expression for the intrinsic AHC
in terms of real-space wave functions, enabling the calculation
of this contribution in systems where k is not a good quantum
number, including structurally disordered systems such as
a—FexSil_x.

Here we study amorphous iron-germanium (a-Fe,Ge;_,),
which promises similarly tunable magnetization and resis-
tivity to a-Fe,Si|_,, but accompanied by spin-orbit coupling
large enough to fundamentally alter both the electronic struc-
ture and the magnetic texture in a-Fe,Ge;_, by amplifying
the antisymmetric Dzyaloshinskii-Moriya interaction (DMI).
While recent investigations of the Fe-Ge system have fo-
cused on the magnetic skyrmion lattice in single crystals and
epitaxial films of cubic B20 FeGe [16-18], even prior to
the skyrmion discovery, the Fe-Ge system had established a

record of varied spin configurations that depend intimately
on structure and composition: Hexagonal B35 FeGe hosts a
conical structure at low temperature, which gives way to a
collinear antiferromagnet at higher temperatures; monoclinic
FeGe is also a collinear antiferromagnet; tetragonal FeGe,
hosts a collinear antiferromagnet at low temperatures which
transitions to a noncollinear antiferromagnet at higher tem-
peratures; and, finally, both hexagonal and cubic Fe;Ge are
ferromagnetic. Amorphous Fe-Ge films have previously been
fabricated [19-23]; these films showed ferromagnetism above
a critical Fe concentration x &~ 0.4, and in one case prelimi-
nary indications of noncollinear spin textures were observed
in Lorentz transmission electron micrographs [22]. However,
as much of this work predates the discovery of the Berry
phase and the ensuing resurgence of interest in the AHE,
magnetotransport in this material has yet to be thoroughly
explored.

In this paper, we conduct experimental and computational
investigations of the low temperature (7 = 2K) magneti-
zation and magnetotransport, including Hall resistivity in
a-Fe,Gej_, with 0.38 < x < 0.61, contextualizing our find-
ings via the isoelectronic a-Fe,Sij_, system to highlight
broader trends among amorphous ferromagnets. Ultimately,
we show that a-Fe,Ge;_, shares considerable physics with
a-Fe,Si|_,, but also with its crystalline counterparts (unlike
a-Fe,Si|_,). We supplement the empirical scaling argument
with a theoretical paradigm for the intrinsic AHC in aperiodic
materials, based on the energy-resolved density of Berry
curvature, and demonstrate how this model and our data
together corroborate the intrinsic origin of the AHE in the low
conductivity regime. Finally, we comment on the implications
of our results for future work on other spin- and orbitronic
phenomena arising from the Berry curvature.

II. METHODS
A. Thin film growth and characterization

Films of amorphous iron-germanium (65-80-nm
thickness) were deposited onto commercially available
amorphous silicon nitride substrates (5000 A LPCVD
Si3N,/300 A Si0,/Si (100) wafer) by co-evaporation
of iron from an electron beam source and germanium
from an effusion cell in a chamber with base pressure
below 8 x 107° Torr. Growth rates were monitored using
separate quartz crystal microbalances and were, for each
deposition, maintained at a constant value between 0.23 A /s
and 0.27 A/s. Immediately following film growth, a capping
layer (3—5-nm thickness) which prevents sample oxidation
was deposited in situ by sublimation of Al,O; from an
electron beam source.

Film thickness was measured in a KLA-Tencor Alpha-Step
1Q surface profiler. Compositions and atomic number densi-
ties were determined from Rutherford backscattering spectra
measured at the Pelletron at Lawrence Berkeley National
Laboratory; a spectrum corresponding to each measurement
was simulated and iterated to fit the measured spectrum to ob-
tain the sample composition and density. Sample amorphicity
was verified using x-ray and electron diffraction [Fig. 1(a)],
while high-resolution energy-dispersive x-ray spectrometry
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FIG. 1. Structural characterization of a-Fe,Ge,_, thin films. Transmission electron diffractogram (a) taken with a 200-nm probe on x =
0.61 shows the diffuse ring characteristic of an amorphous material. High-resolution energy-dispersive x-ray spectrometry images with 20-nm
scale bar show nanoscale elemental homogeneity in the distribution of (b) Fe and (c) Ge for x = 0.56. The pixellation in these images is the

sub-nm data-resolution limit.

[Figs. 1(b) and 1(c)] demonstrates the films’ nanoscale ele-
mental homogeneity. Taken together, these data rule out the
possibility of precipitation, percolation, or nanocrystallization
of the a-Fe,Ge,_, films. Furthermore, the amorphous quality
of a-Fe,Si;_, films grown by identical techniques has been
previously shown using high-resolution cross-sectional trans-
mission electron microscopy [24]. Given that silicon and ger-
manium are both well-known glass formers, it is unsurprising
that both a-Fe,Si;_, and a-Fe,Ge;_, readily condense into an
amorphous phase in the studied range of x.

Magnetization and magnetoelectrical transport were mea-
sured in a Quantum Design Magnetic Property Measurement
System (MPMS XL) equipped with a 7 T superconducting
magnet. The reciprocating sample option was used for all
magnetization measurements, with four distinct SQUID volt-
age curves averaged for each magnetic moment data point.
To isolate the magnetic signal from the film, a diamagnetic
background due to the substrate was calculated from the sam-
ple mass, measured in a microbalance, and substrate suscep-
tibility, known from previous magnetization measurements
of virgin substrates. This calculated background was used to
verify the accuracy of a linear fit to the high-field regions of a
T = 300K M (H) measurement on each sample, and a straight
line with the slope of this fit was subtracted from the total
measured magnetization.

Longitudinal and transverse resistivities were obtained us-
ing the van der Pauw method [25], in which each rectangular
film (side length 3 — 5mm) is mounted onto a specialized
MPMS sample rod, with four evenly spaced pointlike (diame-
ter < 0.5 mm) electrical contacts attached to the film perime-
ter by indium soldering. Individual four-point resistances used
to calculate the film resistivity were measured using standard
AC lock-in techniques, with currents of amplitude 2 A and
frequency 16 Hz. The transverse and longitudinal resistivities
were then calculated following the procedures detailed by van
der Pauw, with the aid of a numerical solver to find roots of the
transcendental equation defining the longitudinal resistivity.

B. Density-functional theory calculations

Density-functional theory (DFT) calculations were per-
formed using the projector augmented-wave method [26,27]
and a plane-wave-basis set, as implemented in the VIENNA
ab initio SIMULATION PACKAGE [28,29]; an energy cutoff

of 350 eV was used for the plane-wave-basis expansion.
The exchange-correlation interactions were described by the
generalized-gradient approximation with the Perdew-Burke-
Ernzerhof functional [30], taking spin polarization into ac-
count. Two separate sets of amorphous Fe,Ge;_, structures
were simulated, with one set using a 64-atom supercell (with
29, 31, 35, and 39 Fe atoms) and the other using a 128-atom
supercell (with 58, 61, 69, and 78 Fe atoms), corresponding
to x >~ 0.45, 0.48, 0.54, and 0.61, matching the experimental
compositions. The similarity of the results of these calcula-
tions indicates that both supercell sizes capture the patterns of
amorphous systems.

For each value of x and each supercell size, 20 different
independent amorphous structures were simulated using ab
initio molecular dynamics. Initial configurations were created
by randomly substituting Fe and Ge atoms onto zinc-blende
crystal structure sites. To randomize the atomic structural
positions, the systems underwent a melting step (2000 K for
the 64-atom systems; 3000 K followed by a 4 ps anneal to
ensure a fully molten state for the 128-atom systems) and a
quenching step (2000 K to 200 K at 3 x 10'* K/s for the
64-atom systems; 3000 K to 300 K at 4.5 x 104 K/s for
the 128-atom systems); the 64-atom systems underwent a
subsequent annealing step (200 K for 4.5 ps) in a canonical
ensemble. The structures were then further relaxed using the
conjugate gradient method until the forces on each atom were
less than 0.01 eV/A. Only the I point was used to sample the
Brillouin zone during the melting, quenching, and annealing
processes; however, a 3 x 3 x 3 Monkhorst-Pack (MP) k-
point mesh was used for the atomic geometry relaxation of
all structures. This mesh was also used for the 128-atom
electronic structure calculation, while the 64-atom electronic
structure calculation employed a 6 x 6 x 6 MP k-point mesh.

III. RESULTS

A. Magnetization

Experimental magnetization curves at 7 = 2K with the
applied field H in the plane of the film are shown in Fig. 2 for
a-Fe, Ge;_, with x = 0.38, 0.45, 0.48, 0.54, and 0.61. While
the M(H) curves for x > 0.50 primarily exhibit a squareness
and absence of hysteresis associated with an otherwise un-
remarkable soft ferromagnet, we note the curvature at H <
2500 Oe. For lower x (x = 0.48 and 0.45), this curvature is
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FIG. 2. M(H) curves for films with 0.38 < x < 0.61 measured
at T =2K with H parallel to the film plane. A temperature-
independent diamagnetic background corresponding to the combined
magnetization of each sample’s substrate and capping layer as mea-
sured at 7 = 300K has been subtracted from each measurement.
Inset: Expanded view of the M(H) curves with x < 0.50, each
normalized to its saturation magnetization as defined in the text
and overlaid with Brillouin functions corresponding to S = 3/2 and
S = 1/2. Data points are connected as a guide to the eye.

T T
20000 40000

dramatically exaggerated and the curve takes on an S shape
while also developing a small hysteresis at low fields. The
low-H curvature at high x and S-shaped curves at lower x
hint at noncollinear spin textures in a-Fe,Ge;_, (0.45 < x <
0.61). Such spin textures have since been observed directly in
this system via resonant x-ray scattering and Lorentz trans-
mission electron microscopy; detailed results will be reported
elsewhere [31,32].

Although the M (H) loops for a-Fe,Ge;_, are qualitatively
similar to a-Fe,Si;_, [12] for the same x, the volume magneti-
zation is slightly greater in a-Fe,Ge;_, and the S shape of the
magnetization in the low-x samples is exaggerated, indicating
a more complex spin structure in a-Fe,Ge|_, that persists to
higher fields. The measured and calculated values of the T =
2 K saturation magnetization per Fe atom of a-Fe,Si;_, and
a-Fe,Ge|_, are compared quantitatively in Fig. 3(a), where
the data and calculations for a-Fe,Si;_, are from Ref. [33].
The a-Fe,Ge;_, saturation magnetization was obtained for
high x (reasonably square loops in Fig. 2) by extrapolating the
M(H) curve for H > 4T to H = 0; this extrapolation yields
almost exactly Mg = M(H =5T) so the H=5T value of
M was chosen as My for the low x measurements (S-shaped
loops in Fig. 2). The enhanced My in a-Fe,Ge|_, compared
to a-Fe,Sij_, is supported by the presence of sharper peaks
in the calculated spin-resolved density of states (DOS) in
a-Fe,Ge,_,, which will be further discussed later in the paper.

Figure 3(b) shows measured and calculated values of the
atomic number density ny for a-Fe,Ge _, and a-Fe,Sij_,;
neotal fOr crystalline B20 FeGe is also shown for comparison.
The increased size of the Ge atom compared to the Si atom is
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FIG. 3. Comparison of magnetic and structural properties of
a-Fe,Ge,_, (blue symbols) and a-Fe,Si;_, (green symbols) in-
dicates that both materials exhibit a Stoner model-type itinerant
ferromagnetism. The purple x marks 7 = 5K measurements of
B20 FeGe for comparison. (a) Magnetization per Fe atom (filled
circles) increases roughly linearly as a function of Fe concentration
x for both a-Fe,Ge;_, and a-Fe,Si;_,. MD-DFT calculations of
a-Fe,Ge,_, using a 64-atom supercell (open blue squares) yield the
same values of M as those using a 128-atom supercell (open blue
diamonds); these are discussed further in the text. (b) Total atomic
number density increases slightly with x; solid lines are linear fits
to experimental data and dotted lines are extrapolations of those fits
shown as guides to the eye. a-Fe,Si;_, MD-DFT calculations and
T = 2K experimental data are from Ref. [33] and 7 = 5K B20
FeGe experimental data is from Ref. [18].

responsible for the 15-20% reduction in n, of a-Fe,Ge;_y
compared to that of a-Fe,Si;_,. Since Fe structures itself
more compactly than either Si or Ge, nyy, unsurprisingly
increases with increasing x for both systems; DFT calcula-
tions reproduce this trend in good qualitative agreement with
experiments for both a-Fe,Si;_, and a-Fe,Ge;_,. Cursory
extrapolations of the measured trend indicate that, for this x
regime, Ny, for both systems approaches the atomic number
density of bulk Fe (np., orange arrow on right vertical axis)
as x approaches 1. However, neither extrapolation recovers
its group IV element atomic number density (arrows on left
vertical axis: green for ng; and blue for ng.) as x approaches
0, suggesting the existence of one or more polyamorphous
transitions in both systems.
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FIG. 4. Longitudinal charge transport properties of a-Fe,Ge,_, (blue lines and hexagons), shown with a-Fe,Si;_, data from Ref. [12]
(green triangles) for comparison. (a) Longitudinal resistivity p,, as a function of temperature 7' exhibits a negative temperature coefficient of
resistance for all compositions x, and decreases with increasing x at all 7'. Individual data points are too closely spaced to be distinguishable,
so a solid line is shown instead. (b) Residual longitudinal conductivity o,, o measured at 7 = 4K as a function of Fe concentration x for
a-Fe,Ge,_, (solid blue hexagons) and a-Fe,Si;_, (solid green triangles). Spline fits to the data (dashed lines) are shown as a guide to the eye.
(c) Carrier concentration n;, obtained from Hall effect measurements at 7' = 2 K for a-Fe,Ge,_, (open blue hexagons) and a-Fe,Si;_, (open
green triangles). Spline fits to the data (dashed lines) are shown as a guide to the eye.

B. Magnetotransport

Longitudinal charge transport measurements are shown in
Figs. 4 and 5, while transverse measurements are shown in
Fig. 6; we first examine the H = 0 longitudinal transport
properties. Figure 4(a) shows the temperature dependence of
the longitudinal resistivity p,,, or simply p, for a-Fe,Ge;|_,
with 0.40 < x < 0.65, with higher x values in darker colors
(solid lines are shown because the individual data points are
too closely spaced to be distinguishable). The temperature
dependence of p for each x is relatively weak compared to the
composition dependence of p across the range of x studied.
Both the weak temperature dependence of the resistivity and
the negative sign of the temperature coefficient of resistance
o (e =p'3p/0T) are consistent with the temperature-
independent scattering length ¢ ~ a of an amorphous metal
(where a is the average interatomic spacing); this temperature-
independent £ leads to the condition p 2 150 uQ2cm for
amorphous metals, which is apparent in our measurements.
The systematic increase in p with decreasing x reflects the
decrease in carrier concentration with decreasing x, which will
be further discussed next.

Figure 4(b) shows the residual conductivity oy, o(T = 4K)
while Fig. 4(c) shows the carrier concentration for a-Fe,Ge | _
compared to a-Fe,Sij_, (a-Fe,Sij_, data from Ref. [12]).
The carrier concentration was obtained from magnetotrans-
port measurements carried out at 7 = 2K (Fig. 6) with the
samples set up in the van der Pauw geometry. The AHE
dominates p,, for all four samples; the additional positive
slope due to the OHE (indicative of hole carriers) is apparent
for the x = 0.45 and 0.48 samples, but is hardly visible at
higher x so the density of holes nj, was extracted from py,(H)
by iteratively fitting the parameters Ry and Ry to Eq. (1) in
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MR (%)

—0.6 1

—08 T T T T T
0.0 1

—0.2

=048
—0.4 1

MR (%)

—— T =2K
T=40K
T=8 K

—0.6

T T
—-50000—-25000 0

T T
25000 50000
Field (Oe)

FIG. 5. Normalized magnetoresistance with H oriented out of
the film plane for a-Fe,Ge,_,. Data is symmetrized according to
p(H) = %[p(—i—H ) + p(—H)] to remove contact asymmetry effects;
data points are connected as a guide to the eye. Poor signal-to-noise
is a side effect of the measurement geometry, which was chosen
to optimize the Hall voltage signal. (a) Composition dependence of
magnetoresistance at 7 = 2 K shows stronger negative magnetore-
sistance for lower x. (b) Temperature dependence of magnetoresis-
tance for x = 0.48 shows negative magnetoresistance to 7 = 40 K,
disappearing by T = 80K.
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FIG. 6. Measured Hall resistivity p,, as a function of applied
magnetic field at 7 = 2K for various Fe concentrations x of
a-Fe,Ge,_, shows a dominant anomalous Hall effect with a very
large magnitude for all x. Inset: Normalized anomalous Hall re-
sistivity p\'(H) = p.,(H) — RoH (green) overlaid with normalized
measured magnetization (orange), showing excellent agreement and
further corroborating the weak ferromagnetism in the x = 0.45 and

0.48 films. Data points are connected as a guide to the eye.

Python, using measured M, (H) data for each sample. Ry is
related to the carrier concentration by |Ry| = (ne)~!, where
n is the carrier concentration and e is the electronic charge;
our fits yield the values of hole concentration n;, shown by
open blue hexagons in Fig. 4(c). Comparing our results to
the measured (for 0.43 < x < 0.48) and extrapolated (for
x > 0.48) values of ny, for a-Fe,Si;_, (open green triangles)
confirms that the higher carrier concentration in a-Fe,Ge;_, is
responsible for its higher o,, o for any x, represented by filled
blue hexagons in Fig. 4(b), compared to a-Fe,Si;_, (filled
green triangles).

The magnetoresistance (MR) ratio, defined as MR(H) =
[po(H) — p(0)]/p(0), was also measured for a-Fe,Ge;_, and
is shown in Fig. 5(a) at T = 2 K with H oriented perpendic-
ular to the film plane. As expected for ferromagnets, the MR
is negative [34] and the weakly ferromagnetic x = 0.45 and
0.48 samples show a larger negative MR due to increased sup-
pression of spin-disorder scattering by an applied magnetic
field. Figure 5(b) shows that, in contrast to the positive MR
of a-Fe,Si;_, for T > 16K [12], this significantly enhanced
negative contribution to the MR of a-Fe,Ge;_, dominates up
to temperatures between 40 K and 80 K, resulting in a net
negative MR for x = 0.48 over a wide temperature range. We
note that, while still small, the magnitude of the T = 2 K MR
in a-Fe,Ge|_, is more than 200 times greater than the effect
measured in the same geometry (H perpendicular to the film
and therefore also perpendicular to the current) in a-Fe, Si;_,
for comparable Fe concentrations, despite similar M(H ).
Since we have shown our samples to be structurally and

chemically homogeneous (Fig. 1), we attribute this enhanced
negative MR in a-Fe,Ge,_, both to a stronger coupling be-
tween carriers and local moments and to a greater reduction
in the disorder seen by the carriers. The latter effect reinforces
our observation, based on the M (H) curves, that a-Fe,Ge_,
hosts a more complicated spin texture than a-Fe,Si;_,.

We isolate the anomalous component of the Hall resistivity
by subtracting the OHE from the total py,, and show the result
for x = 0.45 in the inset to Fig. 6 normalized by its H =
5T value and overlaid with the correspondingly normalized
M_(H) to emphasize the unmistakable magnetic origin of this
Hall signal, even in our most weakly ferromagnetic sample.
This inset also exemplifies the absence of additional measur-
able contributions to the Hall effect, such as a topological
Hall effect that has been observed in several systems as a
consequence of the adiabatic change in the carrier phase by
a noncollinear spin texture. While the samples shown here
likely host local noncollinear spin textures due to the DMI
in the Fe-Ge system, the absence of global chirality in the
amorphous structure reduces any net signal from localized
topological contributions to the Hall resistivity below the
sensitivity of our setup.

IV. DISCUSSION

A. Magnetization

The onset of magnetic order at T = 2K in a-Fe,Ge|_,
occurs between x = 0.45 and x = 0.38, in agreement with
previous work [19]. The inset of Fig. 2 confirms this by
comparing the magnetization of the x = 0.38, 0.45, and 0.48
films to Brillouin functions of ideal paramagnets with S = 1/2
and S = 3/2; the paramagnetic x = 0.38 curve falls squarely
between the Brillouin functions while no single Brillouin
function adequately models both the low- and high-field
behavior of the x = 0.45 and x = 0.48 curves. The steep
slope and finite hysteresis of their magnetization at low fields
suggests ferromagnetism, but the magnetization continues to
increase without saturating to fields above H = 7 T, leading to
the conclusion that a-Fe( 45Geq ss and a-Fe( 43Geq s, are only
weakly ferromagnetic. Notably, the Ising model from which
the Brillouin functions arise does not capture the profusion
of spin textures that form across the crystalline Fe-Ge system
thanks to the competition between Heisenberg and DM inter-
actions in different lattice configurations, and the nonsquare
features of the hysteresis loops noted previously indicate that
this competition persists in a-Fe,Ge;_,.

For both a-Fe,Ge|_, and a-Fe,Si;_,, the magnetization
per Fe atom increases with increasing Fe concentration x;
however, for any given x, a-Fe,Ge;_, has a significantly
higher magnetization per Fe atom than a-Fe,Si;_,, despite
having only slightly higher magnetization per unit volume,
due to the different atomic densities of these two alloys at
all x [Fig. 3(b)]. In contrast to the Fe-Si system, in which
the magnetization of the crystalline phase is an order of
magnitude (or more) less than than that of a-Fe,Si;_, [33], the
measured magnetization per Fe atom of B20 FeGe at7 = 5K
from Ref. [18] aligns very well with our experimental data for
a-Fe,Ge;_,; taken together with existing evidence that the lo-
cal atomic environment strongly influences the magnetic state
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of amorphous transition metal germanides and silicides, this
suggests that the local atomic environment in our amorphous
films resembles that of B20 FeGe. The DFT calculations of
magnetization in a-Fe,Si;_, [33] and a-Fe,Ge;_, [open dia-
monds and squares in Fig. 3(a)] reproduce this experimental
trend as well as the relative values of M between both systems,
but yield excellent quantitative agreement with experiment
only in a-Fe,Si;_,. The discrepancy between calculated and
measured magnetization in a-Fe,Ge;_, is likely due to a non-
collinear spin texture, which suppresses the net magnetization
and is not computationally taken into account because of the
difficulty of calculating the spin texture of an amorphous
system using DFT.

The increased size of the Ge atom relative to the Si
atom enhances the magnetization of a-Fe,Ge|_, relative to
a-Fe,Sij_, [Fig. 3(a)]. A local-moment picture does not
fully capture the physics in these systems, so we turn to
the calculated DOS of a-Fe,Ge;_, (0.45 < x < 0.61) and
a-Fe 65Sig 35 [33] shown in Fig. 7 for a more complete expla-
nation of the role of Ge and Si atomic size. Intuitively, substi-
tuting the larger, isoelectronic Ge atom for Si in a crystalline
system will increase the lattice constant, shrink the Brillouin
zone, and compress the energy bands in k space, thereby
narrowing and sharpening the features in the DOS. For our
amorphous systems, k is no longer a good quantum number
so Brillouin zones and energy bands are not meaningful;
however, the average interatomic spacing and the DOS make
no reference to k and so provide a meaningful extension of
our crystalline intuition into amorphous systems. The reduced
atomic number density corresponds to an increased average
interatomic spacing in a-Fe,Ge|_, compared to a-Fe,Si;_,.
This leads to a sharper DOS peak and a stronger spin split
near the Fermi level, as shown in Fig. 7, which explains the
enhanced magnetization, as well as its pronounced x depen-
dence, in a-Fe,Ge;_, when considered in the framework of a
simple Stoner band model of itinerant ferromagnetism [35].
We therefore conclude that the scattering from the disorder
associated with the amorphous structure is sufficiently weak
that it does not substantially redistribute the majority and mi-
nority DOS of the Fe-3d electrons, so the exchange interaction
remains strong enough to spin-split the DOS and yield a net
magnetization.

Furthermore, the DOS in Fig. 7 allows us to approximate
the spin polarization in a-Fe,Ge,_,; for example, we count
states at the Fermi energy er for a-Feg 61 Gep 39 and estimate
a 37% spin polarization, nearly identical to the calculated
spin polarization for a-Fe ¢5Sig 35 [33]. The low-temperature
spin polarization of a-Fe,Si;_, with 0.58 < x < 0.68 has
been measured using point-contact Andreev reflection spec-
troscopy and was found to peak at almost 70% for x = 0.65
[36], roughly double the prediction from the calculated DOS;
this discrepancy was there attributed to the small size of the
supercell used in the calculations. The result in a-Fe,Sij_,
leads us to suspect a similarly large spin polarization exists
in a-Fe,Ge|_,.

B. Anomalous Hall effect

These films fall at the high conductivity edge of the
low conductivity regime, with 103 < 0, < 10* (Q cm)~! and

a-Feq5 Gess
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100 A a-Fes4Geus
a-Feg1 Gesg
./é\ a-FegsSiss
& 50
% V% paeces
© -
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wn
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—100 A
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FIG. 7. Calculated density of states (DOS) near the Fermi level
for the compositions x of a-Fe,Ge,_, studied experimentally (blue
curves), and for a-Fe(¢5Sig 35 (green dashed curve, from Ref. [33]),
all based on a 128-atom unit cell. The peaks of the majority spin in
the DOS are narrowed and sharpened by substituting the larger Ge
atom for the Si atom for a fixed x, as can be seen from comparing
the DOS of a-Fe( 551035 to that of a-Feg g Geg 39, eXplaining the
enhanced magnetization in a-Fe,Ge,_,.

finite o, as T — 0, so hopping conduction does not apply.
To apply a standard empirical scaling argument to the AHC
in a-Fe,Ge,_,, an appropriate normalization is essential; we
consider two factors to enable comparison of our results to the
scaling of the AHC in a-Fe,Si;_, [12]. First, in changing the
Fe concentration x, M is also modified. Since o3 oc pfi!! o
M,, changing x alters agﬁ directly due to the dependence on
M_; we remove this dependence by dividing o} by M, and
obtain the data shown in Fig. 8(a). These data can be fit by
oM oc oLl similar to what was obtained for a-Fe,Si;_, but
inconsistent with the theoretical predictions of Onoda et al.
[10] and Liu ez al. [11]. Additionally, since the unified theory
is expressed in terms of the carrier lifetime t and not the
conductivity oy,, we must account for the effect of changing
x on t. Hence, we consider a simple free-electron-type model
which gives ni/ ? as our second normalization factor, using the
values of nj, shown in Fig. 4(b). This normalization yields the
scaling plot in Fig. 8(b), in which afyH /Mzni/ s essentially
independent of o,,. Both scaling plots in Fig. 8 also show the
appropriately normalized AHC in a-Fe,Si;_, from Ref. [12]
as a point of comparison; we attribute the quantitative similar-
ity in the normalized AHC of a-Fe,Ge,_, and a-Fe,Si;_, to
the spin-orbit coupling introduced near er by the Fe d-states
in both systems, since the spin-orbit coupling due to the Ge
(or Si) p states is diluted over a wider energy range.

The fact that o}" /M., is independent of o, implies
that either the side jump or the intrinsic mechanism, or some
combination of the two, is responsible for the AHC. In the
case of a-Fe,Si;_,, these two contributions were qualitatively
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FIG. 8. Scaling plot of the anomalous Hall conductivity A"
reveals the origin of the anomalous Hall effect in a-Fe,Si,_, and
a-Fe,Ge,_, across different regimes of longitudinal conductivity
0y (a) Normalizing oA by the saturation magnetization M, yields
a power-law dependence that deviates from the empirical A" ~
0:0=18 _(b) Normalizing further by a free-electron-type dependence
on the carrier concentration, ni/ 3, yields an essentially constant value
for both a-Fe,Si;_, and a-Fe,Ge,_,. Dashed lines are average val-
ues of o}/ (Mznlzl/ ?) for a-Fe,Ge,_, (blue) and a-Fe,Si;_, (green).
Amorphous and epitaxial Fe-Si data from Ref. [12]; B20 FeGe data
from Ref. [18].

deconvolved by comparison to measurements on crystalline
Fe,Si;_,, which were compared to calculations of the in-
trinsic and side-jump mechanisms in the AHC of bcc Fe
[12]. To more rigorously separate the contributions of these
two mechanisms in a-Fe,Ge|_,, we compare ab initio values
of the intrinsic AHC calculated from our spin-orbit-coupled
128-atom MD-DFT, which are normalized by the calculated
magnetization and shown in Fig. 9, to experimental values
of the total AHC, normalized by the measured magnetiza-
tion; this comparison shows excellent agreement in the trend
of the calculated and experimental values, suggesting that
the measured AHC consists of a large intrinsic component,
which varies with composition and is partially offset by a
composition-independent side-jump component. While the
intrinsic AHC is generally expressed as the integral of the
Berry curvature taken over all occupied bands, this result in-
dependently verifies the outcome of our scaling argument and
unambiguously shows that the intrinsic mechanism persists in

= 120 - //‘9
2 oA
= 100 7 o £
® ¥ 1 St
3 Rs -~
S~— | ”/
- 807 0.5 0.6 ,Q/'
\ r -
g 60 . ”/’/ ””,’
& o ) é}/,,
=~ 40 - e
N ’/’
3 50 - = {) MD-DFT o H—int
e : § experiment gAli—total
e} ry
0 -+

0.50 0.55 0.60

Fe fraction =

0.45

FIG. 9. Comparison of calculated intrinsic anomalous Hall con-
ductivity from 128-atom MD-DFT (turquoise diamonds) to exper-
imentally measured total anomalous Hall conductivity (blue dots).
The main axis shows the AHC normalized by the saturation mag-
netization M,, where experimental values have been normalized
by the experimentally measured M, and theoretical values have
been normalized by the theoretically calculated M, for consistency.
Unnormalized values of the measured total and calculated intrinsic
AHC are shown in the inset. Spline fits to data (dashed lines) are
shown as a guide to the eye.

systems whose band structure is ill-defined, further validating
the real-space formulation of the AHC in Ref. [15].

Our spin-orbit-coupled DFT calculations provide com-
putational foundations and a theoretical paradigm shift for
understanding the intrinsic AHC in an amorphous material.
The intrinsic AHC is the integral over occupied states of the
Berry curvature; however, as K is not a good quantum number
in an amorphous system, expressing the Berry curvature as
Q(k) is meaningless here. Instead, we construct a framework
appropriate to our system based on the density of Berry
curvature [13,14],

ppoc(e) = Y Q(K)S(ex — &), 3)
k

which corresponds to the Berry curvature within an energy
range bounded by e and ¢ 4 de integrated throughout the
Brillouin zone. This can, in principle, be computed in an
amorphous material without reference to k space by adding
together the partial DOS for local orbital states with spin-orbit
correlation parallel and antiparallel, which are energetically
offset by the self-consistently determined exchange energy. If
the energy scales of the disorder potentials that scatter states
from momentum k to k' are relatively weak compared to the
energy scale spanned by the features in ppoc(e), then the
density of Berry curvature would be approximately preserved
even as momentum fails to remain a good quantum number in
an amorphous system.

014402-8



ITINERANT FERROMAGNETISM AND INTRINSIC ...

PHYSICAL REVIEW B 101, 014402 (2020)

— : a—Fe45Ge55
L\ 300 A — a—Fe48Ge52
%.J — a—Fe54Ge46
g 200 - —— a-Feg Gesg
S

E 100

B

<

g 0

[}

[

o

= —100 7

B

=]

[«5]

A —200

T T T
—6 —4 -2 0 2 4

e—ep (eV)

FIG. 10. Density of Berry curvature as a function of chemical
potential calculated from 128-atom MD-DFT for a-Fe,Ge;_, with
x = 0.45,0.48, 0.54, and 0.61.

Figure 10 shows the density of Berry curvature as a
function of chemical potential for the compositions x of
a-Fe,Ge,_, studied in this paper; integrating the density of
curvature over occupied energy states yields the intrinsic AHC
shown in Fig. 9, in the same way that integrating the spin-
resolved DOS over occupied energy states yields the mag-
netization. Figure 10 further indicates that the energy scale
of the density of Berry curvature is on the order of 5 eV, an
energy scale set in part by the spin-orbit interaction-induced
splitting of parallel and antiparallel spin-orbit correlated states
and in part by the exchange energy in our system. As long
as the disorder potentials are typically smaller than 5 eV, our
conclusions about the AHC would remain similar in both
the clean and disordered systems; otherwise, the spin-orbit
correlations that give rise to the AHC would be lost. This
energy scale lends confidence that the calculated density of
curvature, which imposes an artificial periodicity on the sim-
ulated 128-atom amorphous supercell, is a suitable approxi-
mation for that of the fully amorphous material: the similarity
between the simulated and measured atomic number densities
[Fig. 3(b)] indicates that the supercell accurately reproduces
the structural disorder, and hence the disorder potentials, of
the actual amorphous structure.

V. CONCLUSION

In summary, we presented experimental and computational
studies of the magnetic and transport properties of amorphous
Fe,Ge;_, (0.45 < x < 0.61) thin films, including the first
measurement of the AHE in a-Fe,Ge;_,. Its magnetization
is well explained by a Stoner band model above the onset
of magnetic order around x = 0.4, with the larger Ge atom
distorting the DOS and causing enhanced magnetization at
all x in a-Fe,Ge;_, compared to a-Fe,Si;_,. The resistivity
of a-Fe,Ge|_, agrees with established work on amorphous
metals, and indicates that a metal-insulator transition occurs
at lower x than the onset of ferromagnetism. The AHC of
a-Fe,Ge_, is independent of the longitudinal conductivity
when appropriately normalized by Mzni/ ? to account for the
role of changing the Fe concentration on the magnetization
and carrier lifetime; our DFT calculations refine this scal-
ing argument and indicate that the AHC is comprised of a
dominant intrinsic component whose magnitude is influenced
by the Fe concentration, and of an opposing composition-
independent side-jump component. The calculated density
of Berry curvature shows that the AHC in this amorphous
material is indeed intrinsic; moreover, because the density
of curvature can be calculated from either the spin-orbit
correlations of local orbital states in a disordered material
or the band structure in a crystalline one, it provides a
versatile Stoneresque model for understanding the electronic
origins of the intrinsic AHC in systems possessing and lacking
long-range order. Since the spin and orbital Hall conductivi-
ties arise from mathematically analogous Berry curvaturelike
quantities, we anticipate that the straightforward extension
of this model to those phenomena will spur experimental
investigation of the spin and orbital Hall effects in amorphous
materials, portending future application of such materials as
spin and orbital torque generators in next-generation devices.
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